The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 764-0500

Measured Radio Frequency Emissions From

Remote Control for Delphi-Delco MPC Elite Voice Interface Module (VIM) (Transmitter) Model: L2C0016T

> Report No. 415031-103 November 5, 2001

> > Copyright © 2001

For:

Delphi-Delco Electronics Systems One Corporate Center Kokomo, IN 46904-9005

Contact:

Mark Cummings-Hill Tel: 765-451-8776 Fax: 765-451-1340

PO: verbal from Defiance/Bill Lusa

Tests supervised by: Report approved by:

Joseph Brunett

oved by: Valdis V. Liepa

Research Scientist

Summary

Measurements made by:

Tests for compliance with FCC Regulations, Part 15, Subpart C, and for compliance with Industry Canada RSS-210, were performed on MPC Elite Voice Interface Module (VIM) transmitter. This device is subject to the Rules and Regulations as a transmitter and as a digital device.

In testing performed on October 22 and November 2, 2001, the device tested in the worst case met the allowed specifications for radiated emissions by 10.3 dB at fundamental and by 15.6 dB at harmonics (see p. 6). Besides harmonics, there were no other significant spurious emissions found; emissions from digital circuitry were negligible. The line conducted emission tests do not apply, since the device is powered by a 3-volt battery.

1. Introduction

MPC Elite Voice Interface Module (VIM) transmitter, was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989, and with Industry Canada RSS-210, Issue 2, dated February 14, 1998. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-1992 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland. (FCC file 31040/SIT) and with Industry Canada, Ottawa, ON (File Ref. No: IC2057).

2. Test Procedure and Equipment Used

The pertinent test equipment commonly used in our facility for measurements is listed in Table 2.1 below. The middle column identifies the specific equipment used in these tests.

Table 2.1. Test equipment.

		1 1
Test Instrument	Eqpt Used	Manufacturer/Model
Spectrum Analyzer (0.1-1500 MHz)		Hewlett-Packard, 182T/8558B
Spectrum Analyzer (9kHz-22GHz)	X	Hewlett-Packard 8593A SN: 3107A01358
Spectrum Analyzer (9kHz-26GHz)	X	Hewlett-Packard 8593E, SN: 3412A01131
Spectrum Analyzer (9kHz-26GHz)		Hewlett-Packard 8563E, SN: 3310A01174
Spectrum Analyzer (9kHz-40GHz)		Hewlett-Packard 8564E, SN: 3745A01031
Power Meter		Hewlett-Packard, 432A
Power Meter		Anritsu, ML4803A/MP
Harmonic Mixer (26-40 GHz)		Hewlett-Packard 11970A, SN: 3003A08327
Harmonic Mixer (40-60 GHz)		Hewlett-Packard 11970U, SN: 2332A00500
Harmonic Mixer (75-110 GHz)		Hewlett-Packard 11970W, SN: 2521A00179
Harmonic Mixer (140-220 GHz)		Pacific Millimiter Prod., GMA, SN: 26
S-Band Std. Gain Horn		S/A, Model SGH-2.6
C-Band Std. Gain Horn		University of Michigan, NRL design
XN-Band Std. Gain Horn		University of Michigan, NRL design
X-Band Std. Gain Horn		S/A, Model 12-8.2
X-band horn (8.2- 12.4 GHz)		Narda 640
X-band horn (8.2- 12.4 GHz)		Scientific Atlanta, 12-8.2, SN: 730
K-band horn (18-26.5 GHz)		FXR, Inc., K638KF
Ka-band horn (26.5-40 GHz)		FXR, Inc., U638A
U-band horn (40-60 GHz)		Custom Microwave, HO19
W-band horn(75-110 GHz)		Custom Microwave, HO10
G-band horn (140-220 GHz)		Custom Microwave, HO5R
Bicone Antenna (30-250 MHz)	X	University of Michigan, RLBC-1
Bicone Antenna (200-1000 MHz)	X	University of Michigan, RLBC-2
Dipole Antenna Set (30-1000 MHz)	X	University of Michigan, RLDP-1,-2,-3
Dipole Antenna Set (30-1000 MHz)		EMCO 2131C, SN: 992
Active Rod Antenna (30 Hz-50 MHz)		EMCO 3301B, SN: 3223
Active Loop Antenna (30 Hz-50 MH)	z)	EMCO 6502, SN:2855
Ridge-horn Antenna (300-5000 MHz		University of Michigan
Amplifier (5-1000 MHz)	X	Avantak, A11-1, A25-1S
Amplifier (5-4500 MHz)	X	Avantak
Amplifier (4.5-13 GHz)		Avantek, AFT-12665
Amplifier (6-16 GHz)		Trek
Amplifier (16-26 GHz)		Avantek University of Michigan
LISN (50 µH)		University of Michigan
Signal Generator (0.1-2060 MHz)		Hewlett-Packard, 8657B Hewlett-Packard
Signal Generator (0.01-20 GHz)		HEWICH-F ACKAIN

