KTL Test Report:	9L0023RUS
Applicant:	Andrew Corporation 2601 Telecom Parkway Richardson, Tx.
Equipment Under Test:	2400 Base Data Radio (P/N 38700-3000-001) and 4 Port Line Amplifier
FCC ID:	KUWMDL2400BDR
In Accordance With:	FCC Part 15, Subpart C Direct Sequence Transmitters 2.4 – 2.4835 GHz
Tested By:	KTL Dallas Inc. 802 N Kealy Lewisville, Tx 75057-3136
Authorized By:	Jom Tidwell
	Tom Tidwell, RF Group Manager
Date:	January 4, 2000
Total Number of Pages:	50

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

Table Of Contents

Section 1.	Summary Of Test Results	3
Section 2.	General Equipment Specification	5
Section 3.	Powerline Conducted Emissions	11
Section 4.	Occupied Bandwidth	18
Section 5.	Peak Power Output	20
Section 6.	Spurious Emissions (Antenna Conducted)	22
Section 7.	Spurious Emissions (Radiated)	28
Section 8.	Transmitter Power Density	34
Section 9.	Processing Gain	36
Section 10.	Test Equipment List	39
ANNEX A - T	TEST METHODOLOGIES	40
ANNEX B - B	RLOCK DIAGRAMS	48

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

 $EQUIPMENT:\ 2400\ Base\ Data\ Radio(P/N\ 385700-3000-001)\ and\ 4-Port\ Line\ Amplifier$

FCC ID: KUWMDL2400BDR

Section 1.	Summary Of Test Results											
Manufacturer:	nufacturer: Andrew Corporation											
Model No.:	odel No.: 2400 Base Data Radio											
Serial No.:	rial No.: BDR052											
General:	All measurements are traceable to	nation	al standaı	rds.								
	ducted on a sample of the equipment for Part 15, Subpart C, Paragraph 15.247	-	-	•								
New S	Submission		Production	on Unit								
Class	II Permissive Change		Pre-Prod	uction Unit								
THIS	TEST REPORT RELATES ONLY TO T	ГНЕ ІТІ	EM(S) TES	TED.								
THE FOLLOWING I	DEVIATIONS FROM, ADDITIONS TO, SPECIFICATIONS HAVE BEE See "Summary of Test Da	N MAD		IS FROM THE TEST								
	NVLAÕ											
	NVLAP LAB CODE: 100	0426-0										
TESTED BY: R	don Gaytan		DATE:	8/10/99-8/17/99								

KTL Dallas Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. KTL Dallas Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

Summary Of Test Data

NAME OF TEST	PARA. NO.	SPEC.	MEAS.	RESULT
Powerline Conducted Emissions	15.207 (a)	48 dBμV	42.8	Complies
Occupied Bandwidth	15.247 (a)(2)	≥500 kHz	13.6347 MHz	Complies
Peak Power Output	15.247 (b)	4 W E.I.R.P.	4 W E.I.R.P.	Complies
Spurious Emissions (Antenna Conducted)	15.247 (c)	-20 dBc	-18.46 dBm	Complies
Spurious Emissions (Radiated)	15.247 (c)	Table 15.209 (a)	61.3 dBuV/m	Complies
Transmitter Power Density	15.247 (d)	≤ +8 dBm	5 dBm	Complies
Processing Gain	15.247 (e)	≥ 10 dB	15.9 dB	Complies

Footnotes: None

Test Conditions:

Indoor Temperature: 24°C

Humidity: 42%

Outdoor Temperature: 28°C

Humidity: 48%

FCC PART 15, SUBPART C
DIRECT SEQUENCE TRANSMITTERS
PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier

FCC ID: KUWMDL2400BDR

Section 2. General Equipment Specification

Transmitter

Power Input: 85-265 VAC

Frequency Range: 2417 MHz (Fixed)

Tunable Bands: Not Applicable

6 dB Bandwidth: 13.6347 MHz

Type of Modulation GPSK

Chip Rate: 16.896 Mbps

Data Rate: 128 Kbps Radio to radio

64 Kbps User equipment to radio

Internal / External Data Source: External

Emissions Designator: 13M6F9W

Output Impedance: 50 ohms

RF Power Output (Rated): 4 Watts E.I.R.P. maximum (see note below)

Duty Cycle: Up to 100%

Channel Spacing: Not Applicable

Operator Selection of Operating Frequency: Not Applicable

Power Output Adjustment Capability: Computer controlled. Not adjustable above +30

dBm at the antenna port.

