

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-9419/15-01-08-A

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-00

Applicant

Phonak AG

Laubisruetistrasse 28 8712 Staefa / SWITZERLAND Phone: +41 58 928 01 01

Fax: +41 5 89 28 20 11 Contact: Valentina Shcherba

e-mail: valentina.shcherba@sonova.com

Phone: +41 5 89 28 01 01

Manufacturer

Phonak AG

Laubisruetistrasse 28 8712 Staefa / SWITZERLAND

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 210 Issue 8 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment

RSS - 210 Issue 8 RSS-210, Amendment 1 — Licence-Exempt, Low-Power Radio Apparatus

Amendment 1 Operating in the Television Bands (February 2015)

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Wireless Hearing Instrument

Model name:Virto V90-10 PFCC ID:KWC-ITEV10IC:2262A-ITEV10Frequency:10.6 MHz

Technology tested: Base band modulation

Antenna: 1 integrated ferrite coil antenna (inductive)
Power supply: 1.30 V DC by Zinc - Air battery p13

Temperature range: 0°C to 35°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:	Test per

Stefan Bös Lab Manager

Radio Communications & EMC

Test I	perform	ed
--------	---------	----

Radio Communications & EMC

Marco Bertolino Lab Manager

Table of contents

1	Table	of contents	•
-			
2	Gene	ral information	3
	2.1	Notes and disclaimer	3
	2.2	Application details	3
3	Test s	standard/s	2
	3.1	Measurement guidance	2
4	Test e	environment	5
5	Test i	tem	5
	5.1	Additional information	6
6	Test I	aboratories sub-contracted	е
7	Desci	iption of the test setup	7
	7.1	Radiated measurements	8
	7.2	Radiated measurements chamber C	
	7.3	Conducted measurements	10
8	Meas	urement uncertainty	11
9	Sequ	ence of testing	
	9.1	Sequence of testing 9 kHz to 30 MHz	
	9.2	Sequence of testing 30 MHz to 1 GHz	13
10	Sur	nmary of measurement results	14
11	Add	litional comments	14
12	Me	asurement results	15
	12.1	Occupied bandwidth	
	12.2	Field strength of the fundamental	
	12.3	Field strength of the harmonics and spurious	
	12.4	Receiver spurious emissions and cabinet radiations	21
13	Obs	servations	23
Anr	nex A	Document history	23
Anr	nex B	Further information	23
Δnr	nex C	Accreditation Certificate	24

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2015-03-23
Date of receipt of test item: 2015-04-20
Start of test: 2015-04-20
End of test: 2015-04-29

Person(s) present during the test: -/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 8	01.12.2010	Spectrum Management and Telecommunications Radio Standards Specification - Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
RSS - 210 Issue 8 Amendment 1	05.02.2015	RSS-210, Amendment 1 — Licence-Exempt, Low-Power Radio Apparatus Operating in the Television Bands (February 2015)
RSS - Gen Issue 4	01.11.2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

3.1 Measurement guidance

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

T_{nom} +22 °C during room temperature tests

Temperature: T_{max} No tests under extreme conditions required.

T_{min} No tests under extreme conditions required.

Relative humidity content: 40 %

Barometric pressure: not relevant for this kind of testing

V_{nom} 1.30 V DC by Zinc - Air battery p13

Power supply: V_{max} No tests under extreme conditions required.

V_{min} No tests under extreme conditions required.

5 Test item

Kind of test item	:	Wireless Hearing Instrument					
Model name	:	Virto V90-10 P					
Equivalent variants	:	Please take a look at the external customer declaration! ProductEqualityDeclaration_RF_FCC_IC_PhonakVirtoV					
S/N serial number	:	TX units: Chamber C & bandwidth: R3216 Chamber F: R3215 RX unit: R3213					
PMN	:	Phonak Virto V					
HVIN	:	Phonak Virto V90-10 P					
FVIN	:	-/-					
HMN	:	-/-					
Hardware version	:	063-0139-01					
Software version	:	4.2					
Firmware version	:	068-1033					
Frequency band	:	10.6 MHz					
Type of radio transmission Use of frequency spectrum	:	Base band modulation					
Type of modulation	:	8-DPSK (DQPSK)					
Number of channels	:	1					
Antenna	:	1 integrated ferrite coil antenna (inductive)					
Power supply	:	1.30 V DC by Zinc - Air battery p13					
Temperature range	:	0°C to +35°C					