3. Configuration and Identification of Device Under Test

The DUT is a hand held six-function low power transmitter designed to send identification and control signals to a companion receiver. It is activated by depressing any of the buttons. When the transmitter is activated by momentary push, it transmits a minimum of two PWM encoded words. If the button is kept depresses it will transmit for 25 sec. The emission is PWM format, modulated on a 315.0 MHz carrier. The DUT was designed by Delphi-Delco Electronics Systems, One Corporate Center, Kokomo, IN 46904-9005.

It is identified as:

Delphi-Delco Remote Control for MPC Elite VIM

Model: L2C0016T

SN: TEST2

FCC ID: L2C0016T

CANADA:

3.1 EMI Relevant Modifications

No modifications were made to the DUT by this laboratory.

4. Emission Limits

4.1 Radiated Emission Limits

The DUT tested falls under the category of an Intentional Radiators and the Digital Devices. For FCC, it is subject to Part 15, Subpart C, (Section 15.231), Subpart B, (Section 15.109), and Subpart A, (Section 15.33). For Industry Canada it is subject to RSS-210, (Sections 6.1 and 6.3). The applicable testing frequencies with corresponding emission limits are given in Tables 4.1 and 4.2 below. As a digital device, the DUT is considered as a Class B device.

Table 4.1. Radiated Emission Limits (FCC: 15.33, 15.35, 15.109; IC: RSS-210, 6.2.2(r)). (Digital Class B)

Freq. (MHz)	E _{lim} (3m) μV/m	E _{lim} dB(μV/m)
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-2000	500	54.0

Note: Average readings apply above 1000 MHz (1 MHz BW)
Quasi-Peak readings apply to 1000 MHz (120 kHz BW)

Table 4.2. Radiated Emission Limits (FCC: 15.231(b), 15.205(a); IC: RSS-210; 6.1, 6.3). (Transmitter)

Frequency	Fundan Ave. E _{li}		Spurious** Ave. E _{lim} (3m)			
,				dB (μV/m)		
(MHz)	(µV/m)	dB (μV/m)	(μV/m)	ub (μ ν/m)		
260.0-470.0	3750-12500*		375-1250			
322-335.4	Restricted					
399.9-410	Bands		200	46.0		
608-614						
960-1240						
1300-1427	Restricted					
1435-1626.5	Bands		500	54.0		
1660-1710						
1718.9-1722.2						
2200-2300						

* Linear interpolation, formula: E = -7083 + 41.67*f (MHz)

** Measure up to tenth harmonic; 120 kHz BW up to 1 GHz, 1 MHz BW above 1 GHz

4.2 Conductive Emission Limits

The conductive emission limits and tests do not apply here, since the DUT is powered by one internal 3-volt battery.

5. Radiated Emission Tests and Results

5.1 Anechonic Chamber Measurements

To familiarize with the radiated emission behavior of the DUT, the DUT was first studied and measured in a shielded anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with a turntable, an antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

In testing for radiated emissions, the transmitter was activated using the lock/unlock button with a special wooden clamp for repeated pulse emissions. It was placed on the test table flat, on its side, or on its end.