Note: The power output is set by the installer upon installation of the unit. Power is adjusted through software and is not accessible to the user. Instructions are given to the installer to set the output power appropriately for the antenna used for a particular installation.

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

Receiver

Frequency Range: 2467 MHz(Fixed)

Tunable Bands: Not Applicable

1st IF: 2327.552 MHz

2nd IF: 129.6 MHz

Bandwidth: 13.6347 MHz

Type of Modulation: GPSK

Operator Selection of Operating Frequency Not Applicable

NOTE: other oscillators in receiver section are

42.752 MHz 16.896 MHz

Description of Modification

- 1.) Properly shielded Data 1 And Data 2 ports at both ends of the cables. (See Photograph)
- 2.) Added ferrite to AC input. The ferrite was locate iside the chassis as close to the line filter as possible P/N 0431164281 Fair-rite Products. (See Photograph)
- 3.) Added ferrite to Data1 and Data2 wire harness located inside the chassis. The ferrite is located as close to the ports as possible. P/N 0444176451 Fair-rite Products. (See Photograph)

Modification Photograph-

Theory of Operation

The Base Data Radio is a full duplex transceiver. The main input power source is AC. The unit receives and transmits data to customer provided equipment through a synchronous interface EIA-530 interface.

This unit is intended to be used with either a leaky coax radiator or a high gain directional antenna. The output power is set by the installer upon installation and can not be accessed by the user. The installer is instructed to set the power output at the antenna port to an appropriate level for the antenna used in the installation. This guarantees that the maximum power level of 4 W E.I.R.P. is not exceeded.

The line amplifier is used only with this base transmitter and may be used when the leaky coaxial cable is used as the radiator. In this situation, the line amplifier may be installed at intervals along the cable to allow for better signal coverage.

This transmitter and its antenna are located in areas where access to within 20 cm of the radiator is restricted.

Test Setup Diagram

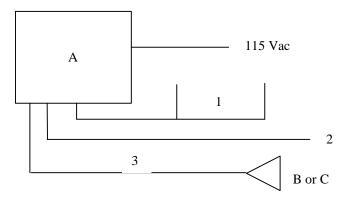


Figure 1 - Base Station Setup

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

Equipment Configuration List (Hardware/Peripherals):

Item	Generic	Manufacturer	Model No.	Serial	Rev.	FCC ID
	Description			No.	No.	Status*
(A)	Base Data Radio	Andrew Corporation	2400 Base Data Radio	DL	A	3
			P/N 385700-3000-001			
(B)	Transmit Antenna	Antenna Products	ISM PNL	005	N/A	3
			P/N 10009-0080-401			
(C)	50 ohm Load	Sierra Electronic	160B-300	557	N/A	3
		Operation				

^{* =} EUT (Equipment-Under-Test) or part of EUT.

*FCC ID STATUS

- 1. FCC DOC
- 3. None (If performing FCC testing, contact lab manager)
- 2. FCC A/B Verification
- 4. Certification (include FCC ID in parenthesis)

Inter-Connection Cables:

Item	Cable Type	Manufacturer	Length (m)	Termination**	Shield	Quantity
(1)	Data 1 Cable P/N 385700-1812-001	Andrew Corporation	3.0/3.0	1/6	Yes	1
(2)	Data 2 Cable P/N 385700-1813-001	Andrew Corporation	3.0/3.0	6/6	Yes	1
(3)	RF Output Coax KTL # C22	Unknown	2.5	4	Yes	1
(4)	Power Cord	Unknown	1.5	1	No	1