5.1 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-9419/15-01-11_AnnexA

1-9419/15-01-11_AnnexB 1-9419/15-01-11_AnnexD

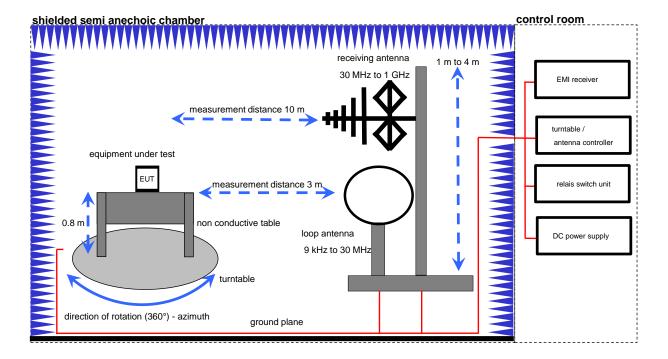
6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rfgenerating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

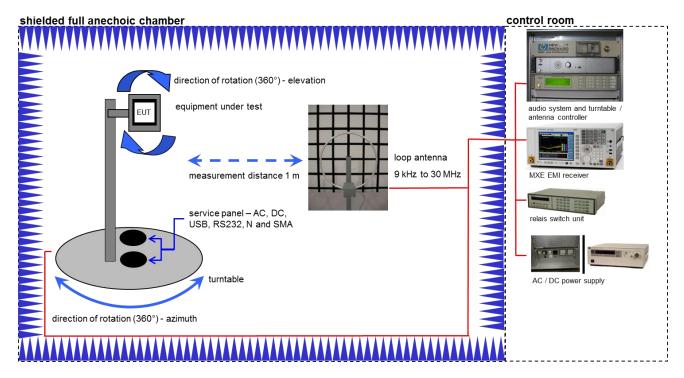
7.1 Radiated measurements

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

 $SS = U_R + CL + AF$

(SS-signal strength; U_R-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


 $SS[dB\mu V/m] = 12.35[dB\mu V/m] + 1.90[dB] + 16.80[dB\mu V/m] = 31.05[dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

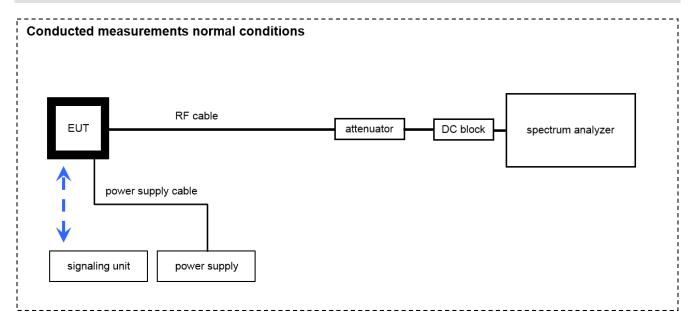
No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Software	EMC32 V. 9.12.05	R&S	-/-	-/-	-/-	-/-	-/-
2	Α	Switch-Unit	3488A	HP	2719A14505	300000368	g	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	26.01.2015	26.01.2016
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016

7.2 Radiated measurements chamber C

 $SS = U_R + CA + AF$

(SS-signal strength; U_R-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


 $SS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB\mu V/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
2	Α	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
3	Α	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	13.06.2013	13.06.2015
4	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	06.03.2015	06.03.2016

7.3 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + (11.7) [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	22.01.2015	22.01.2016
2	Α	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
3	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 127377	400001185	ev	-/-	-/-
4	А	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits	Batch no. 127377	400001186	ev	-/-	-/-

8 Measurement uncertainty

Measurement uncerta	inty
Test case	Uncertainty
Occupied bandwidth	± used RBW
Field strength of the fundamental	± 3 dB
Field strength of the harmonics and spurious	± 3 dB
Receiver spurious emissions and cabinet radiations	± 3 dB
Conducted limits	± 2.6 dB

9 Sequence of testing

9.1 Sequence of testing 9 kHz to 30 MHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement

- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axces (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK (QPK / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

9.2 Sequence of testing 30 MHz to 1 GHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 10 or 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

•

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 3 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions

•

Final measurement

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP (Quasi-Peak / see ANSI C 63.4) detector with an EMI receiver
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210 Issue 8 RSS Gen Issue 4	See table!	2015-08-06	-/-

Test specification clause	Test case	Temperature conditions	Power source conditions	С	NC	NA	NP	Remark
RSS Gen Issue 4 (6.6)	Occupied bandwidth	Nominal	Nominal	\boxtimes				-/-
§ 15.209	Field strength of the fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS Gen Issue 4 (6.13)	Field strength of the harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.109	Receiver spurious emissions and cabinet radiations	Nominal	Nominal	\boxtimes				-/-
§15.107 §15.207	Conducted limits	Nominal	Nominal			\boxtimes		Battery powered only!

