



### **ADDENDUM TO FC02-030**

## FOR THE

### M024100 TRANSMITTER

### FCC PART 15 SUBPART C SECTIONS 15.207, 15.209 AND RSS 210

## COMPLIANCE

#### DATE OF ISSUE: MARCH 27, 2002

#### **PREPARED FOR:**

Invisible Fence Company, Inc. 355 Phoenixville Pike, Rd #6 Malvern, PA 19355

P.O. No.: 57897 W.O. No.: 78516

### **PREPARED BY:**

Mary Ellen Clayton CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

Date of test: March 12-13, 2002

## Report No.: FC02-030A

This report contains a total of 41 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.



## **TABLE OF CONTENTS**

| Administrative Information                                                      | .4        |
|---------------------------------------------------------------------------------|-----------|
| Summary of Results                                                              | .5        |
| Conditions for Compliance                                                       | .5        |
| Approvals                                                                       | .5        |
| Equipment Under Test (EUT) Description                                          | .6        |
| Eut Operating Frequency                                                         | .6        |
| 15.31 Number Of Channels                                                        | .6        |
| 15.33 Frequency Ranges Tested                                                   | .6        |
| 15.203/6.2.2(o)(e)(2) Antenna Requirements                                      | .6        |
| 15.205 Restricted Bands                                                         | .6        |
| Equipment Under Test                                                            | .7        |
| Peripheral Devices                                                              | .7        |
| Report of Measurements                                                          | .8        |
| Table 1: 15.209/6.2.1 Fundamental                                               | .8        |
| 15.209/6.2.1 Peak Output Power 120V AC                                          | .9        |
| 15.209/6.2.1 Peak Output Power Battery                                          | .10       |
| Table 2: 15.31(e) Voltage Variations                                            | .11       |
| Table 3: 15.207/6.6 Six Highest Conducted Emission Levels                       | .12       |
| Table 4: 15.209/6.2.1 Six Highest Radiated Emission Levels - 9 kHz - 30 MHz     | .13       |
| Table 5: 15.209/6.2.1 Six Highest Radiated Emission Levels - 30 MHz - 1000 MHz. | .14       |
| 6 dB Bandwidth                                                                  | .15       |
| RSS-210 99% Bandwidth                                                           | .16       |
| Measurement Uncertainty                                                         | .17       |
| EUT Setup                                                                       | .17       |
| Correction Factors                                                              | .17       |
| Table A: Sample Calculations                                                    | .17       |
| Test Instrumentation and Analyzer Settings                                      | .18       |
| Table B: 15 35 Analyzer Bandwidth Settings Per Frequency Range                  | 18        |
| Spectrum Analyzer Detector Functions                                            | 18        |
| Peak                                                                            | 18        |
| Quasi-Peak                                                                      | 19        |
| Average                                                                         | 19        |
| EUT Testing                                                                     | 19        |
| Mains Conducted Emissions                                                       | 19        |
| Radiated Emissions                                                              | 20        |
| Appendix A: Information about the Equipment Under Test                          | .20       |
| I/O Ports                                                                       | .21       |
| Crystal Oscillators                                                             | 22        |
| Printed Circuit Boards                                                          | .22       |
| Photograph Showing Mains Conducted Emissions                                    | 23        |
| Photograph Showing Mains Conducted Emissions                                    | .23       |
| Photograph Showing Radiated Emissions                                           | .24       |
| Photograph Showing Radiated Emissions                                           | .25<br>26 |
| i notographi onowing Radiated Emissions                                         | .20       |



| Photograph Showing Radiated Emissions | 27 |
|---------------------------------------|----|
| Photograph Showing Radiated Emissions |    |
| Photograph Showing Radiated Emissions |    |
| Appendix B: Test Equipment List       |    |
| Appendix C: Measurement Data Sheets   |    |
| 11                                    |    |



CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies:
A2LA (USA); BSMI (Taiwan); Nemko (Norway); and GOST (Russia).
CKC Laboratories, Inc has received test site Registration Acceptance from the following agencies:
FCC (USA); VCCI (Japan); and Industry Canada.
CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies:
ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong Kong); Bakom (Swiss); BIPT (Belgium); Denmark Telestyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia); and UKAS (UK).

#### **ADMINISTRATIVE INFORMATION**

| DATE OF TEST:          | March 12-13, 2002                                                                                                                                                                                                                                                                                                                          |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE OF RECEIPT:       | March 12, 2002                                                                                                                                                                                                                                                                                                                             |
| PURPOSE OF TEST:       | To demonstrate the compliance of the M024100<br>Transmitter with the requirements for FCC Part 15<br>Subpart C Sections 15.207, 15.209 and RSS 210<br>devices. The purpose of this addendum is to add<br>revised data sheets for fundamental, voltage<br>variations and 15.209 and add an explanation of<br>testing conditions for 15.207. |
| TEST METHOD:           | ANSI C63.4 (1992) and RSS 210                                                                                                                                                                                                                                                                                                              |
| MANUFACTURER:          | Innotek Pet Products<br>1000 Fuller Drive<br>Garrett, IN 46738                                                                                                                                                                                                                                                                             |
| <b>REPRESENTATIVE:</b> | Pete Johnson                                                                                                                                                                                                                                                                                                                               |
| TEST LOCATION:         | CKC Laboratories, Inc.<br>22105 Wilson River Hwy<br>Tillamook, OR 97141                                                                                                                                                                                                                                                                    |



## SUMMARY OF RESULTS

As received, the Invisible Fence Company, Inc. M024100 Transmitter was found to be fully compliant with the following standards and specifications:

## **United States**

- FCC Part 15 Subpart C Sections 15.207 and 15.209
- ➢ ANSI C63.4 (1992) method

#### <u>Canada</u>

RSS-210 using:
➢ FCC Part 15 Subpart C Sections 15.207 and 15.209
➢ ANSI C63.4 (1992) method Industry of Canada File No. IC 3173-A

### **CONDITIONS FOR COMPLIANCE**

No modifications to the EUT were necessary to comply.

### APPROVALS

## **QUALITY ASSURANCE:**

Steve ~ Bel

Steve Behm, Manager of Engineering Services

spe Ant

Joyce Walker, Quality Assurance Administrative Manager

**TEST PERSONNEL:** 

Wi

Mike Wilkinson, Test Engineer



## EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The EUT tested by CKC Laboratories was representative of a production unit. The product is an invisible fence pet containment system.

The EUT was tested for Innotek Pet Products. Innotek Pet Products has now merged with Invisible Fence Company, Inc.

The following model has been tested by CKC Laboratories:

### M024101

The following additional models are identical electrically to the one which was tested, or any differences between them do not affect their EMC characteristics, and therefore they comply to the level of testing equivalent to the tested models.

#### M024100

#### **Eut Operating Frequency**

The EUT operates at 8.192 kHz, 10.7 kHz and 8.192/13.2 kHz but during testing was operating only at 10.7 kHz.

#### **15.31(m)** Number Of Channels

This device operates on three channels: 8.192 kHz, 10.7 kHz and 8.192/13.2 kHz (Dual Band).

#### 15.33(a) Frequency Ranges Tested

| 15.207 Conducted Emissions: | $450 \; kHz - 30 \; MHz$ |
|-----------------------------|--------------------------|
| 15.209 Radiated Emissions:  | 9  kHz - 1000  MHz       |

### 15.203/6.2.2(o)(e)(2) Antenna Requirements

The antenna is a coil loop antenna with unique connector; therefore the EUT complies with Section 15.203 of the FCC rules.