** TERMINATION

- Peripheral
 Loopback
 EUT
 Resistive
- 5. Remote Equipment 6. Other Cable Only

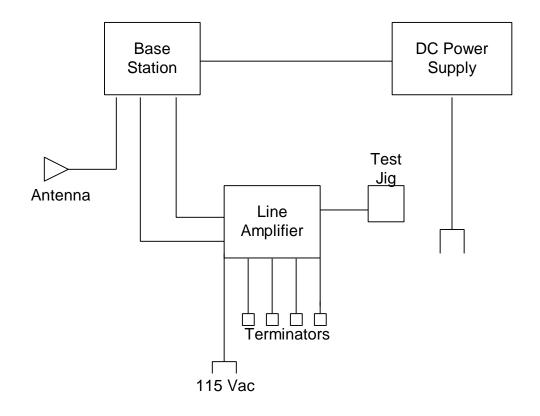


Figure 2 - Line Amplifier Setup

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier

FCC ID: KUWMDL2400BDR

Section 3. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

TESTED BY: Ron Gaytan DATE: 8/11/99

Test Results: Complies. See attached data.

Measurement Data: See attached data.

Test CE-1 – Base in RX mode.

Test CE-2 – Base and Line Amplifier in TX mode. Transmitting into 50 ohm load.

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

Measurement Data:

	Conducted Emissions Data (CISPR Quasi-Peak Detector) Complete X FCC (CFR 47) Preliminary Page 1 of 2											
Prelir	Preliminary Page 1 of 2											
Client:	Client: Andrew Coproration W.O.#: 9L0023R Date: 8/11/99											
EUT: 2400 Base Data Radio S/N: BDR052 Specification: CFR 47 Part 15.107 (a)												
Tech:	Tech: Ron Gaytan Test #: CE-1 Lab: 1 Photo ID: 9L0023 CE-1											
Equipme	nt Used:	G2624-G	2408-C24	ļ								
Configura	ation:	Rx Mode										
IF Bandw	vidth:	10kHz	Video Ba	ndwidth:	10kHz	_ De	tector:	Peak X CISPR				
Relative	Temperate Humidity: eric Press		24 42 989	C % mbar	EUT Power:	X	115 V 230 V Other	A.C. X 60 Hz X 1 Phase A.C. 50 Hz 3 Phase				
		•		•								
Freq.	Meter	Attn.	Cable	Probe	Corrected		Pol.	Comments:				
	Reading		Loss	Factor	Reading	Spec.limit						
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV)	(dBuV)						
0.45	24.3	0	0	0	24.3	48		L0= Nuetral Side of the Line				
0.5071	28.6	0	0	0	28.6	48	L0					
0.5794	28.7	0	0	0	28.7	48	L0					
0.652	28	0	0	0	28	48	L0					
2.172	27.6	0	0	0	27.6	48	L0					
2.39	32.4	0	0	0	32.4	48	L0					
4.97	23.2	0	0	0	23.2 25.7	48 48	L0 L0					
11.411 11.54	25.7 27.5	0	0	0	27.5	48	LO					
12.31	29.3	0	0	0	29.3	48	L0					
13.2	32.3	0	0	0	32.3	48	LO					
16.89	42.8	0	0	0	42.8	48	LO					
22.05	32.7	0	0	0	32.7	48	LO					
22.43	34.1	0	0	0	34.1	48	LO					
22.56	36.1	0	0	0	36.1	48	LO					
29.99	28.5	0	0	0	28.5	48	LO					
			-									
0.45	0.45 23.6 0 0 0 23.6 48 L1 L1= Hot Side of the Line											
0.5069	27.5	0	0	0	27.5	48	L1					
0.6517	28.1	0	0	0	28.1	48	L1					
2.172	27.4	0	0	0	27.4	48	L1					
	Note:Verify that the IF Bandwidth is in the proper setting.											