Note: NA = Not applicable; NP = Not performed; C = Compliant; NC = Not compliant

11 Additional comments

Reference documents: Customer Questionnaire_1-9419_15_1 (Phonak Virto V90 10 P)

Virto_Vxx_P_Datasheet

Product Equality Declaration Virto V

Special test descriptions: None

Configuration descriptions: None

12 Measurement results

12.1 Occupied bandwidth

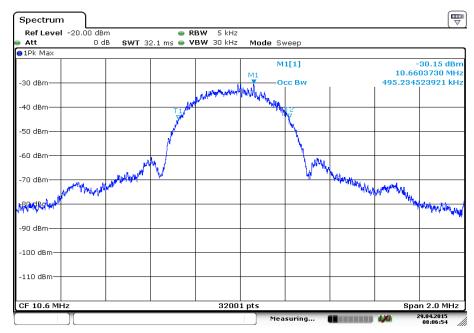
Measurement:

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

Measurement parameters			
Detector:	Peak		
Resolution bandwidth:	1 % – 5 % of the occupied bandwidth		
Video bandwidth:	≥ 3x RBW		
Trace mode:	Max hold		
Analyser function:	99 % power function		
Used test setup:	See sub clause 7.3 - A		
Measurement uncertainty:	See sub clause 8		

Limit:

IC
for RSP-100 test report coversheet only


Result:

99% emission bandwidth			
495.2 kHz			

Plot:

Plot 1: 99 % emission bandwidth

Date: 29.APR.2015 08:06:54

12.2 Field strength of the fundamental

Measurement:

The maximum detected field strength for the carrier signal.

Measurement parameters				
Detector:	Quasi peak / peak (worst case)			
Resolution bandwidth:	120 kHz			
Video bandwidth:	≥ 3x RBW			
Trace mode:	Max hold			
Used test setup	See sub clause 7.2 - A			
Measurement uncertainty:	See sub clause 8			

Limit:

FCC & IC				
Frequency	Field strength	Measurement distance		
(MHz)	(dBµV/m)	(m)		
1.705 – 30.0	30	30		

Recalculation:

According to ANSI C63.10				
Frequency Formula Correction value				
10.6 MHz	$FS_{limit} = FS_{max} - 40 \log \left(\frac{d_{nearfield}}{d_{measure}} \right) - 20 \log \left(\frac{d_{imit}}{d_{nearfield}} \right)$	-42.62		

Result:

Field strength of the fundamental				
Frequency	10.6 MHz			
Distance	@ 1 m	@ 30 m		
Measured / calculated value (peak measurement)	52.6 dBµV/m	9.98 dBµV/m		
Measured / calculated value (QP measurement)	50.2 dBμV/m	7.58 dBµV/m		

12.3 Field strength of the harmonics and spurious

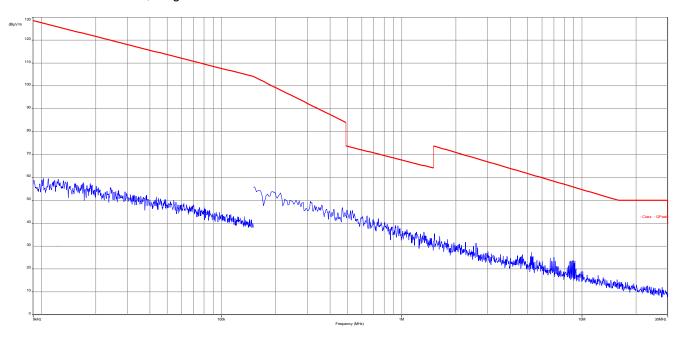
Measurement:

The maximum detected field strength for the harmonics and spurious.