### **15.205 Restricted Bands**

The fundamental operating frequency lies outside the restricted bands and therefore complies with the requirements of Section 15.205 of the FCC rules. Any spurious emission coming from the EUT was investigated to determine if any portion lies inside the restricted band. If any portion of a spurious emissions signal was found to be within a restricted band, investigation was performed to ensure compliance with Section 15.209.



## EQUIPMENT UNDER TEST

## <u>Transmitter</u>

| Manuf:  | Innotek Pet Products |
|---------|----------------------|
| Model:  | M024100              |
| Serial: | 0045M0241011002B     |
| FCC ID: | KZ3050241            |

## AC Adapter

| Manuf:  | KTC             |
|---------|-----------------|
| Model:  | KA12A240040044U |
| Serial: | NA              |
| FCC ID: | DoC             |

## **Lightning Protector**

| Innotek Pet Products |
|----------------------|
| LP-2000              |
| None                 |
| DoC                  |
|                      |

## PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.



## **REPORT OF MEASUREMENTS**

The following tables report the worst case emissions levels recorded during the tests performed on the M024100 Transmitter. All readings taken were peak readings unless otherwise stated. The data sheets from which the emissions tables were compiled are contained in Appendix C.

| Table 1: 15.209/6.2.1 Fundamental |                          |                  |                     |                        |                    |                                |                                     |                |       |  |
|-----------------------------------|--------------------------|------------------|---------------------|------------------------|--------------------|--------------------------------|-------------------------------------|----------------|-------|--|
| FREQUENCY<br>kHz                  | METER<br>READING<br>dBµV | COR<br>Ant<br>dB | RECTIO<br>Amp<br>dB | ON FACT<br>Cable<br>dB | TORS<br>Corr<br>dB | CORRECTED<br>READING<br>dBµV/m | SPEC<br>LIMIT<br>dBµV/m             | MARGIN<br>DB   | NOTES |  |
| 10.760                            | 93.2                     | 13.2             | 0.0                 | 0.3                    | -80.0              | 26.7                           | 46.9                                | -20.2          | Ν     |  |
| Test Method:                      | ANSI C63.4               | (1992)           |                     |                        |                    | NOTES:                         | $\mathbf{N} = \mathbf{N}\mathbf{c}$ | o Polarization |       |  |

| Test Method:   | ANSI C63.4 (1992)                    |
|----------------|--------------------------------------|
| Spec Limit :   | FCC Part 15 Subpart C Section 15.209 |
| Test Distance: | 3 Meters                             |

COMMENTS: The EUT was plugged into the power port of the lightning protector and connected to the lightning protector transmitter ports with two 1-meter lengths of 14 gauge solid copper wire. A 200-foot length of 14 gauge solid copper wire was connected to the loop ports of the lightning protector and arranged in a circle on the ground. EUT was turned on and transmitting continuously with the Battery Backup Monitor off, STIM Level at High, Field Width adjustment at maximum and Field Size set to large (maximum). Backup batteries installed. The Lighting Protector was plugged into 120 VAC/60 Hz. The EUT and antenna measurement site was a flat field with short grass approximately 200 x 150 feet with no structures, underground cable or pipes. The temperature was  $65^{\circ}F$  and the humidity was 40%. Frequency range investigated was 9 kHz to 30 MHz. Using the formula (ED)<sup>2</sup> / (30G) and G = 1, the peak output power of the fundamental corrected reading is 0.014032 Watt.



## **15.209/6.2.1 PEAK OUTPUT POWER 120V AC**



Using the formula (ED)<sup>2</sup> / (30G) and G = 1, the peak output power of the fundamental corrected reading is 0.014032 Watt.



## 15.209/6.2.1 PEAK OUTPUT POWER BATTERY





| Table 2: 15.31(e) Voltage Variations |                                |      |      |                         |  |  |  |  |
|--------------------------------------|--------------------------------|------|------|-------------------------|--|--|--|--|
| FREQUENCY<br>kHz                     | CORRECTED<br>READING<br>dBµV/m | 85%  | 115% | SPEC<br>LIMIT<br>dBµV/m |  |  |  |  |
| 10.750                               | 26.7                           |      |      | 47.0                    |  |  |  |  |
| 10.725                               |                                | 27.0 |      | 47.0                    |  |  |  |  |
| 10.690                               |                                |      | 3.7  | 47.0                    |  |  |  |  |



| Table 3: 15.207/6.6 Six Highest Conducted Emission Levels |                          |                   |                      |                        |            |                              |                       |              |       |  |
|-----------------------------------------------------------|--------------------------|-------------------|----------------------|------------------------|------------|------------------------------|-----------------------|--------------|-------|--|
| FREQUENCY<br>MHz                                          | METER<br>READING<br>dBµV | COR<br>Lisn<br>dB | RECTIC<br>Corr<br>dB | ON FACT<br>Cable<br>dB | CORS<br>dB | CORRECTED<br>READING<br>dBµV | SPEC<br>LIMIT<br>dBµV | MARGIN<br>dB | NOTES |  |
| 0.450000                                                  | 40.5                     | 9.8               | -80.0                | 0.2                    |            | 40.8                         | 48.0                  | -7.2         | W     |  |
| 0.613817                                                  | 51.2                     | 9.9               | -80.0                | 0.1                    |            | 38.4                         | 48.0                  | -9.6         | BQ    |  |
| 0.640562                                                  | 52.2                     | 10.0              | -80.0                | 0.1                    |            | 39.4                         | 48.0                  | -8.6         | BQ    |  |
| 0.662293                                                  | 49.7                     | 10.1              | -80.0                | 0.1                    |            | 36.9                         | 48.0                  | -11.1        | BQ    |  |
| 1.150000                                                  | 50.0                     | 10.1              | -80.0                | 0.2                    |            | 37.3                         | 48.0                  | -10.7        | BQ    |  |
| 4.336000                                                  | 49.7                     | 10.1              | -80.0                | 0.7                    |            | 37.5                         | 48.0                  | -10.5        | WQ    |  |

NOTES:

Test Method: ANSI C63.4 (1992) Spec Limit : FCC Part 15 Subpart C Section 15.207 Q = Quasi Peak Reading B = Black Lead W = White Lead

COMMENTS: The EUT was plugged into the power port of the lightning protector and connected to the lightning protector transmitter ports with two 1-meter lengths of 14 gauge solid copper wire. A 14 foot 14 gage solid copper wire antenna was connected to the EUT. The antenna was arranged in a circle on the test table. EUT was turned on and transmitting continuously with the Battery Backup Monitor off, STIM Level at High, Field Width adjustment at maximum and Field Size set to large (maximum). Backup batteries installed. The Lighting Protector was plugged into 120 VAC/60 Hz. The temperature was 65°F and the humidity was 40%. Frequency range investigated was 450 kHz to 30 MHz. All signals in this data sheet meet the Broadband requirement in FCC 15.207 (b) and the 13 dB correction has been applied to all QP readings.

