Amber Helm Development L.C.

92723 Michigan Hwy-152 Sister Lakes, Michigan 49047 USA Tel: 888-847-8027

EMC Test Report

WACM-1702186 Issued: September 22, 2017

regarding

USA: CFR Title 47, Part 18.305 (Emissions)

for

WACM

Category: Consumer ISM Equipment

Judgements: USA FCC Part 18 Compliant Tested: September 19, 2017

NVLAP LAB CODE 200129-0

Prepared for:

Delphi Electronics & Safety

One Corporate Center, Kokomo Indiana 46904-9005 USA Phone: 765 451 5770 Fax: 765-451-0900 Contact: Brian Johnson brian.w.johnson@delphi.com

Reviewed by:

Data Recorded by:

Gordom Helm.

Dave Miller, EMC-003027-NE

Prepared by:

seph Brunett, EMC-002790-NE Dr

EMC

00240**7**-NE

Date of Issue: September 22, 2017

Report No.: WACM-1702186

Revision History

Rev	v. No.	Date	Details	Revised By	
0		September 22, 2017	Initial Release.	J. Brunett	
Con	itents				
Revi	ision Histo	ory			2
Tabl	e of Conte	ents			2
1 T 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	 Laborat Report Subcont Test Da Limitati Copyrig Test Lo 	Retention			4 4 4 4 4 4 4 5 5 5
2 T 2.	est Specifi 1 Test Sp	cations and Procedures ecification and General Pro	cedures		6 6
3 C 3.	1 Descript 3.1.1 1 3.1.2 1 3.1.3 1 3.1.4 1 3.1.5 1 3.1.6 1 3.1.7 1	tion and Declarations EUT Configuration Modes of Operation Variants		· ·	7 7 7 7 8 8 8 8 8 8
 4 E 4. 4. 	4.1.1 1 4.1.2 (4.1.3 1 2 Intentio 4.2.1 1 4.2.2 1 4.2.3 1 3 Uninten	Radiated Test Setup and P Conducted Emissions Test S Power Supply Variation	rocedures		9 9 11 11 12 12 13 14 15 15
5 N	leasureme	nt Uncertainty and Acc	reditation Documents		17

List of Tables

1	Test Site List.
2	Equipment List.
3	EUT Declarations
4	Pulsed Emission Characteristics (Duty Cycle)
5	Intentional Emission Bandwidth 13
6	Fundamental Radiated Emissions
7	Transmit Chain Spurious Emissions
7	Transmit Chain Spurious Emissions
8	Measurement Uncertainty

List of Figures

1	Photos of EUT.	7
2	EUT Test Configuration Diagram.	8
3	Radiated Emissions Diagram of the EUT	9
4	Radiated Emissions Test Setup Photograph(s).	10
5	Intentional Emission Bandwidth.	13
6	Accreditation Documents	17

1 Test Report Scope and Limitations

1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: 90413) and with ISED Canada, Ottawa, ON (File Ref. No: IC3161). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0 and includes within its scope CFR Title 47 Part 15 Subparts B and C.

1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until September 2027.

1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

1.4 Test Data

This test report contains data included within the laboratories scope of accreditation.

1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C..

1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

Num.

1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report.

Description Location Quality			Table 1: Test Site List.	
	Description	Location		Quality

OATS (3m & 10m) 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA OATSA

1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 2. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards.

Table 2: Equipment List.