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

Measurement Data: (Continued)

Client: Andrew Coproration W.O.#: 9L0023R Date: 8/11/99		Conducted Emissions Data (CISPR Quasi-Peak Detector) Complete X FCC (CFR 47) Preliminary Page 2 of 2										
EUT: 2400 Base Data Radio S/N: BDR052 Specification: CFR 47 Part 15.107 (a) Tech: Ron Gaytan Test #: CE-1 Lab: 1 Photo ID: 9L0023 CE-1 Freq. Meter Reading (MHz) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB												
Freq. Meter Reading (dBuV) Attn. (dB) Cable Loss Factor (dB) Corrected Reading (dBuV) CISPR Spec.limit (dBuV) Pol. Comments: 2.39 32.7 0 0 0 32.7 48 L1 4.97 23.5 0 0 0 25.7 48 L1 11.411 25.7 0 0 0 27.7 48 L1 12.31 29.5 0 0 0 27.7 48 L1 13.2 32.6 0 0 0 32.6 48 L1 16.89 42.8 0 0 0 33 48 L1 22.05 33 0 0 0 34.7 48 L1 22.43 34.7 0 0 0 34.7 48 L1 29.99 20.7 0 0 0 20.7 48 L1	EUT:	2400 Bas	se Data Ra	adio								
Reading (MHz) Loss (dBuV) Factor (dBuV) Reading (dBuV) Spec.limit (dBuV) 2.39 32.7 0 0 0 32.7 48 L1 4.97 23.5 0 0 0 23.5 48 L1 11.411 25.7 0 0 0 25.7 48 L1 11.54 27.7 0 0 0 27.7 48 L1 12.31 29.5 0 0 0 29.5 48 L1 13.2 32.6 0 0 0 32.6 48 L1 16.89 42.8 0 0 0 42.8 48 L1 22.05 33 0 0 0 34.7 48 L1 22.43 34.7 0 0 0 34.7 48 L1 29.99 20.7 0 0 0 20.7 48 L1	Tech:	Ron Gay	tan			Test #:	CE-1	Lab:	: 1 Photo ID: 9L0023 CE-1			
Reading (MHz) Loss (dBuV) Factor (dBuV) Reading (dBuV) Spec.limit (dBuV) 2.39 32.7 0 0 0 32.7 48 L1 4.97 23.5 0 0 0 23.5 48 L1 11.411 25.7 0 0 0 25.7 48 L1 11.54 27.7 0 0 0 27.7 48 L1 12.31 29.5 0 0 0 29.5 48 L1 13.2 32.6 0 0 0 32.6 48 L1 16.89 42.8 0 0 0 42.8 48 L1 22.05 33 0 0 0 34.7 48 L1 22.43 34.7 0 0 0 34.7 48 L1 29.99 20.7 0 0 0 20.7 48 L1	Freq	Meter	Attn	Cable	Prohe	Corrected	CISPR	Pol	Comments:			