During the AC conducted emissions testing to 15.207, the level of the emission measured using a quasi-peak instrumentation is 6 dB, or more, higher than the level of the same emission measured with instrumentation having an average detector and a 9 kHz minimum bandwidth. Therefore in accordance with section 15.207(b), the broadband level obtained with the quasi-peak detector was reduced by 13dB.



| Table 4: 15.209/6.2.1 Six Highest Radiated Emission Levels - 9 kHz - 30 MHz |                          |                  |              |                        |            |                                |                         |              |       |  |
|-----------------------------------------------------------------------------|--------------------------|------------------|--------------|------------------------|------------|--------------------------------|-------------------------|--------------|-------|--|
| FREQUENCY<br>MHz                                                            | METER<br>READING<br>dBµV | COR<br>Ant<br>dB | RECTIC<br>dB | ON FACT<br>Cable<br>dB | CORS<br>dB | CORRECTED<br>READING<br>dBµV/m | SPEC<br>LIMIT<br>dBµV/m | MARGIN<br>DB | NOTES |  |
| 0.367                                                                       | 70.7                     | -70.2            |              | 0.6                    |            | 1.1                            | 16.3                    | -15.2        | Ν     |  |
| 0.562                                                                       | 60.0                     | -30.1            |              | 0.7                    |            | 30.6                           | 32.6                    | -2.0         | NQ    |  |
| 0.691                                                                       | 56.5                     | -30.0            |              | 0.7                    |            | 27.2                           | 30.8                    | -3.6         | NQ    |  |
| 1.125                                                                       | 45.1                     | -29.9            |              | 0.6                    |            | 15.8                           | 26.5                    | -10.7        | Ν     |  |
| 2.648                                                                       | 46.3                     | -29.9            |              | 0.6                    |            | 17.0                           | 29.5                    | -12.5        | Ν     |  |
| 3.686                                                                       | 41.4                     | -29.9            |              | 0.6                    |            | 12.1                           | 29.5                    | -17.4        | Ν     |  |

Test Method:ANSI C63.4 (1992)Spec Limit :FCC Part 15 Subpart C Section 15.209Test Distance:3 Meters

NOTES:

N = No Polarization Q = Quasi Peak Reading

COMMENTS: The EUT was plugged into the power port of the lightning protector and connected to the lightning protector transmitter ports with two 1-meter lengths of 14 gauge solid copper wire. A 200-foot length of 14 gauge solid copper wire was connected to the loop ports of the lightning protector and arranged in a circle on the ground. EUT was turned on and transmitting continuously with the Battery Backup Monitor off, STIM Level at High, Field Width adjustment at maximum and Field Size set to large (maximum). Backup batteries installed. The Lighting Protector was plugged into 120 VAC/60 Hz. The EUT and antenna measurement site was a flat field with short grass approximately 200 x 150 feet with no structures, underground cable or pipes. The temperature was  $65^{\circ}F$  and the humidity was 40%. Frequency range investigated was 9 kHz to 30 MHz. Using the formula (ED)<sup>2</sup> / (30G) and G = 1, the peak output power of the fundamental corrected reading is 0.014032 Watt.



|                  | Table 5: 15.20           | 9/6.2.1 \$       | Six High            | est Radia            | ated Emi   | ission Levels - 30             | MHz - 1000              | ) MHz        |       |
|------------------|--------------------------|------------------|---------------------|----------------------|------------|--------------------------------|-------------------------|--------------|-------|
| FREQUENCY<br>MHz | METER<br>READING<br>dBµV | COR<br>Ant<br>dB | RECTIC<br>Amp<br>dB | <u>ON FACT</u><br>dB | CORS<br>dB | CORRECTED<br>READING<br>dBµV/m | SPEC<br>LIMIT<br>dBµV/m | MARGIN<br>DB | NOTES |
| 31.980           | 32.0                     | 17.7             | -27.2               |                      |            | 22.5                           | 40.0                    | -17.5        | V     |
| 32.027           | 30.1                     | 17.7             | -27.2               |                      |            | 20.6                           | 40.0                    | -19.4        | Н     |
| 44.430           | 27.5                     | 11.7             | -27.2               |                      |            | 12.0                           | 40.0                    | -28.0        | V     |
| 48.027           | 31.4                     | 9.1              | -27.2               |                      |            | 13.3                           | 40.0                    | -26.7        | Н     |
| 158.070          | 37.0                     | 10.7             | -26.9               |                      |            | 20.8                           | 43.5                    | -22.7        | V     |
| 224.288          | 34.9                     | 10.6             | -26.6               |                      |            | 18.9                           | 46.0                    | -27.1        | V     |

Test Method:ANSI C63.4 (1992)Spec Limit :FCC Part 15 Subpart C Section 15.209Test Distance:3 Meters

NOTES:

H = Horizontal Polarization V = Vertical Polarization

COMMENTS: The EUT was plugged into the power port of the lightning protector and connected to the lightning protector transmitter ports with two 1-meter lengths of 14 gauge solid copper wire. A 14 foot 14 gage solid copper wire antenna was connected to the EUT. The antenna was arranged in a circle on the test table. EUT was turned on and transmitting continuously with the Battery Backup Monitor off, STIM Level at High, Field Width adjustment at maximum and Field Size set to large (maximum). Backup batteries installed. The Lighting Protector was plugged into 120 VAC/60 Hz. The temperature was 65°F and the humidity was 40%. Frequency range investigated was 30 to 1000 MHz. No signal from the EUT or Lightning Protector was detected. The readings on the data sheet are ambient readings at harmonics of the EUT's 4 MHz clock.



## 6 dB BANDWIDTH





## RSS-210 99% BANDWIDTH





## MEASUREMENT UNCERTAINTY

Measurement uncertainty associated with data in this report is  $a \pm 2.94$ dB for radiated and  $\pm 1.56$ dB for conducted emissions.

## EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The radiated and conducted emissions data of the M024100 Transmitter, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

## **CORRECTION FACTORS**

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in  $dB\mu V/m$ , the spectrum analyzer reading in  $dB\mu V$  was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

| TAI | BLE A: SAMPLE CAL          | CULATIONS     |
|-----|----------------------------|---------------|
|     | Meter reading              | (dBµV)        |
| +   | Antenna Factor             | (dB)          |
| +   | Cable Loss                 | (dB)          |
| -   | <b>Distance</b> Correction | (dB)          |
| -   | Preamplifier Gain          | (dB)          |
| =   | Corrected Reading          | $(dB\mu V/m)$ |



## TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Appendix B were used to collect both the radiated and conducted emissions data for the M024100 Transmitter. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. For frequencies from 30 to 1000 MHz, the biconilog antenna was used. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB $\mu$ V, and a vertical scale of 10 dB per division.

| FCC SECTION 15.35:                                       |
|----------------------------------------------------------|
| TABLE B: ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE |

| TEST                | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
|---------------------|---------------------|------------------|-------------------|
| CONDUCTED EMISSIONS | 450 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS  | 9 kHz               | 150 kHz          | 200 Hz            |
| RADIATED EMISSIONS  | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS  | 30 MHz              | 1000 MHz         | 120 kHz           |

### SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data for the M024100 Transmitter.

### <u>Peak</u>

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.



## Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

### Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

### EUT TESTING

### **Mains Conducted Emissions**

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT was located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

For conducted emissions testing, a 30 to 50 second sweep time was used for automated measurements in the frequency bands of 450 kHz to 1.705 MHz, 1.705 MHz to 3 MHz, and 3 MHz to 30 MHz. All readings within 20 dB of the limit were recorded. At frequencies where the recorded emissions were close to the limit, further investigation was performed manually at a slower sweep rate.