Description	Manufacturer/Model	\mathbf{SN}	Quality Num.	Last Cal By / Date Due
EMI Receiver	HP / $85460A/85462A$	$3704A00422, \\3807A00465$	HP8546A	Techmaster / Apr-2018
(3m) RG8 Coax	CS-3227 / CS-3227	C060914	CS3227	AHD / Mar-2018
(3m) LMR-400 Coax	AHD / LMR400	C090804	LMR400	AHD / Mar-2018
(LCI) DS Coax	AHD / $RG58/U$	920809	RG58U	AHD / Jan-2018
Shielded Loop Antenna	EMCO / 6502	9502 - 2926	EMCOLOOP1	Lib. Labs. / Aug-2018
BiconiLog Antenna	EMCO / 3142	1169	BILO3142	Lib.Labs / May-2018
Double Ridged Horn	EMCO / 3115	2788	RH3115	Lib.Labs. / July-2018

2 Test Specifications and Procedures

2.1 Test Specification and General Procedures

The ultimate goal of Delphi Electronics & Safety is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Delphi Electronics & Safety WACM for compliance to:

Country/Region	Rules or Directive	Referenced Section(s)
United States	Code of Federal Regulations	CFR Title 47, Part 18.305

It has been determined that the equipment under test is subject to the rules and directives above at the date of this testing. In conjunction with these rules and directives, the following specifications and procedures are followed herein to demonstrate compliance (in whole or in part) with these regulations.

ANSI C63.4:2014	"Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
ANSI C63.10:2013 (USA)	"American National Standard of Procedures for Compliance Testing of Unli- censed Wireless Devices"
MP-5:1986	"FCC Methods of Measuremens of Radio Noise Emissions from Industrial, Sci- entific, and Medical Equipement"
IEEE Trans. EMC, Vol. 47, No. 3 August 2005	"Extrapolating Near-Field Emissions of Low-Frequency Loop Transmitters," J.D.Brunett, V.V.Liepa, D.L.Sengupta
TP0102RA	"AHD Internal Document TP0102 - Radiated Emissions Test Procedure"

3 Configuration and Identification of the Equipment Under Test

3.1 Description and Declarations

The equipment under test is a wireless power transfer charger used in a motor vehicle. The EUT is approximately 16 x 8 x 2 cm in dimension, and is depicted in Figure 1. It is powered by 13.4 VDC vehicular power system. In use, this device is permanently affixed inside the body of a motor vehicle. Table 3 outlines provider declared EUT specifications.

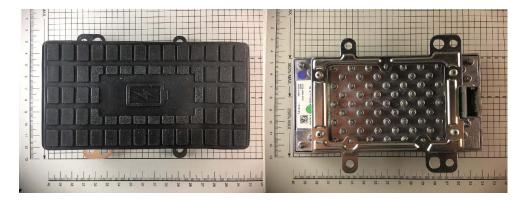


Figure 1: Photos of EUT.

Table 3:	EUT	Declarations.

General Declarations			
Equipment Type:	Consumer ISM Equipment	Country of Origin:	Not Declared
Nominal Supply:	13.4 VDC	Oper. Temp Range:	Not Declared
Frequency Range:	110 kHz	Antenna Dimension:	6 cm
Antenna Type:	coil	Antenna Gain:	Integral
Number of Channels:	1	Channel Spacing:	None
Alignment Range:	Not Declared	Type of Modulation:	CW
United States			
FCC ID Number:	L2C0066T	Classification:	8CC

3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 2.

3.1.2 Modes of Operation

This device is an OEM installed magnetic (inductive coupled) charger pad for use in a motor vehicle. It employs three charging coils (only one of which may be used at any given time) to transfer energy from itself to a compatible, portable receiving device placed in contact with the EUT surface. Emissions from each of the three coils employed are fully reported herein.

3.1.3 Variants

There is only a single variant of the EUT, as tested.

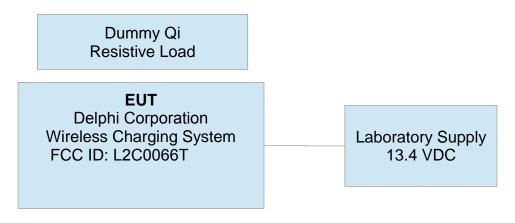


Figure 2: EUT Test Configuration Diagram.

3.1.4 Test Samples

Two samples were provided for testing; one sample for photographs and one normal operating sample. A dummy client load (paired Qi Texas Instruments client board) was provided to activate the device for testing over each coil. This load consists of a normal Qi client circuit with the battery load replaced by an equivalent resistive value. All rectification and regulation circuitry representative of client side loading was implemented.