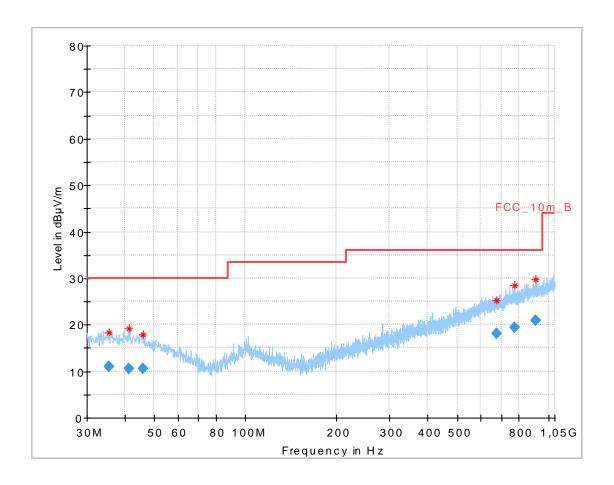
Measurement parameters				
Detector:	Quasi peak / average or			
Detector.	peak (worst case – pre-scan)			
	F < 150 kHz: 200 Hz			
Resolution bandwidth:	150 kHz < F < 30 MHz: 9 kHz			
	30 MHz < F < 1 GHz: 120 kHz			
	F < 150 kHz: 1 kHz			
Video bandwidth:	150 kHz < F < 30 MHz: 100 kHz			
	30 MHz < F < 1 GHz: 300 kHz			
Trace mode:	Max hold			
Lload toot coture	9 kHz to 30 MHz: see sub clause 7.2 - A			
Used test setup:	30 MHz to 1 GHz: see sub clause 7.1 - A			
Measurement uncertainty:	See sub clause 8			

Limit:

FCC & IC				
Frequency (MHz)	Field strength (dBµV/m)	Measurement distance (m)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 - 1.705	24000/F(kHz)	30		
1.705 – 30	30 (29.5 dBμV/m)	30		
30 – 88	100 (40 dBμV/m)	3		
88 – 216	150 (43.5 dBµV/m)	3		
216 – 960	200 (46 dBµV/m)	3		


Result:

Detected emissions					
Frequency (MHz)	Detector	Resolution bandwidth (kHz)	Detected value		
Please take a look at the table below the 1 GHz plot.					


Plots:

Plot 1: 9 kHz – 30 MHz, magnetic emissions

Plot 2: 30 MHz – 1 GHz, vertical and horizontal polarisation

Final_Result:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.352600	10.89	30.00	19.11	1000.0	120.000	170.0	٧	190	13.8
41.212050	10.54	30.00	19.46	1000.0	120.000	101.0	Н	80	14.0
46.122900	10.53	30.00	19.47	1000.0	120.000	101.0	٧	10	13.6
676.108800	18.10	36.00	17.90	1000.0	120.000	170.0	٧	170	21.3
774.154800	19.46	36.00	16.54	1000.0	120.000	101.0	Н	10	22.7
908.946450	20.93	36.00	15.07	1000.0	120.000	170.0	Н	190	24.1

12.4 Receiver spurious emissions and cabinet radiations

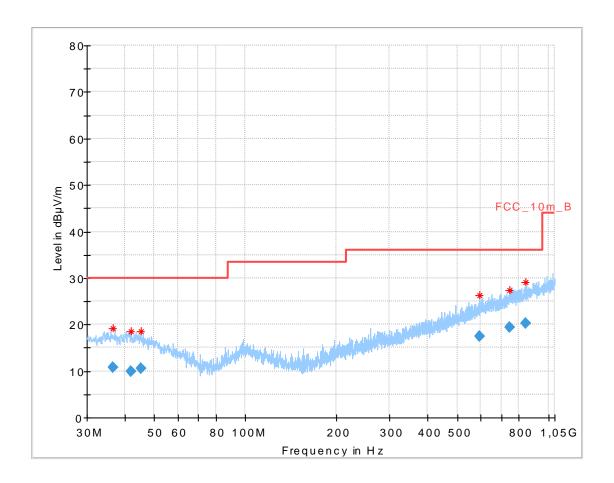
Measurement:

The maximum detected field strength for the spurious.