## **Radiated Emissions**

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. The frequency range of 30 MHz to 1000 MHz was scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. A scan of the FM band from 88 to 110 MHz was then made using a reduced resolution bandwidth and frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable as needed. The test engineer maximized the readings with respect to the table rotation, antenna height, and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor. Photographs showing the final worst case configuration of the EUT are contained in Appendix A.



# APPENDIX A

# INFORMATION ABOUT THE EQUIPMENT UNDER TEST

Page 21 of 41 Report No.: FC02-030A



# INFORMATION ABOUT THE EQUIPMENT UNDER TEST

| Test Software/Firmware:      | NA |
|------------------------------|----|
| CRT was displaying:          | NA |
| Power Supply Manufacturer:   |    |
| Power Supply Part Number:    |    |
| AC Line Filter Manufacturer: | NA |
| AC Line Filter Part Number:  | NA |

| I/O PORTS |   |
|-----------|---|
| Туре      | # |
|           |   |
|           |   |
|           |   |
|           |   |

| CRYSTAL OSCILLATORS |             |  |  |
|---------------------|-------------|--|--|
| Туре                | Freq In MHz |  |  |
| uP Clock, ceramic   | 4           |  |  |
| resonator.          |             |  |  |
| Crystal             | 0.64        |  |  |
| LC oscillator       | 0.00658     |  |  |

|             | PRINTED CIR  | CUIT BOARDS |        |          |
|-------------|--------------|-------------|--------|----------|
| Function    | Model & Rev  | Clocks, MHz | Layers | Location |
| Transmitter | A24101 REV B | 4.0         | 2      |          |



# PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS



Mains Conducted Emissions - Front View



# PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS



Mains Conducted Emissions - Side View





Radiated Emissions - Front View Below 30 MHz





Radiated Emissions - Back View Below 30 MHz





Radiated Emissions - Antenna Below 30 MHz





Radiated Emissions - Front View Above 30 MHz





Radiated Emissions - Back View Above 30 MHz



#### **APPENDIX B**

# TEST EQUIPMENT LIST

| S/N        | Calibration Date                                                                                                                            | Cal Due Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Asset #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3010A01076 | 07/12/2001                                                                                                                                  | 07/12/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2156       | 01/09/2002                                                                                                                                  | 01/09/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S/N        | Calibration Date                                                                                                                            | Cal Due Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Asset #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3010A01076 | 07/12/2001                                                                                                                                  | 07/12/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| none       | 11/15/2001                                                                                                                                  | 11/15/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| none       | 11/15/2001                                                                                                                                  | 11/15/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S/N        | Calibration Date                                                                                                                            | Cal Due Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Asset #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3010A01076 | 07/12/2001                                                                                                                                  | 07/12/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2156       | 01/09/2002                                                                                                                                  | 01/09/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S/N        | Calibration Date                                                                                                                            | Cal Due Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Asset #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3010A01076 | 07/12/2001                                                                                                                                  | 07/12/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2455       | 01/31/2002                                                                                                                                  | 01/31/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2727A05392 | 08/17/2001                                                                                                                                  | 08/17/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | S/N<br>3010A01076<br>2156<br>S/N<br>3010A01076<br>none<br>none<br>N<br>S/N<br>3010A01076<br>2156<br>S/N<br>3010A01076<br>2455<br>2727A05392 | S/N         Calibration Date           3010A01076         07/12/2001           2156         01/09/2002           S/N         Calibration Date           3010A01076         07/12/2001           none         11/15/2001           none         11/15/2001           s/N         Calibration Date           3010A01076         07/12/2001           11/15/2001         01/09/2002           S/N         Calibration Date           3010A01076         07/12/2001           2156         01/09/2002           S/N         Calibration Date           3010A01076         07/12/2001           2455         01/31/2002           2727A05392         08/17/2001 | S/N         Calibration Date         Cal Due Date           3010A01076         07/12/2001         07/12/2002           2156         01/09/2002         01/09/2003           S/N         Calibration Date         Cal Due Date           3010A01076         07/12/2002         01/09/2003           S/N         Calibration Date         Cal Due Date           3010A01076         07/12/2001         07/12/2002           none         11/15/2001         11/15/2002           none         11/15/2001         11/15/2002           s/N         Calibration Date         Cal Due Date           3010A01076         07/12/2001         07/12/2002           2156         01/09/2002         01/09/2003           S/N         Calibration Date         Cal Due Date           3010A01076         07/12/2001         07/12/2002           2156         01/09/2002         01/09/2003           S/N         Calibration Date         Cal Due Date           3010A01076         07/12/2001         07/12/2002           2455         01/31/2002         01/31/2003           2727A05392         08/17/2001         08/17/2002 |



# **APPENDIX C**

# **MEASUREMENT DATA SHEETS**

Page 31 of 41 Report No.: FC02-030A



Test Location: CKC Laboratories, Inc. •22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

| Customer:      | Innotek Pet Products<br>FCC 15 209 |            |                |
|----------------|------------------------------------|------------|----------------|
| Work Order #:  | 78516                              | Date:      | 3/12/02        |
| Test Type:     | Maximized Emissions                | Time:      | 11:25:02       |
| Equipment:     | Pet Containment Transmitter        | Sequence#: | 2              |
| Manufacturer:  | Innotek Pet Products               | Tested By: | Mike Wilkinson |
| Model:         | M024101                            | -          |                |
| S/N:           | 0045M0241011002B                   |            |                |
| Equipment Unde | er Test (* = EUT):                 |            |                |

| Function            | Manufacturer         | Model #         | S/N              |
|---------------------|----------------------|-----------------|------------------|
| Pet Containment     | Innotek Pet Products | M024101         | 0045M0241011002B |
| Transmitter*        |                      |                 |                  |
| Lightning Protector | Innotek Pet Products | LP-2000         | None             |
| AC Adapter          | KTC                  | KA12A240040044U | None             |
| -                   |                      |                 |                  |

# Support Devices: Function Manufacturer Model # S/N

#### Test Conditions / Notes:

The EUT was plugged into the power port of the lightning protector and connected to the lightning protector transmitter ports with two 1-meter lengths of 14 gauge solid copper wire. A 200-foot length of 14 gauge solid copper wire was connected to the loop ports of the lightning protector and arranged in a circle on the ground. EUT was turned on and transmitting continuously with the Battery Backup Monitor off, STIM Level at High, Field Width adjustment at maximum and Field Size set to large (maximum). Backup batteries installed. The EUT and antenna measurement site was a flat field with short grass approximately 200 x 150 feet with no structures, underground cable or pipes. The temperature was 65°F and the humidity was 40% Frequency range investigated was 9 kHz to 30 MHz AC power input was set to 102 VAC (85%), 120 VAC (nominal) and 138 VAC (115%) for each channel as indicated for each reading in the datasheet.