3.1.5 Functional Exerciser

EUT functionality was verified by observation of transmitted signal.

3.1.6 Modifications Made

There were no modifications made to the EUT by this laboratory.

3.1.7 Production Intent

The EUT appears to be a production ready sample.

3.1.8 Declared Exemptions and Additional Product Notes

The system uses load modulation on the power transfer frequency as part of its power management and control features. No other communication is employed by the EUT and no data is transferred to the client via the load modulation employed; no other frequencies are employed by the device. As such, this device qualifies for FCC certification under Part 18. As the operating frequency of the EUT is 109.8 kHz, FCC Part 18.309(a) indicates the range of frequency over which measurements are required is 9 kHz to 30 MHz. The EUT is permanently installed in a transportation vehicle. As such, digital emissions (emissions from digital circuitry not used in generating the charging frequency) are exempt from US and Canadian digital emissions regulations (per FCC 15.103(a) and ISED correspondence).

4 Emissions

4.1 General Test Procedures

4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 3. All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

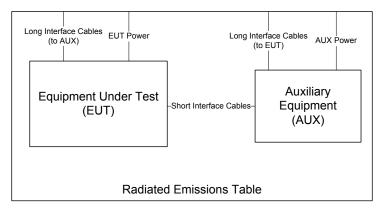


Figure 3: Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broadband probes are used depending on the regulations. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, the broadband probes employed are 10cm diameter single-axis shielded transducers and measurements are repeated and summed over three axes.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4×5 m rectangle of ECCOSORB absorber covering the OATS ground screen. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to $dB\mu V/m$ at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

Figure 4: Radiated Emissions Test Setup Photograph(s).

4.1.2 Conducted Emissions Test Setup and Procedures

4.1.3 Power Supply Variation

Tests at extreme supply voltages are made if required by the the procedures specified in the test standard, and results of this testing are detailed in this report.

Г

4.2 Intentional Emissions

4.2.1 Fundamental Emission Pulsed Operation

The details and results of testing the EUT for pulsed operation are summarized in Table 4.

Table 4: Pulsed Emission Characteristics (Duty Cycle).

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	19-Sep-17
9 kHz f 150 kHz	Pk/QPk	200 Hz	300 Hz	Test Engineer:	Gordon Helm
150 kHz f 30 MHz	Pk/QPk	9 kHz/10 kHz	30 kHz	EUT Mode:	Normal Operating
25 MHz f 1 000 MHz	Pk/QPk	120 kHz	300 kHz	Meas. Distance:	60 cm
f > 1 000 MHz	Pk	3 MHz	3MHz	EUT Tested:	Delphi WACM
f > 1 000 MHz	Avg	3 MHz	10kHz		

F			Ove	erall Transn	nission		Internal Frame Characteristics				
			Min.		Total				Compute	d Duty Cycle*	
	#	EUT Mode	Repetition	Max. No. of Frames	Transmission Length (sec)	Max. Frame Length (ms)	Min. Frame Period (s)	Frame Encoding	(%)	Duty (dB)	
	1	Normal (109.8 kHz)	CW	N/A	Until Charged	N/A	N/A	The EUT employs a CW charging signal.	100.000	0.0	

* No Duty Cycle is employed when demonstrating compliance.

4.2.2 Fundamental Emission Bandwidth

Emission bandwidth (EBW) of the EUT is measured with the device placed in the test mode(s) with the shortest available frame length and minimum frame spacing. Radiated emissions are recorded following the test procedures listed in Section 2.1. The 20 dB EBW is measured as the max-held peak-detected signal when the IF bandwidth is greater than or equal to 1% of the receiver span. The results of EBW testing are summarized in Table 5. Plots showing measurements employed to obtain the emission bandwidth reported are provided in Figure 5.