In the chamber we studied and recorded all the emissions using a bicone antenna up to 300 MHz and a ridged horn antenna above 200 MHz. The measurements made in the chamber below 1 GHz are used for pre-test evaluation only. The measurements made above 1 GHz are used in pre-test evaluation and in the final compliance assessment. We note that for the horn antenna, the antenna pattern is more directive and hence the measurement is essentially that of free space (no ground reflection). Consequently it is not essential to measure the DUT for both antenna polarizations, as long as the DUT is measured on all three of its major axis. In the chamber we also recorded the spectrum and modulation characteristics of the carrier. These data are presented in subsequent sections. We also note that in scanning from 30 MHz to 3.15 GHz using bicone and the ridge horn antennas, there were no other significant spurious emissions observed.

5.2 Outdoor Measurements

After the chamber measurements, the emissions were re-measured on the outdoor 3-meter site at fundamental and harmonics up to 1 GHz using tuned dipoles and/or the high frequency bicone. Photographs in Appendix (at end of this report) show the DUT on the open in site table

(OATS).

5.3 Computations and Results

To convert the dBm measured on the spectrum analyzer to $dB(\mu V/m)$, we use expression

$$E_3(dB\mu V/m) = 107 + P_R + K_A - K_G + K_E$$

where

 P_R = power recorded on spectrum analyzer, dB, measured at 3m K_A = antenna factor, dB/m

 K_G = pre-amplifier gain, including cable loss, dB pulse operation correction factor, dB (see 6.1)

When presenting the data, at each frequency the highest measured emission under all of the possible orientations is given. Computations and results are given in Table 5.1. There we see that the DUT meets the limits by 10.3 dB.

6. Other Measurements and Computations

6.1 Correction For Pulse Operation

When the transmitter is activated by momentary push, it transmits a minimum of two PWM encoded words. If the button is kept depresses it will transmit for 25 sec. The period of the word is 98.75 ms. In the worst case, in the word there are 67 wide pulses (400.0 µs) and 10 narrow (synch) pulses (185.0 µs). See Fig. 6.1. We compute the duty factor by dividing ON-time by the period. This gives,

$$(0.400x67 + 0.185x10)/98.75ms = 0.309 \text{ or } -10.2 \text{ dB}.$$

6.2 Emission Spectrum

Using the ridge-horn antenna and DUT placed in its aperture, emission spectrum was recorded and is shown in Figure 6.2.

6.3 Bandwidth of the Emission Spectrum

The measured spectrum of the signal is shown in Figure 6.3. The allowed (-20 dB) bandwidth is 0.25% of 315 MHz, or 787.25 KHz. From the plot we see that the -20 dB bandwidth is 70.0 kHz, and the center frequency is 314.945 MHz.

6.4 Effect of Supply Voltage Variation

The DUT has been designed to be powered by 3 VDC battery. For this test, the battery was replaced by a laboratory variable power supply. Relative power radiated was measured at the fundamental as the voltage was varied from 2.0 to 4.0 volts. The emission variation is shown in Figure 6.4.

6.5 Input Voltage at Battery Terminals

before testing $V_{oc} = 3.22 \text{ V}$ Batteries:

> $V_{oc} = 3.07 \text{ V}$ after testing

Ave. current from batteries I = 0.6 mA (pulsed)

> The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, Michigan 48109-2122 (734) 764-0500

Table 5.1 Highest Emissions Measured

	Radiated Emission - RF Delphi-Delco TX, FCC/I										
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3*	E3lim	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	dBμV/m	dBμV/m	dB	Comments
1	315.0	Dip	Н	-29.8	Pk	18.9	20.6	65.3	75.6	10.3	flat
2	315.0	Dip	V	-35.9	Pk	18.9	20.6	59.2	75.6	16.4	end
3	630.0	Dip	Н	-51.8	Pk	25.2	17.2	53.0	75.6	22.6	flat
4	630.0	Dip	V	-52.0	Pk	25.2	17.2	52.8	75.6	22.8	side
5	945.0	Dip	Н	-70.9	Pk	28.9	14.8	40.0	55.6	15.6	flat
6	945.0	Dip	V	-74.0	Pk	28.9	14.8	36.9	55.6	18.7	end
7	1260.0	Horn	Н	-53.5	Pk	20.4	28.1	35.6	55.6	20.0	side
8	1575.0	Horn	Н	-65.0	Pk	21.4	28.2	25.0	54.0	29.0	side
9	1890.0	Horn	Н	-68.5	Pk	22.1	28.1	22.3	55.6	33.3	flat
10	2205.0	Horn	Н	-70.1	Pk	22.9	27.0	22.6	54.0	31.4	side, noise
11	2520.0	Horn	Н	-69.2	Pk	24.0	26.6	25.0	55.6	30.6	side, noise
12	2835.0	Horn	Н	-70.8	Pk	24.9	25.4	25.5	55.6	30.1	flat, noise
13	3150.0	Horn	Н	-68.1	Pk	25.2	24.8	29.1	55.6	26.5	side, noise
14											
15											
16	* Includes -10.2 dB duty factor										
17											
18											
19											
20											
21											