#### Transducer Legend:

| 11-Mag Loop 12-                  | Lable 120-It coax |
|----------------------------------|-------------------|
| T3=FCC 15.31 40dB/Dec Correction |                   |

| Measur | ement Data: | Re   | eading lis | ted by ma | argin. |               | Τe               | est Distanc | e: 3 Meters |        |       |
|--------|-------------|------|------------|-----------|--------|---------------|------------------|-------------|-------------|--------|-------|
| #      | Freq        | Rdng | T1         | T2        | T3     |               | Dist             | Corr        | Spec        | Margin | Polar |
|        | Hz          | dBµV | dB         | dB        | dB     | dB            | Table            | $dB\mu V/m$ | $dB\mu V/m$ | dB     | Ant   |
| 1      | 10.725k     | 93.5 | +13.2      | +0.3      | -80.0  |               | +0.0             | 27.0        | 47.0        | -20.0  | None  |
|        |             |      |            |           |        |               |                  |             | 85% AC in   | iput   |       |
| 2      | 10.750k     | 93.2 | +13.2      | +0.3      | -80.0  |               | +0.0             | 26.7        | 47.0        | -20.3  | None  |
|        |             |      |            |           |        |               | Nominal AC input |             |             |        |       |
| 3      | 10.690k     | 70.2 | +13.2      | +0.3      | -80.0  |               | +0.0             | 3.7         | 47.0        | -43.3  | None  |
|        |             |      |            |           |        | 115% AC input |                  |             |             |        |       |



Test Location: CKC Laboratories, Inc. •22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

| Customer:      | Innotek Pet Products        |            |
|----------------|-----------------------------|------------|
| Specification: | FCC 15.207 COND             |            |
| Work Order #:  | 78516                       | Date:      |
| Test Type:     | Conducted Emissions         | Time:      |
| Equipment:     | Pet Containment Transmitter | Sequence#: |
| Manufacturer:  | Innotek Pet Products        | Tested By: |
| Model:         | M024101                     |            |
| S/N:           | 0045M0241011002B            |            |

#### *Equipment Under Test* (\* = EUT):

| -1                  |                      |                 |                  |
|---------------------|----------------------|-----------------|------------------|
| Function            | Manufacturer         | Model #         | S/N              |
| Pet Containment     | Innotek Pet Products | M024101         | 0045M0241011002B |
| Transmitter*        |                      |                 |                  |
| Lightning Protector | Innotek Pet Products | LP-2000         | None             |
| AC Adapter          | KTC                  | KA12A240040044U | None             |
|                     |                      |                 |                  |

3/13/02 11:07:04 3

Mike Wilkinson 120V 60Hz

#### Support Devices:

| Function | Manufacturer | Model # | S/N |
|----------|--------------|---------|-----|
|          |              |         |     |

#### Test Conditions / Notes:

The EUT was plugged into the power port of the lightning protector and connected to the lightning protector transmitter ports with two 1-meter lengths of 14 gauge solid copper wire. A 14 foot 14 gage solid copper wire antenna was connected to the EUT. The antenna was arranged in a circle on the test table. EUT was turned on and transmitting continuously with the Battery Backup Monitor off, STIM Level at High, Field Width adjustment at maximum and Field Size set to large (maximum). Backup batteries installed. The Lighting Protector was plugged into 120 VAC/60 Hz. The temperature was 65°F and the humidity was 40%. Frequency range investigated was 450 kHz to 30 MHz. All signals in this data sheet meet the Broadband requirement in FCC 15.207 (b) and the 13 dB correction has been applied to all QP readings.

T2=L11b

#### Transducer Legend:

T1=T1 conducted cables T3=Broadband Correction

| Measu | rement Data: | Re   | ading list | ted by ma | argin. | gin. Test Lead: Black |       |             |             |        |       |
|-------|--------------|------|------------|-----------|--------|-----------------------|-------|-------------|-------------|--------|-------|
| #     | Freq         | Rdng | T1         | T2        | T3     |                       | Dist  | Corr        | Spec        | Margin | Polar |
|       | Hz           | dBµV | dB         | dB        | dB     | dB                    | Table | $dB\mu V/m$ | $dB\mu V/m$ | dB     | Ant   |
| 1     | 640.562k     | 52.2 | +0.1       | +0.1      | -13.0  |                       | +0.0  | 39.4        | 48.0        | -8.6   | Black |
|       | QP           |      |            |           |        |                       |       |             |             |        |       |
| 2     | 613.817k     | 51.2 | +0.1       | +0.1      | -13.0  |                       | +0.0  | 38.4        | 48.0        | -9.6   | Black |
|       | QP           |      |            |           |        |                       |       |             |             |        |       |
| ^     | 613.817k     | 53.1 | +0.1       | +0.1      | +0.0   |                       | +0.0  | 53.3        | 48.0        | +5.3   | Black |
|       |              |      |            |           |        |                       |       |             |             |        |       |
| 4     | 1.150M       | 50.0 | +0.2       | +0.1      | -13.0  |                       | +0.0  | 37.3        | 48.0        | -10.7  | Black |
|       | QP           |      |            |           |        |                       |       |             |             |        |       |
| ^     | 1.150M       | 52.4 | +0.2       | +0.1      | +0.0   |                       | +0.0  | 52.7        | 48.0        | +4.7   | Black |
|       |              |      |            |           |        |                       |       |             |             |        |       |
| 6     | 662.293k     | 49.7 | +0.1       | +0.1      | -13.0  |                       | +0.0  | 36.9        | 48.0        | -11.1  | Black |
|       | QP           |      |            |           |        |                       |       |             |             |        |       |



| 7  | 4.309M          | 48.6 | +0.7 | +0.0 | -13.0 | +0.0 | 36.2 | 48.0 | -11.8 | Black |
|----|-----------------|------|------|------|-------|------|------|------|-------|-------|
|    | QP              |      |      |      |       |      |      |      |       |       |
| ^  | 4.309M          | 53.5 | +0.7 | +0.0 | +0.0  | +0.0 | 54.2 | 48.0 | +6.2  | Black |
| 9  | 592.086k<br>QP  | 48.6 | +0.1 | +0.1 | -13.0 | +0.0 | 35.8 | 48.0 | -12.2 | Black |
| 10 | 1.214M<br>OP    | 47.5 | +0.2 | +0.1 | -13.0 | +0.0 | 34.8 | 48.0 | -13.2 | Black |
| 11 | 1.545M<br>QP    | 43.9 | +0.3 | +0.1 | -13.0 | +0.0 | 31.3 | 48.0 | -16.7 | Black |
| 12 | 1.545M<br>Ave   | 30.4 | +0.3 | +0.1 | +0.0  | +0.0 | 30.8 | 48.0 | -17.2 | Black |
| ۸  | 1.545M          | 48.3 | +0.3 | +0.1 | +0.0  | +0.0 | 48.7 | 48.0 | +0.7  | Black |
| 14 | 4.369M<br>Ave   | 30.0 | +0.7 | +0.0 | +0.0  | +0.0 | 30.7 | 48.0 | -17.3 | Black |
| 15 | 592.086k<br>Ave | 29.0 | +0.1 | +0.1 | +0.0  | +0.0 | 29.2 | 48.0 | -18.8 | Black |
| ^  | 592.086k        | 51.8 | +0.1 | +0.1 | +0.0  | +0.0 | 52.0 | 48.0 | +4.0  | Black |
| 17 | 662.293k<br>Ave | 29.0 | +0.1 | +0.0 | +0.0  | +0.0 | 29.1 | 48.0 | -18.9 | Black |
| ^  | 662.293k        | 52.8 | +0.1 | +0.0 | +0.0  | +0.0 | 52.9 | 48.0 | +4.9  | Black |
| 19 | 640.562k<br>Ave | 27.2 | +0.1 | +0.1 | +0.0  | +0.0 | 27.4 | 48.0 | -20.6 | Black |
| ^  | 640.562k        | 54.1 | +0.1 | +0.1 | +0.0  | +0.0 | 54.3 | 48.0 | +6.3  | Black |
| 21 | 1.214M<br>Ave   | 27.0 | +0.2 | +0.1 | +0.0  | +0.0 | 27.3 | 48.0 | -20.7 | Black |
| ۸  | 1.214M          | 52.1 | +0.2 | +0.1 | +0.0  | +0.0 | 52.4 | 48.0 | +4.4  | Black |