Table 5: Intentional Emission Bandwidth.

Frequen 9 kHz f 150 kHz f			Det Pk Pk	IF Bandwidth > 1% Span > 1% Span	Video Bandwidth >= 3 * IFBW >= 3 * IFBW	Test Date: Test Engineer: EUT Mode: Meas. Distance: EUT Tested:	19-Sep-17 Joseph Brunett Normal Operating 0.6 m Delphi WACM
Frequency		Supply	20 dB EBW				
(MHz)	Temp (C)	(VDC)	(Hz)				
0.1098	21	13.4	200				

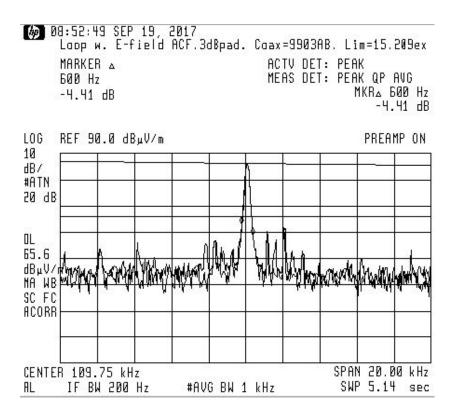


Figure 5: Intentional Emission Bandwidth.

4.2.3 Fundamental Emission

Following the test procedures listed in Section 2.1, field emissions measurements are made on the EUT for both Horizontal and Vertically polarized coupling fields. The EUT's loop antenna(s) are measured when the EUT loop axes are (1) aligned along the same axis as the test loop antenna and horizontal with respect to the test site ground plane, (2) aligned coplanar (in the same plane) with the test antenna and aligned horizontal with respect to the test site ground plane, and (3) aligned coplanar (in the same plane) with the test antenna and vertical with respect to the test site ground plane. Table 6 details the results of these measurements.

Table 6: Fundamental Radiated Emissions.

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	19-Sep-17
9 kHz f 150 kHz	Pk/QPk	200 Hz	300 Hz	Test Engineer:	Gordon Helm
150 kHz f 30 MHz	Pk/QPk	9 kHz	30 kHz	EUT Mode:	Normal + Load
25 MHz f 1 000 MHz	Pk/QPk	120 kHz	300 kHz	Meas. Distance:	3 meters
$f > 1 \ 000 \ MHz$	Pk	1 MHz	3MHz	EUT Tested:	Delphi WACM
$f > 1\ 000\ MHz$	Avg	1 MHz	3MHz		
		Fundamental F	Cmissions Measurements		
EUT From	Ant A	nt ** Tabla Va Va	Cf** E fald @ 2m	E field @ 200	

		EUT	Freq.	Ant.	Ant.**	Table	Ka	Kg	Cf**	E-field @	3m		E-field @ 300)m	
				Used	Height	Azim			3m / 300m	Pk	Qpk	Pk	Qpk	Limit Qpk	Pass By***
#	Mode	Orientation	MHz	QN	m	deg	dB/m	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dBuV/m	
1		Flat	0.110	EMCOLOOP1	1.0	110	10.1	0.0	101.7	95.0		-6.7		23.5	30.2
2	Coil 1	Side	0.110	EMCOLOOP1	1.0	200	10.1	0.0	101.7	95.4		-6.3		23.5	29.8
3		End	0.110	EMCOLOOP1	1.0	160	10.1	0.0	101.7	102.0		0.3		23.5	23.2
4		Flat	0.110	EMCOLOOP1	1.0	110	10.1	0.0	101.7	96.2		-5.5		23.5	29.0
5	Coil 2	Side	0.110	EMCOLOOP1	1.0	130	10.1	0.0	101.7	96.2		-5.5		23.5	29.0
6		End	0.110	EMCOLOOP1	1.0	160	10.1	0.0	101.7	102.8		1.1		23.5	22.4
7		Flat	0.110	EMCOLOOP1	1.0	110	10.1	0.0	101.7	95.8		-5.9		23.5	29.4
8	Coil 3	Side	0.110	EMCOLOOP1	1.0	150	10.1	0.0	101.7	96.2		-5.5		23.5	29.0
9]	End	0.110	EMCOLOOP1	1.0	160	10.1	0.0	101.7	102.8		1.1		23.5	22.4