	Digital Emissions										
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3*	E3lim	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	dBμV/m	dΒμV/m	dB	Comments
1											
2											
3			Digital emissions are more than 20 dB below FCC Class B limit								
4											

	Conducted Emissions										
	Freq.	Line	Det.	Vtest	Vlim	Pass					
#	MHz	Side	Used	dΒμV	dΒμV	dB	Comments				
1											
2			Not ap	plicable							
3											
4											

Meas. 10/22/01; U of Mich.

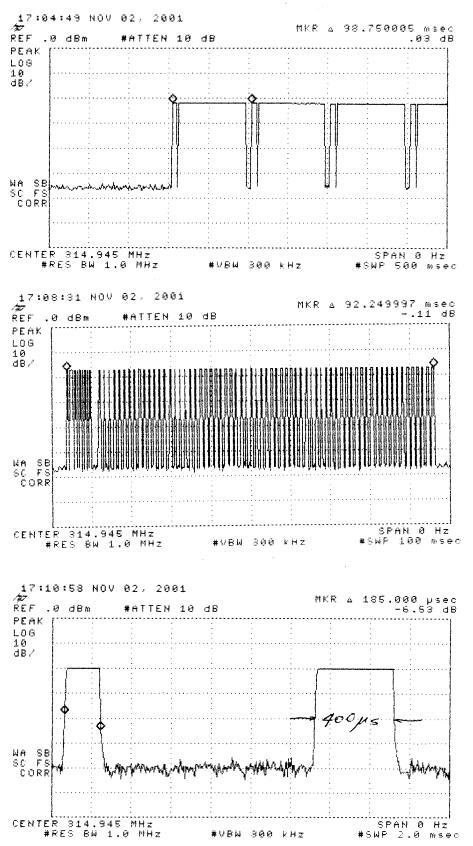


Figure 6.1. Transmissions modulation characteristics: (top) complete transmission, (center) expanded word, (bottom) expanded bits.

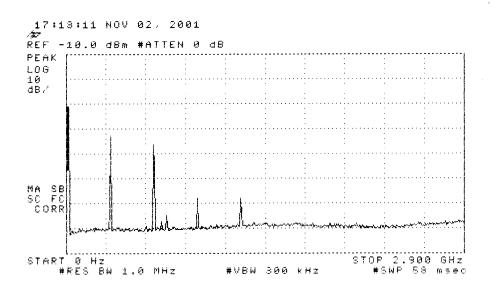


Figure 6.2. Emission spectrum of the DUT (pulsed emission). The amplitudes are only indicative (not calibrated).

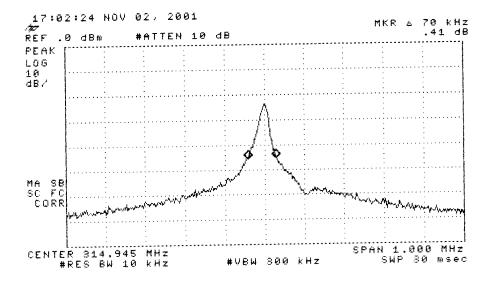


Figure 6.3. Measured bandwidth of the DUT (pulsed emission).

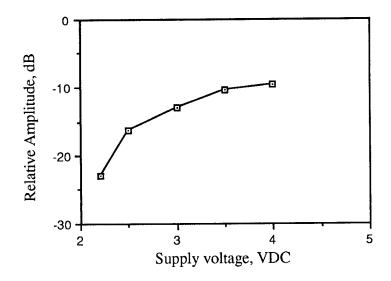


Figure 6.4. Relative emission at 315.0 MHz vs. supply voltage (pulsed emission).