CKC Laboratories, Inc. Date: 3/13/02 Time: 11:07:04 Innotek Pet Products WO#: 78516 FCC 15:207 COND Test Lead: Black 120V 60Hz Sequence#: 3



Test Location: CKC Laboratories, Inc. •22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

| Customer:<br>Specification:     | Innotek Pet Products<br>FCC 15.207 COND |            |                |  |  |  |  |  |
|---------------------------------|-----------------------------------------|------------|----------------|--|--|--|--|--|
| Work Order #:                   | 78516                                   | Date:      | 3/13/02        |  |  |  |  |  |
| Test Type:                      | Conducted Emissions                     | Time:      | 11:41:56       |  |  |  |  |  |
| Equipment:                      | Pet Containment Transmitter             | Sequence#: | 4              |  |  |  |  |  |
| Manufacturer:                   | Innotek Pet Products                    | Tested By: | Mike Wilkinson |  |  |  |  |  |
| Model:                          | M024101                                 |            | 120V 60Hz      |  |  |  |  |  |
| S/N:                            | 0045M0241011002B                        |            |                |  |  |  |  |  |
| Equipment Under Test (* = EUT): |                                         |            |                |  |  |  |  |  |
| Eunstian                        | Manufasturan                            | Model #    | C /N           |  |  |  |  |  |

| Function            | Manufacturer         | Model #         | S/N              |
|---------------------|----------------------|-----------------|------------------|
| Pet Containment     | Innotek Pet Products | M024101         | 0045M0241011002B |
| Transmitter*        |                      |                 |                  |
| Lightning Protector | Innotek Pet Products | LP-2000         | None             |
| AC Adapter          | KTC                  | KA12A240040044U | None             |
|                     |                      |                 |                  |

# Support Devices: Function Manufacturer Model # S/N

#### Test Conditions / Notes:

The EUT was plugged into the power port of the lightning protector and connected to the lightning protector transmitter ports with two 1-meter lengths of 14 gauge solid copper wire. A 14 foot 14 gage solid copper wire antenna was connected to the EUT. The antenna was arranged in a circle on the test table. EUT was turned on and transmitting continuously with the Battery Backup Monitor off, STIM Level at High, Field Width adjustment at maximum and Field Size set to large (maximum). Backup batteries installed. The Lighting Protector was plugged into 120 VAC/60 Hz. The temperature was 65°F and the humidity was 40% Frequency range investigated was 450 kHz to 30 MHz. All signals in this data sheet meet the Broadband requirement in FCC 15.207 (b) and the 13 dB correction has been applied to all QP readings.

T2=L12w

#### Transducer Legend:

T1=T1 conducted cables T3=Broadband Correction

| Measur | easurement Data: Reading listed by margin. |      |      |      |       |    | Test Lead: White |        |        |        |       |
|--------|--------------------------------------------|------|------|------|-------|----|------------------|--------|--------|--------|-------|
| #      | Freq                                       | Rdng | T1   | T2   | T3    |    | Dist             | Corr   | Spec   | Margin | Polar |
|        | Hz                                         | dBµV | dB   | dB   | dB    | dB | Table            | dBµV/m | dBµV/m | dB     | Ant   |
| 1      | 450.000k                                   | 40.5 | +0.2 | +0.1 | +0.0  |    | +0.0             | 40.8   | 48.0   | -7.2   | White |
|        |                                            |      |      |      |       |    |                  |        |        |        |       |
| 2      | 4.336M                                     | 49.7 | +0.7 | +0.1 | -13.0 |    | +0.0             | 37.5   | 48.0   | -10.5  | White |
| (      | QP                                         |      |      |      |       |    |                  |        |        |        |       |
| 3      | 4.240M                                     | 48.4 | +0.7 | +0.1 | -13.0 |    | +0.0             | 36.2   | 48.0   | -11.8  | White |
| (      | QP                                         |      |      |      |       |    |                  |        |        |        |       |
| 4      | 1.168M                                     | 48.9 | +0.2 | +0.1 | -13.0 |    | +0.0             | 36.2   | 48.0   | -11.8  | White |
| (      | QP                                         |      |      |      |       |    |                  |        |        |        |       |
| 5      | 1.168M                                     | 35.0 | +0.2 | +0.1 | +0.0  |    | +0.0             | 35.3   | 48.0   | -12.7  | White |
| F      | Ave                                        |      |      |      |       |    |                  |        |        |        |       |
| ^      | 1.168M                                     | 51.5 | +0.2 | +0.1 | +0.0  |    | +0.0             | 51.8   | 48.0   | +3.8   | White |
|        |                                            |      |      |      |       |    |                  |        |        |        |       |



| _  |                       |               |           |              |           |           |      |      |               |         |
|----|-----------------------|---------------|-----------|--------------|-----------|-----------|------|------|---------------|---------|
| 7  | 4.240M                | 32.9          | +0.7      | +0.1         | +0.0      | +0.0      | 33.7 | 48.0 | -14.3         | White   |
|    | 1.00                  |               |           |              |           |           |      |      |               |         |
|    | Ave                   |               |           |              |           |           |      |      |               |         |
| ^  | 4 240M                | 53.0          | +0.7      | +0.1         | +0.0      | +0.0      | 53.8 | 48.0 | +5.8          | White   |
|    |                       | 0010          |           |              |           |           | 0010 |      |               |         |
|    |                       |               |           |              |           |           |      |      |               |         |
| 9  | 616 324k              | 45 5          | +0.1      | +0.1         | +0.0      | +0.0      | 32.7 | 48.0 | -153          | White   |
| -  | 010.52 IR             | 10.0          | 10.1      | 10.1         | 10.0      | 10.0      | 02.7 | 10.0 | 10.0          | ··· mee |
|    | QP                    |               |           |              |           |           |      |      |               |         |
| 10 | 992 350k              | 454           | +0.2      | $\pm 0.1$    | -13.0     | +0.0      | 32.6 | 48.0 | -154          | White   |
| 10 | 772.550K              | т <i>.</i> .т | 10.2      | 10.1         | 15.0      | 10.0      | 52.0 | 40.0 | 15.4          | white   |
|    | QP                    |               |           |              |           |           |      |      |               |         |
| 11 | 616.324k              | 29.4          | ±0.1      | <b>⊥</b> 0.1 | $\pm 0.0$ | ±0.0      | 29.6 | 48.0 | -18/          | White   |
| 11 | 010.52 <del>4</del> K | 27.7          | 10.1      | 10.1         | 10.0      | 10.0      | 27.0 | 40.0 | 10.4          | winte   |
|    | Ave                   |               |           |              |           |           |      |      |               |         |
| ^  | 616 324k              | 527           | +0.1      | $\pm 0.1$    | +0.0      | +0.0      | 52.9 | 48.0 | +4.9          | White   |
|    | 010.52 <del>4</del> K | 52.1          | 10.1      | 10.1         | 10.0      | 10.0      | 52.7 | 40.0 | 17.2          | white   |
|    |                       |               |           |              |           |           |      |      |               |         |
| 13 | 002 3501              | 28/           | $\pm 0.2$ | <b>⊥</b> 0.1 | +0.0      | ±0.0      | 28.7 | 48.0 | 10.3          | White   |
| 15 | 992.330K              | 20.4          | $\pm 0.2$ | $\pm 0.1$    | $\pm 0.0$ | $\pm 0.0$ | 20.7 | 40.0 | -19.5         | w muc   |
|    | Ave                   |               |           |              |           |           |      |      |               |         |
| ^  | 002 350k              | 51.0          | +0.2      | +0.1         | +0.0      |           | 52.2 | 48.0 | 14.2          | White   |
|    | 992.330K              | 51.9          | $\pm 0.2$ | $\pm 0.1$    | $\pm 0.0$ | $\pm 0.0$ | 52.2 | 40.0 | + <b>4.</b> 2 | w mite  |
|    |                       |               |           |              |           |           |      |      |               |         |
| 15 | 4 336M                | 27.2          | +0.7      | +0.1         | +0.0      |           | 28.0 | 48.0 | 20.0          | White   |
| 15 | 4.550101              | 21.2          | $\pm 0.7$ | $\pm 0.1$    | $\pm 0.0$ | $\pm 0.0$ | 28.0 | 40.0 | -20.0         | w mite  |
|    | Ave                   |               |           |              |           |           |      |      |               |         |
| ^  | 1 226M                | 54.0          | +0.7      | +0.1         |           | +0.0      | 519  | 49.0 | 16.9          | White   |
| ~  | 4.33011               | 34.0          | +0.7      | +0.1         | +0.0      | +0.0      | 34.8 | 40.0 | +0.8          | w mie   |
|    |                       |               |           |              |           |           |      |      |               |         |
| Λ  | 4.336M                | 54.0          | +0.7      | +0.1         | +0.0      | +0.0      | 54.8 | 48.0 | +6.8          | White   |

