

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4pR^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power(e.l.r.p.):	20.00 (dBm)
Maximum peak output power (e.l.r.p.):	100 (mW)
Antenna gain(typical):	<u>0</u> (dBi)
Maximum antenna gain:	1 (numeric)
Prediction distance:	20 (cm)
Prediction frequency:	<u>1900</u> (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	<u>1</u> (mW/cm^2)
Device devict and the first free free second	0.040004 (

Power density at prediction frequency: 0.019894 (mW/cm^2)

Maximum allowable antenna gain: 17.0127 (dBi)

The peak power output listed above is the maximum eirp. The device is mounted in an office environment, typically in a window. The device is able to be moved by an installer in order to get maximum coverage. A statement in the installation manual warns the installer to mount the device with a minimum separation distance of 20 cm.