2.39 32.7 0 0 0 32.7 48 L1 4.97 23.5 0 0 0 23.5 48 L1 11.411 25.7 0 0 0 25.7 48 L1 11.54 27.7 0 0 0 27.7 48 L1 12.31 29.5 0 0 0 29.5 48 L1 13.2 32.6 0 0 0 32.6 48 L1 16.89 42.8 0 0 0 42.8 48 L1 22.05 33 0 0 0 34.7 48 L1 22.43 34.7 0 0 0 34.7 48 L1 22.56 28 0 0 0 28 48 L1 29.99 20.7 0 0 0 20.7 48 L1	1	Reading		Loss	Factor	Reading	Spec.limit	1 01.	Commonts.			
11.411 25.7 0 0 0 25.7 48 L1 11.54 27.7 0 0 0 27.7 48 L1 12.31 29.5 0 0 0 29.5 48 L1 13.2 32.6 0 0 0 32.6 48 L1 16.89 42.8 0 0 0 42.8 48 L1 22.05 33 0 0 0 33 48 L1 22.43 34.7 0 0 0 34.7 48 L1 22.56 28 0 0 0 28 48 L1 29.99 20.7 0 0 0 20.7 48 L1			_ ` _			,		L1				
11.54 27.7 0 0 0 27.7 48 L1 12.31 29.5 0 0 0 29.5 48 L1 13.2 32.6 0 0 0 32.6 48 L1 16.89 42.8 0 0 0 42.8 48 L1 22.05 33 0 0 0 33 48 L1 22.43 34.7 0 0 0 34.7 48 L1 22.56 28 0 0 0 28 48 L1 29.99 20.7 0 0 0 20.7 48 L1	4.97	23.5	0	0	0	23.5	48	L1				
12.31 29.5 0 0 0 29.5 48 L1 13.2 32.6 0 0 0 32.6 48 L1 16.89 42.8 0 0 0 42.8 48 L1 22.05 33 0 0 0 33 48 L1 22.43 34.7 0 0 0 34.7 48 L1 22.56 28 0 0 0 28 48 L1 29.99 20.7 0 0 0 20.7 48 L1	11.411	25.7	0	0	0	25.7	48	L1				
13.2 32.6 0 0 0 32.6 48 L1 16.89 42.8 0 0 0 42.8 48 L1 22.05 33 0 0 0 33 48 L1 22.43 34.7 0 0 0 34.7 48 L1 22.56 28 0 0 0 28 48 L1 29.99 20.7 0 0 0 20.7 48 L1		27.7		-	0	27.7						
16.89 42.8 0 0 0 42.8 48 L1 22.05 33 0 0 0 33 48 L1 22.43 34.7 0 0 0 34.7 48 L1 22.56 28 0 0 0 28 48 L1 29.99 20.7 0 0 0 20.7 48 L1												
22.05 33 0 0 0 33 48 L1 22.43 34.7 0 0 0 34.7 48 L1 22.56 28 0 0 0 28 48 L1 29.99 20.7 0 0 0 20.7 48 L1			_									
22.43 34.7 0 0 0 34.7 48 L1 22.56 28 0 0 0 28 48 L1 29.99 20.7 0 0 0 20.7 48 L1												
22.56 28 0 0 0 28 48 L1 29.99 20.7 0 0 0 20.7 48 L1			_	_								
29.99 20.7 0 0 0 20.7 48 L1			_	_								
2000 200 0 2 200 0 20			-	-								
Scanned Iro .450 to 50 Min2	29.99	20.7	0	0	0	20.7	48	L1	Conned fro 450 to 20 MHz			
									Scanned fro .450 to 30 MHz			
							\vdash					
Note: Verify that the IF Bandwidth is in the proper setting.									1			