		Test Antenna	Freq.	DC Supply	E-field
#	Mode	Polarization	MHz	Voltage	dBuV/m
10			0.110	15.20	103.0
11	Coil 3	End	0.110	13.40	102.8
12			0.110	11.50	102.8

Measured C	Measured OATS Field Decay Rate to Confirm Field Conversion							
Freq.	Dist from EUT	Pr (Pk)	Formula Fit					
MHz	m	dBm	Pr (Pk) vs Distance					
.110	.5	-16.3	-22.073 ln(x) - 30.6					
.110	1.0	-29.1	Base 10 Rate of Decay***					
.110	2.0	-45.9	(dB/dec)					
.110	4.0	-61.7	-50.8					
*** A Ln (x) = 2	.303*A Log(x).							

Limit = 15 uV/m @ 300m miscellaneous non-ISM

* EUT was tested in CW mode. No averaging applies and Quasi-Peak data was not needed to demonstrate compliance.

** Emissions were evaluated at 1m and 2m test antenna height, and 1 meter was determined to be worst case for all orientations.

*** Per Part 18.305(note 2), EUT field decay rate as measured over a range of distances is used to determine CF between measurement and limit distance.

4.3 Unintentional Emissions

4.3.1 Transmit Chain Spurious Emissions

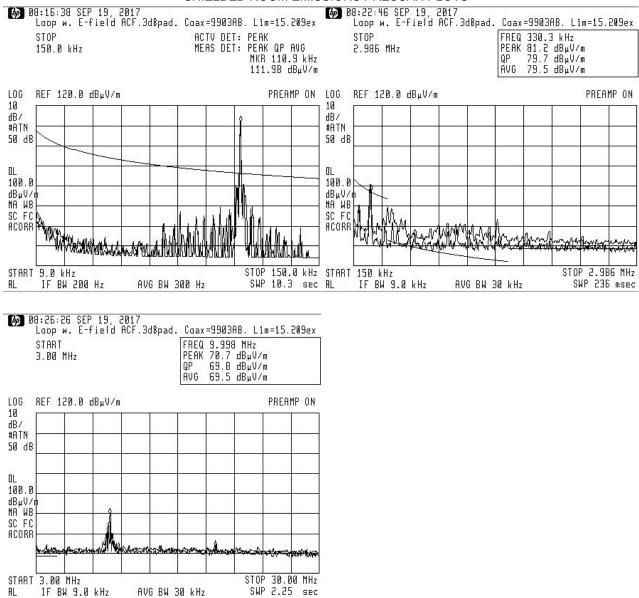
The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 7. Following the test procedures listed in Section 2.1, field emissions measurements are made on the EUT for both Horizontal and Vertically polarized coupling fields. The EUT's loop antenna(s) are measured when the EUT loop axes are (1) aligned along the same axis as the test loop antenna and horizontal with respect to the test site ground plane, (2) aligned coplanar (in the same plane) with the test antenna and aligned horizontal with respect to the test site ground plane, and (3) aligned coplanar (in the same plane) with the test antenna and vertical with respect to the test site ground plane. The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 7. Measurements are performed to 10 times the highest fundamental operating frequency.

