## Addendum to Test Report No: 415031-082 FCC ID: L2C0015TR June 7, 2001

## **Sample Field Computations:**

## **FUNDAMENTAL**

Refer to:

- (a) Table 5.1 (f >= 40 GHz); line 3; p. 13.
- (b) Section 5.2; Figure 5.4, peak power measurement; p. 5.
- (c) Table 4.1; limit; p. 3;  $(60 \mu \text{W/cm}^2 = -12.2 \text{ dBm/cm}^2)$
- (d) Section 6.1; peak-to-average ratio, p. 6; (51.0 dBm)

The approach is to follow the standard equations for computing the field, i.e.  $dB(\mu V/m)$ , and then convert to power density. See equations and conversion factors in Section 5.3, p. 5 of the report.

To compute the field strength we use:

E<sub>3</sub> dB(
$$\mu$$
V/m) = 107 + Pr + Ka + **Kg** + **Ke**  
= 107 - 11.0 + 45.3 + 0 - 20  
= 121.3 dB( $\mu$ V/m)  
= -34.5 dBm/cm<sup>2</sup>

The limit is  $60 \mu \text{W/cm}^2 = -12.2 \text{ dBm/cm}^2$ 

## **SPURIOUS**

Here we present computation for the LO emission at 12.70 GHz.

Refer to:

- (a) Table 5.1 (f < 40 GHz); line 6; p. 12.
- (c) Table 4.1; limit; p. 3;  $(54 \text{ dB}(\mu\text{V/m}))$

Using the same wave equation as above:

E<sub>3</sub> dB(
$$\mu$$
V/m) = 107 + Pr + Ka + Kg + Ke  
= 107 - 57.7 + 29.5 - 31 + 0  
= 47.8 dB( $\mu$ V/m)

The limit is  $54.0 \text{ dB}(\mu\text{V/m})$