Powerline Conducted Emissions Photographs

FRONT VIEW

SIDE VIEW

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier

FCC ID: KUWMDL2400BDR

Powerline Conducted Emissions Test # CE-2:

Conducted Emissions Data (CISPR Quasi-Peak Detector)											
Complete X FCC (CFR 47)											
	Preliminary Page 1 of 2										
Client: Andrew Coporation W.O.#: 9L0025R Date: 12/20/99											
EUT: <u>385700-4000-001</u> S/N: <u>None</u> Specification: <u>CFR47 part 15.207</u>											
Tech: Ron Gaytan Test #: <u>CE-2</u> Lab: <u>3</u> Photo ID: <u>9L0025 CE-2</u>											
Equipme	nt Used:	G2634-G	2408-C21	-G1605-C	G1705						
Configura	ation:	Tx into 5	0 ohms								
IF Bandw	vidth:	10 kHz	Video Ba	ndwidth:	10 kHz	De	tector:	Peak X_CISPR			
Ambient	Temperati	ure:	23	C	EUT Power:	Х	115 V	.A.C. X 60 Hz X 1 Phase			
Relative	Humidity:		40	%				.A.C 50 Hz 3 Phase			
Atmosph	eric Press	sure:	999	mbar			Other				
Freq.	Meter	Attn.	Cable	Probe	Corrected	Spec.	Pol.	Comments:			
•	Reading		Loss	Factor	Reading	limit					
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV)	(dBuV)					
0.507	40.5	0	0	0	40.5	48	Н	(H= Hot Side of Line)			
0.608	42	0	0	0	42	48	Н				
0.71	39.4	0	0	0	39.4	48	Н				
1.014	43.7	0	0	0	43.7	48	Н				
1.521	46	0	0	0	46	48	Н				
2.737	43.3	0	0	0	43.3	48	Н				
11.161	31.6	0	0	0	31.6	48	Н				
18.368	26	0	0	0	26	48	Н				
29.924	32.2	0	0	0	32.2	48	Н				
0.507	52.6	0	0	0	52.6	48	N				
0.507	42	0	0	0	42	48	N	Average detector qualifies for			
507	39.6	0	0	0	39.6	48	N	13 dB relaxation			
0.608	51.1	0	0	0	51.1	48	N	Average detector qualifies for			
0.608	41.8	0	0	0	41.8	48	N	13 dB relaxation			
0.608	38.1	0	0	0	38.1	48	N				
0.709	44.6	0	0	0	44.6	48	N				
1.014	41.8	0	0	0	41.8	48	N				
1.519	43	0	0	0	43	48	N				
2.737	37.7	0	0	0	37.7	48	N				
11.156	31.6	0	0	0	31.6	48	N				
	Note: Verify that the IF Bandwidth is in the proper setting										

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

Powerline Conducted Emissions Test # CE-2 (Continued):

Fowerline Conducted Emissions Test # CE-2 (Continued):									
Conducted Emissions Data (CISPR Quasi-Peak Detector) Complete X FCC (CFR 47)									
Prelir	minary		•		,	Page <u>2</u> of <u>2</u>			
Client:	Andrew C	Coporation	1		W.O.#:	9L0025R			Date: <u>12/20/99</u>
EUT:	385700-4	000-001			S/N:	None		Specifi	cation: <u>CFR47 part 15.207</u>
Tech:	Ron Gayt	tan			Test #:	CE-2	Lab:	3	Photo ID: <u>9L0025 CE-2</u>
Freq.	Meter	Attn.	Cable	Probe	Corrected	CISPR	Pol.	Comme	onto
(MHz)	Reading (dBuV)	(dB)	Loss (dB)	Factor (dB)	Reading (dBuV)	Spec.limit (dBuV)		Comme	ents.
18.368		0	0	0	25.2	48	N		
29.924		0	0	0	31.6	48	N		
23.324	31.0	U			31.0	70	- 11	Scanne	ed from 450 kHz to 30 MHz.
								Coarmo	74 HOTH 400 KHZ to 30 WHZ.
								-	
	Note: Verify that the IF Randwidth is in the proper setting								

Powerline Conducted Emissions Photographs

SIDE VIEW:

SIDE VIEW:

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS

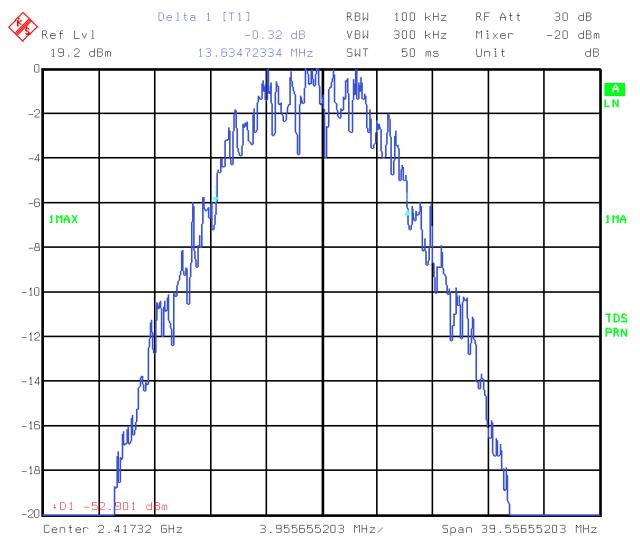
PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier

FCC ID: KUWMDL2400BDR

Section 4. **Occupied Bandwidth**

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(2)


TESTED BY: Ron Gaytan DATE: 8/10/99

Test Results: Complies. The 6 dB bandwidth is 13.6347 MHz.