Table 7(a	a)	: Transmit	Chain	Spurious	Emissions.
-----------	----	------------	-------	----------	------------

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	19-Sep-17
9 kHz f 150 kHz	Pk/QPk	200 Hz	300 Hz	Test Engineer:	Gordon Helm
150 kHz f 30 MHz	Pk/QPk	9 kHz	30 kHz	EUT Mode:	Normal + Load
25 MHz f 1 000 MHz	Pk/QPk	120 kHz	300 kHz	Meas. Distance:	As Necessary
f > 1 000 MHz	Pk	3 MHz	3MHz	EUT Tested:	Delphi WACM
f > 1 000 MHz	Avg	3 MHz	10kHz		-
	-				

					Tr	ansmit Chai	n Spuri	ous Emis	sions						-	
		EUT	Freq.	Ant.	Ant.**	Table	Ka	Kg	Cf**	E-field	@ 3m		E-field @	2 300m		
					Height	Azim			(3 to 300m)	Pk	Qpk	Pk	Qpk	Limit (Qpk)	Pass By	
#	Mode	Orientation	kHz	Used	m	deg	dB/m	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dBuV/m		Comments
1		Max All, Worst	219.4	EMCOLOOP1	1.0	135.0	10.0	0.0	93.0	55.6		-37.4		23.5	61.0	background
2		Max All, Worst	329.1	EMCOLOOP1	1.0	135.0	10.0	0.0	104.9	71.2		-33.7		23.5	57.2	
3	Coil 1	Max All, Worst	438.8	EMCOLOOP1	1.0	130.0	10.2	0.0	106.0	40.2		-65.8		23.5	89.3	background
4	Coll I	Max All, Worst	548.5	EMCOLOOP1	1.0	130.0	10.2	0.0	40.0	39.1		-0.9		23.5	24.4	
5		Max All, Worst	658.2	EMCOLOOP1	1.0	130.0	10.1	0.0	40.0	39.9		-0.1		23.5	23.6	background
9		Max All, Worst	9990.0	EMCOLOOP1	1.0	160.0	10.4	0.0	40.0	50.9		10.9		23.5	12.6	
10		Max All, Worst	219.4	EMCOLOOP1	1.0	135.0	10.0	0.0	93.0	54.0		-39.0		23.5	62.6	background
11		Max All, Worst	329.1	EMCOLOOP1	1.0	120.0	10.0	0.0	104.9	66.0		-38.9		23.5	62.4	
12	Coil 2	Max All, Worst	438.8	EMCOLOOP1	1.0	120.0	10.2	0.0	106.0	40.2		-65.8		23.5	89.3	background
13	Coll 2	Max All, Worst	548.5	EMCOLOOP1	1.0	130.0	10.2	0.0	40.0	39.1		-0.9		23.5	24.4	
14		Max All, Worst	658.2	EMCOLOOP1	1.0	130.0	10.1	0.0	40.0	39.9		-0.1		23.5	23.6	background
18		Max All, Worst	9990.0	EMCOLOOP1	1.0	180.0	10.4	0.0	40.0	47.0		7.0		23.5	16.5	
19		Max All, Worst	219.4	EMCOLOOP1	1.0	135.0	10.0	0.0	93.0	55.8		-37.2		23.5	60.8	background
20		Max All, Worst	329.1	EMCOLOOP1	1.0	135.0	10.0	0.0	104.9	71.2		-33.7		23.5	57.2	
21	Coil 3	Max All, Worst	438.8	EMCOLOOP1	1.0	130.0	10.2	0.0	106.0	41.3		-64.7		23.5	88.2	background
22	Coll 3	Max All, Worst	548.5	EMCOLOOP1	1.0	130.0	10.2	0.0	40.0	39.1		-0.9		23.5	24.4	
23		Max All, Worst	658.2	EMCOLOOP1	1.0	130.0	10.1	0.0	40.0	40.0		0.0		23.5	23.5	background
27		Max All, Worst	9990.0	EMCOLOOP1	1.0	160.0	10.4	0.0	40.0	48.0		8.0		23.5	15.5	

* EUT was tested in Normal Operating mode. No averaging applies and Quasi-Peak data was not needed to demonstrate compliance ** Emissions were evaluated at 1m and 2m test antenna height, and 1 meter was determined to be worst case for all orientations.