CKC Laboratories, Inc. Date: 3/13/02 Time: 11:41:56 Innotek Pet Products WO#: 78516 FCC 15.207 COND Test Lead: White 120V 60Hz Sequence#: 4





Test Location: CKC Laboratories, Inc. •22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

| Customer:                       | Innotek Pet Products        |            |                |  |  |  |  |  |
|---------------------------------|-----------------------------|------------|----------------|--|--|--|--|--|
| Work Order #:                   | 79516                       | Data       | 3/12/02        |  |  |  |  |  |
| WOIK OIGHT #.                   | 70510                       | Date.      | 3/12/02        |  |  |  |  |  |
| Test Type:                      | Maximized Emissions         | Time:      | 14:45:50       |  |  |  |  |  |
| Equipment:                      | Pet Containment Transmitter | Sequence#: | 1              |  |  |  |  |  |
| Manufacturer:                   | Innotek Pet Products        | Tested By: | Mike Wilkinson |  |  |  |  |  |
| Model:                          | M024101                     |            |                |  |  |  |  |  |
| S/N:                            | 0045M0241011002B            |            |                |  |  |  |  |  |
| Equipment Under Test (* = EUT): |                             |            |                |  |  |  |  |  |

| Function            | Manufacturer         | Model #         | S/N              |
|---------------------|----------------------|-----------------|------------------|
| Pet Containment     | Innotek Pet Products | M024101         | 0045M0241011002B |
| Transmitter*        |                      |                 |                  |
| Lightning Protector | Innotek Pet Products | LP-2000         | None             |
| AC Adapter          | KTC                  | KA12A240040044U | None             |
| -                   |                      |                 |                  |

# Support Devices:FunctionManufacturerModel #S/N

#### Test Conditions / Notes:

The EUT was plugged into the power port of the lightning protector and connected to the lightning protector transmitter ports with two 1-meter lengths of 14 gauge solid copper wire. A 200-foot length of 14 gauge solid copper wire was connected to the loop ports of the lightning protector and arranged in a circle on the ground. EUT was turned on and transmitting continuously with the Battery Backup Monitor off, STIM Level at High, Field Width adjustment at maximum and Field Size set to large (maximum). Backup batteries installed. The Lighting Protector was plugged into 120 VAC/60 Hz. The EUT and antenna measurement site was a flat field with short grass approximately 200 x 150 feet with no structures, underground cable or pipes. The temperature was  $65^{\circ}F$  and the humidity was 40%. Frequency range investigated was 9 kHz to 30 MHz. Using the formula (ED)^2 / (30G) and G = 1, the peak output power of the fundamental corrected reading is 0.014032 Watt.

#### Transducer Legend:

| T1=Mag-Loop                      | T2=Cable 120-ft coax |
|----------------------------------|----------------------|
| T3=FCC 15.31 40dB/Dec Correction |                      |
|                                  |                      |

| Measu | rement Data: | Re   | eading lis | ted by ma | argin. | Test Distance: 3 Meters |       |             |             |        |       |
|-------|--------------|------|------------|-----------|--------|-------------------------|-------|-------------|-------------|--------|-------|
| #     | Freq         | Rdng | T1         | T2        | T3     |                         | Dist  | Corr        | Spec        | Margin | Polar |
|       | Hz           | dBµV | dB         | dB        | dB     | dB                      | Table | $dB\mu V/m$ | $dB\mu V/m$ | dB     | Ant   |
| 1     | 561.750k     | 60.0 | +9.9       | +0.7      | -40.0  |                         | +0.0  | 30.6        | 32.6        | -2.0   | None  |
|       | QP           |      |            |           |        |                         |       |             |             |        |       |
| ^     | 561.590k     | 60.2 | +9.9       | +0.7      | -40.0  |                         | +0.0  | 30.8        | 32.6        | -1.8   | None  |
|       |              |      |            |           |        |                         |       |             |             |        |       |
| 3     | 691.430k     | 56.5 | +10.0      | +0.7      | -40.0  |                         | +0.0  | 27.2        | 30.8        | -3.6   | None  |
|       | QP           |      |            |           |        |                         |       |             |             |        |       |
| ^     | 691.260k     | 56.7 | +10.0      | +0.7      | -40.0  |                         | +0.0  | 27.4        | 30.8        | -3.4   | None  |
|       |              |      |            |           |        |                         |       |             |             |        |       |
| 5     | 1.125M       | 45.1 | +10.1      | +0.6      | -40.0  |                         | +0.0  | 15.8        | 26.5        | -10.7  | None  |
|       |              |      |            |           |        |                         |       |             |             |        |       |
| 6     | 2.648M       | 46.3 | +10.1      | +0.6      | -40.0  |                         | +0.0  | 17.0        | 29.5        | -12.5  | None  |
|       |              |      |            |           |        |                         |       |             |             |        |       |
| 7     | 367.060k     | 70.7 | +9.8       | +0.6      | -80.0  |                         | +0.0  | 1.1         | 16.3        | -15.2  | None  |
|       |              |      |            |           |        |                         |       |             |             |        |       |