Measurement Data: See attached graph.

NOTE: The rf power output level was set to +30 dBm for this test. Measurement of rf power was made using a peak power meter.

Occupied Bandwidth

Title: Occupied Bandwidth
Nate: 10.AUG.1999 9:45:48

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier

FCC ID: KUWMDL2400BDR

Section 5. Peak Power Output

NAME OF TEST: Peak Power Output	PARA. NO.: 15.247 (b)
TESTED BY: Ron Gaytan	DATE: 8/17/99

Test Results:

Complies. The maximum available peak power output power at the antenna terminals is 1.0 watts. When using a gain antenna, the installer is instructed to set the power output at the antenna terminals appropriately. For this testing a 12 dBi gain antenna was used; thus the power output at the rf output port was set to +24 dBm. The resulting field strength was measured at a distance of 3m and the E.I.R.P. was calculated. The resulting E.I.R.P. was 2.276 W.

Measurement Data:

Detachable antenna? Yes No
If yes, state the type of non-standard connector used at the

antenna port: Type N female connector. The equipment is professionally installed in a specific application. The equipment is

marketed to select users only.

Directional Gain of Antenna: 12 dBi or 15.8 Numeric. Measured Peak Power Output at input to antenna: +24 dBm. Measured FS: 128.8 dB μ V/m @ 3m or 2.75 V/m @ 3m. E.I.R.P. calculated from measured field strength: 2.276 W

The power output was measured with a peak power meter. The output level was set via software to +24 dBm. The field strength of the transmitted signal was measured with the rf power output set to +24 dBm and the 12 dBi gain panel antenna attached. This is representative of the method used to set the power output during installation.

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

Peak Power Output (Field Strength)

Microwave Radiated Emissions Data									
Preliminary							Page <u>1</u> of <u>1</u>		
ooration			Test #: <u>ERP-1</u>			W.O.#	: 9L0023R		
EUT: 2400 Base Data Radio S/N: None Photo ID: 9L0023R ERP-1									
Technician: Ron Gaytan Specification: CFR 47 Part 15.247 Lab: ANC1 Date: 8/17/99									
Equipment Used: G2626-G2200-CF31-G2034									
@ 24 dBm with 12 d	IBi ISM Pa	nel Antenr	na (Used KTL#	G-1018	3-G1017	B-G3893	to set power)		
z Video Bandw	vidth: 1 N	ИНz	Antenna Dista	ance	3	m De	etector:		
Climatic Conditions: EUT Power: X 115 V.A.C. X 60 Hz X Peak Temperature: 23 C 208 V.A.C. 50 Hz Average Relative Humidity: 38 % 230 V.A.C. Atmospheric Pressure: 998 mbar Other 1 Phase 3 Phase									
Antenna Cable Factor Loss (dB) (dB)	RF Gain (dB)	Conver. Factor	Reading			Pol.	Comments:		
28.4 3.1	0	107	116.5	134	21.27	Н			
28.4 3.1	0	107	128.8	2276	33.57	V			
	Preliminary	Preliminary	Preliminary	Test #: ERP-1	Preliminary	Test #: ERP-1	Preliminary Oration Test #: ERP-1 W.O.# ata Radio S/N: None Photo ID Baytan Specification: CFR 47 Part 15.247 Lab: ANC1 D G2626-G2200-CF31-G2034 Q.24 dBm with 12 dBi ISM Panel Antenna (Used KTL# G-1018-G1017B-G3893) C		