*** Per Part 18.305(note 2), EUT field decay rate as measured over a range of distances is used to determine CF between measurement and limit distance. Above 490 kHz 20 dB/dec Far-field CF is employed. CF measurements were made for the worst case emission orientation of the EUT at each frequency.

			Measured OA	FS Field Deca	y Rate	to Confir	m Field Conversion below 4	90 Khz			
Freq.	Dist.	Pr (Pk)	Formula Fit	Freq.	Dist.	Pr (Pk)	Formula Fit	Freq.	Dist.	Pr (Pk)	Formula Fit
kHz	m	dBm	Pr (Pk) vs Distance	kHz	m	dBm	Pr (Pk) vs Distance	kHz	m	dBm	Pr (Pk) vs Distance
219.4	.5	-54	-20.198 ln(x) - 67.7	329.1	.5	-38.4	-22.766 ln(x) - 52.96	548.5	.5	-52.1	-23.011 ln(x) - 67.37
219.4	1.0	-67	Base 10 Rate of Decay***	329.1	1.0	-51.0	Base 10 Rate of Decay***	548.5	1.0	-66.0	Base 10 Rate of Decay***
219.4	2.0	-82	(dB/dec)	329.1	2.0	-69.0	(dB/dec)	548.5	2.0	-84.0	(dB/dec)
219.4	4.0	noise	-46.5	329.1	4.0	-85.0	-52.4	548.5	4.0	noise	-53.0

*** A Ln (x) = 2.303*A Log(x).

Limit = 15 uV/m @ 300m miscellaneous non-ISM

Table 7(b): Transmit Chain Spurious Emissions.

SHIELDED ROOM EMISSIONS PRESCAN PLOTS

5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of k = 2.

Table 8: Measurement Uncertainty.

${\bf Measurement} ~ {\bf Uncertainty}^{\dagger}$
$\pm (f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \mathrm{Hz})$
$\pm 1.9\mathrm{dB}$
$\pm 4.0\mathrm{dB}$
$\pm 5.2\mathrm{dB}$
$\pm 3.7\mathrm{dB}$

^{\dagger}Ref: CISPR 16-4-2:2011+A1:2014

United States Department of Commerce National Institute of Standards and Technology	7435 Oakland Mills Road Columbia, MD 21046
NVLAP	December 06, 2016 AHD (Amber Helm Development, I.C.) 92723 Michigan Highway 152,
Certificate of Accreditation to ISO/IEC 17025:2005	Sister Lakes, MI 49047 Attention: Gordon Helm
NVLAP LAB CODE: 200129-0	Re: Accreditation of AHD (Amber Helm Development, L.C.) Designation Number: US5348
AHD (Amber Helm Development, L.C.) Sister Lakes, MI	Test Firm Registration #: 639064 . Dear Sir or Madam:
is accredited by the National Voluntary Laboratory Accreditation Program for specific services, issued on the Scene of Accreditation, for	We have been notified by National Voluntary Laboratory Accreditation Program that AHD (Amber He Development, L.C.) has been accredited as a Conformity Assessment Body (CAB).
Electromagnetic Compatibility & Telecommunications Take laboratory is accorded in accordance with the recognized informational Ended ICOREC 170252005. This accordination demonstrates forming accordance for a difference on a difference of a difference o	At this time AHD (Amber Helm Development, L.C.) is hereby designated to perform compliance testin equipment subject to Declamiton Of Conformity (DOC) and Certification uncer Parts 15 and 18 of the Commission Rules.
This accreditation demonstrates technical competence for a demined accupe and the operation of a taboratory quary management system (refer to joint ISO-ILAC-IAF Communique dated January 2003).	This designation will expire upon expiration of the accreditation or notification of withdrawal of design
2017-65-28 farceuph 2018-06-50 Effective Dates	Sincerely, Dave Jaloshy
	Dave Galosky Electronics Engineer
	a shadda -
Gordon Helm David Mille EMC-002401-NE EMC-003027	
ENC-002401-14E	

Figure 6: Accreditation Documents