| 8  | 3.686M   | 41.4 | +10.1 | +0.6 | -40.0 | +0.0 | 12.1 | 29.5              | -17.4        | None |
|----|----------|------|-------|------|-------|------|------|-------------------|--------------|------|
| 9  | 43.130k  | 83.8 | +10.9 | +0.5 | -80.0 | +0.0 | 15.2 | 34.9              | -19.7        | None |
| 10 | 75.570k  | 79.2 | +10.4 | +0.5 | -80.0 | +0.0 | 10.1 | 30.0              | -19.9        | None |
| 11 | 3.890M   | 38.8 | +10.1 | +0.6 | -40.0 | +0.0 | 9.5  | 29.5              | -20.0        | None |
| 12 | 140.440k | 74.1 | +9.9  | +0.6 | -80.0 | +0.0 | 4.6  | 24.6              | -20.0        | None |
| 13 | 10.760k  | 93.2 | +13.2 | +0.3 | -80.0 | +0.0 | 26.7 | 46.9<br>Fundament | -20.2<br>tal | None |
| 14 | 86.330k  | 77.9 | +10.2 | +0.5 | -80.0 | +0.0 | 8.6  | 28.9              | -20.3        | None |
| 15 | 129.620k | 74.2 | +9.9  | +0.6 | -80.0 | +0.0 | 4.7  | 25.3              | -20.6        | None |
| 16 | 107.970k | 75.7 | +10.0 | +0.6 | -80.0 | +0.0 | 6.3  | 26.9              | -20.6        | None |
| 17 | 108.010k | 75.7 | +10.0 | +0.6 | -80.0 | +0.0 | 6.3  | 26.9              | -20.6        | None |
| 18 | 32.290k  | 85.0 | +11.1 | +0.5 | -80.0 | +0.0 | 16.6 | 37.4              | -20.8        | None |
| 19 | 21.640k  | 88.1 | +11.5 | +0.3 | -80.0 | +0.0 | 19.9 | 40.9              | -21.0        | None |
| 20 | 97.210k  | 74.1 | +10.2 | +0.6 | -80.0 | +0.0 | 4.9  | 27.8              | -22.9        | None |
| 21 | 53.950k  | 78.5 | +10.6 | +0.5 | -80.0 | +0.0 | 9.6  | 33.0              | -23.4        | None |
| 22 | 4.850M   | 30.5 | +10.1 | +0.6 | -40.0 | +0.0 | 1.2  | 29.5              | -28.3        | None |
| 23 | 7.380M   | 26.1 | +9.8  | +0.6 | -40.0 | +0.0 | -3.5 | 29.5              | -33.0        | None |



Test Location: CKC Laboratories, Inc. •22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

| Customer:<br>Specification: | Innotek Pet Products<br>FCC15.209 |            |                |  |  |  |  |  |  |  |
|-----------------------------|-----------------------------------|------------|----------------|--|--|--|--|--|--|--|
| Work Order #:               | 78516                             | Date:      | 3/13/02        |  |  |  |  |  |  |  |
| Test Type:                  | Maximized Emissions               | Time:      | 09:34:11       |  |  |  |  |  |  |  |
| Equipment:                  | Pet Containment Transmitter       | Sequence#: | 3              |  |  |  |  |  |  |  |
| Manufacturer:               | Innotek Pet Products              | Tested By: | Mike Wilkinson |  |  |  |  |  |  |  |
| Model:                      | M024101                           |            |                |  |  |  |  |  |  |  |
| S/N:                        | 0045M0241011002B                  |            |                |  |  |  |  |  |  |  |
| Equipment Unde              | Equipment Under Test (* = EUT):   |            |                |  |  |  |  |  |  |  |

| Function            | Manufacturer         | Model #         | S/N              |
|---------------------|----------------------|-----------------|------------------|
| Pet Containment     | Innotek Pet Products | M024101         | 0045M0241011002B |
| Transmitter*        |                      |                 |                  |
| Lightning Protector | Innotek Pet Products | LP-2000         | None             |
| AC Adapter          | KTC                  | KA12A240040044U | None             |
|                     |                      |                 |                  |

# Support Devices: Function Manufacturer Model # S/N

#### Test Conditions / Notes:

The EUT was plugged into the power port of the lightning protector and connected to the lightning protector transmitter ports with two 1-meter lengths of 14 gauge solid copper wire. A 14 foot 14 gage solid copper wire antenna was connected to the EUT. The antenna was arranged in a circle on the test table. EUT was turned on and transmitting continuously with the Battery Backup Monitor off, STIM Level at High, Field Width adjustment at maximum and Field Size set to large (maximum). Backup batteries installed. The Lighting Protector was plugged into 120 VAC/60 Hz. The temperature was 65°F and the humidity was 40%. Frequency range investigated was 30 to 1000 MHz. No signal from the EUT or Lightning Protector was detected. The readings on the data sheet are ambient readings at harmonics of the EUT's 4 MHz clock.

Transducer Legend:

T1=Amp-A

#### T2=Bilog A

| Measu | rement Data: | Re   | eading lis | ted by ma | argin. | Test Distance: 3 Meters |       |        |        |        |       |
|-------|--------------|------|------------|-----------|--------|-------------------------|-------|--------|--------|--------|-------|
| #     | Freq         | Rdng | T1         | T2        |        |                         | Dist  | Corr   | Spec   | Margin | Polar |
|       | Hz           | dBµV | dB         | dB        | dB     | dB                      | Table | dBµV/m | dBµV/m | dB     | Ant   |
| 1     | 31.980M      | 32.0 | -27.2      | +17.7     |        |                         | +0.0  | 22.5   | 40.0   | -17.5  | Vert  |
| 2     | 32.027M      | 30.1 | -27.2      | +17.7     |        |                         | +0.0  | 20.6   | 40.0   | -19.4  | Horiz |
| 3     | 158.070M     | 37.0 | -26.9      | +10.7     |        |                         | +0.0  | 20.8   | 43.5   | -22.7  | Vert  |
| 4     | 48.027M      | 31.4 | -27.2      | +9.1      |        |                         | +0.0  | 13.3   | 40.0   | -26.7  | Horiz |
| 5     | 224.288M     | 34.9 | -26.6      | +10.6     |        |                         | +0.0  | 18.9   | 46.0   | -27.1  | Vert  |
| 6     | 44.430M      | 27.5 | -27.2      | +11.7     |        |                         | +0.0  | 12.0   | 40.0   | -28.0  | Vert  |
| 7     | 356.586M     | 28.1 | -26.9      | +15.0     |        |                         | +0.0  | 16.2   | 46.0   | -29.8  | Vert  |
| 8     | 120.023M     | 29.3 | -27.1      | +11.3     |        |                         | +0.0  | 13.5   | 43.5   | -30.0  | Horiz |



| 9  | 184.005M | 31.4 | -26.8 | +8.7  | +0.0 | 13.3 | 43.5 | -30.2 | Horiz |
|----|----------|------|-------|-------|------|------|------|-------|-------|
| 10 | 92.023M  | 29.1 | -27.0 | +8.8  | +0.0 | 10.9 | 43.5 | -32.6 | Horiz |
| 11 | 88.086M  | 26.5 | -27.0 | +8.2  | +0.0 | 7.7  | 43.5 | -35.8 | Vert  |
| 12 | 112.086M | 24.0 | -27.1 | +10.7 | +0.0 | 7.6  | 43.5 | -35.9 | Vert  |
| 13 | 136.086M | 23.3 | -27.0 | +11.2 | +0.0 | 7.5  | 43.5 | -36.0 | Vert  |