Measurement parameters					
Detector:	Quasi peak / average or				
Detector.	peak (worst case – pre-scan)				
	F < 150 kHz: 200 Hz				
Resolution bandwidth:	150 kHz < F < 30 MHz: 9 kHz				
	30 MHz < F < 1 GHz: 120 kHz				
	F < 150 kHz: 1 kHz				
Video bandwidth:	150 kHz < F < 30 MHz: 100 kHz				
	30 MHz < F < 1 GHz: 300 kHz				
Trace mode:	Max hold				
Used test setup	See sub clause 7.1 - A				
Measurement uncertainty:	See sub clause 8				

Limit:

FCC & IC						
Frequency	Field strength	Measurement distance				
(MHz)	(dBµV/m)	(m)				
30 – 88	100 (40 dBμV/m)	3				
88 – 216	150 (43.5 dBμV/m)	3				
216 – 960	200 (46 dBμV/m)	3				


Result:

Detected emissions							
Frequency (MHz)	Detector	Resolution bandwidth (kHz)	Detected value				
	Please take a look at the table below the 1 GHz plot.						

Plots:

Plot 1: 30 MHz – 1 GHz, vertical and horizontal polarisation

Final_Result:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.439650	10.81	30.00	19.19	1000.0	120.000	101.0	٧	80	13.9
41.996250	9.88	30.00	20.12	1000.0	120.000	170.0	Н	261	14.0
45.353250	10.47	30.00	19.53	1000.0	120.000	101.0	Н	280	13.8
593.169750	17.52	36.00	18.48	1000.0	120.000	170.0	٧	280	20.5
747.366450	19.50	36.00	16.50	1000.0	120.000	170.0	Н	10	22.6
842.005200	20.30	36.00	15.70	1000.0	120.000	170.0	V	190	23.3

13 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release	
	Initial release	2015-08-03	
А	Editorial changes (new PMN / HVIN / kind of product denomination)	2015-08-06	

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

PMN Product marketing name HMN Host marketing name

HVIN Hardware version identification number FVIN Firmware version identification number

Accreditation Certificate Annex C

Front side of certificate

Back side of certificate

(DAkkS

Deutsche Akkreditierungsstelle GmbH

Bellehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilaleralen Abkommon von EA, IIAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Darhtgebundene Kommunikation einschileßlich xDSL
VolP und DECT
Ründ dinschileßlich WLAN
Short Range Devices (SRD)
RFID
Willhaz und Richtfunk
Mobiltunk (dSM / DCS, Over the Air (OTA) Performance)
Elektromagnetische Verträglichkeit (EMV) einschileßlich Automotive
Produktsicherheit
SAR und Hearing Aid Compatibility (MAC)
Umweltsimulation
Smart Card Terminals

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Beschald vom 07.03.2014 mit der Akkreditierungsnurmmen D-PI-17076-01 und ist gillig 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblat, is und der folgenden Anlage mit Insgesamt 77 Seiten.

Registrierungsnummer der Urkunde: D-PL-12076-01-00

Frankfurt am Main, 07.03.2314

Deutsche Akkreditierungsstelle GmbH

Standort Frankfurt am Main Gartenstraße 6 60594 Frankfurt am Main

Standort Braunschweig Bundesallee 100 38115 Braunschweig

Die auszugsweise Veröffentlichung der Akkreditierungsurlaunds benanf der verhanigen schriftlichen Zusämmung der Deutsche Akkrediterungsstelle Grabh (DAMS), Ausgemenmen diesen ist die sepanate Weiter verzeitung des Deckbartes durch die umseitig genennie Konformitälisbewertungsstelle in ungedit deter Folgen.

Es darf nicht der Anscheln erweckt werden, dass sich die Akkreditierung auch auf Bereichs erstreckt, die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkreditioning erfolgte gemöß des Gesetzes über din Akkredition angsatella (AMStelleC) vom 31 Juli 2009 (RGB). I. S. 2055) sowie der Verontrung (FG) Nr. 7657/2008 des Europäischen Prähenerts und des Reits vom 9. Juli 2008 (Breit der Versarheiten der Akkreditioning und Marktüberwahung im Zusarmenhang mit der Vermanklung von Produkten (Abl. L. 218 vom 9. Juli 2008, S. 30). Die DAMS ist Utterer dinersi der Auffäldersalen Akkarmenn ung egenet Bigen Anselsenung der European ers operation for Ausreditätion (EA), des International Acceptation for mit (AV) und der international Labescher Ausreditätion of Cooperation (ILAC). Die Unterneichner elleser Abkommen orkomen ihre Akkreditionungung gegensteitig an.

Der aktue in Stund der Viligliedschaft kann folgenden Webseiten ertnommen werden: FAL: www.european.accred tation.org IAAC: www.eicheur: IAAC: www.eicheur

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html