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS

PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier

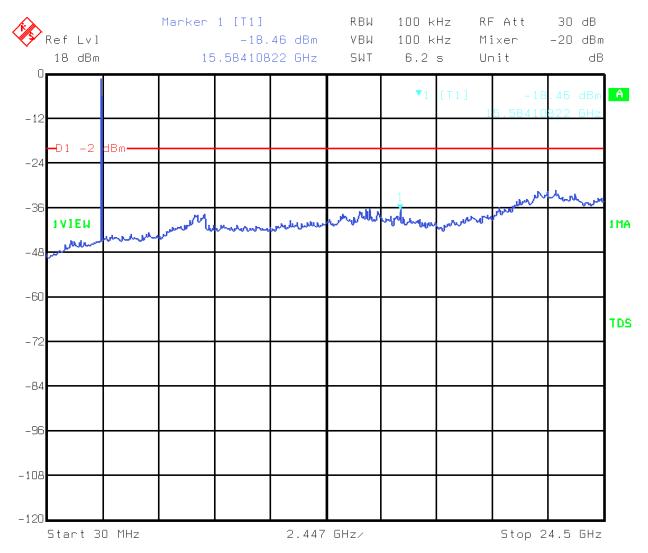
FCC ID: KUWMDL2400BDR

Section 6. **Spurious Emissions (Antenna Conducted)**

NAME OF TEST: Spurious Emissions (Antenna Conducted) PARA. NO.: 15.247(c)

TESTED BY: Ron Gaytan DATE:8/10/99

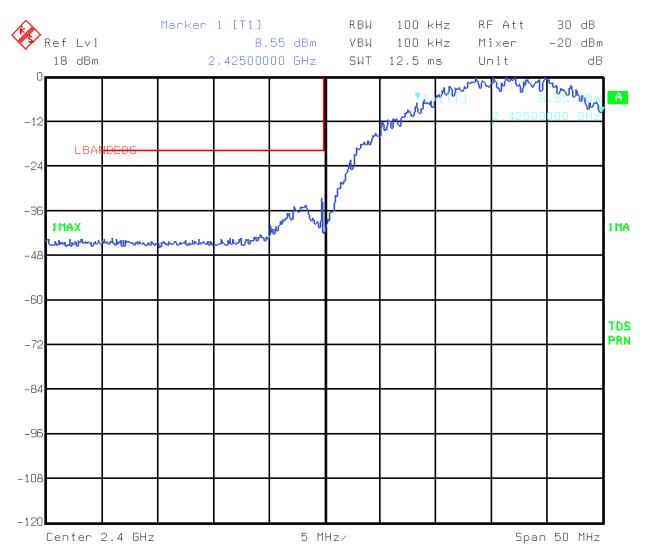
Test Results: Complies. The worst-case emission level is 3.35 dBm at


22.3815 GHz. This is 6.65 dB below the specification

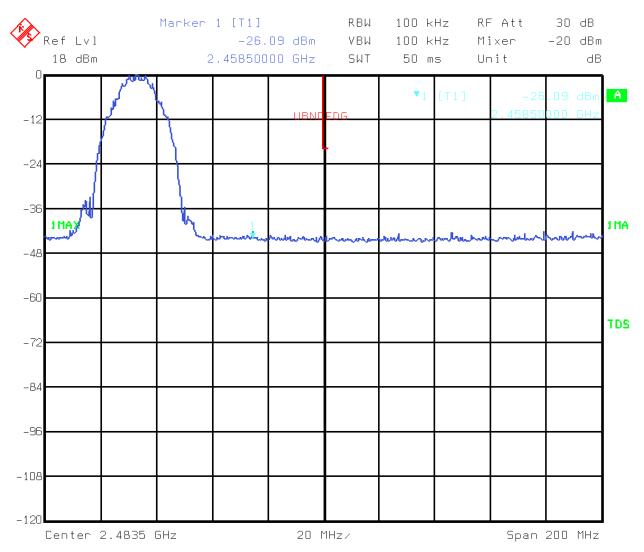
limit (+30 dBm - 20 dB = +10 dBm).

Measurement Data: See attached graphs.

NOTE: The rf power output level was set to +30 dBm for this test. Measurement of rf power was made using a peak power meter.

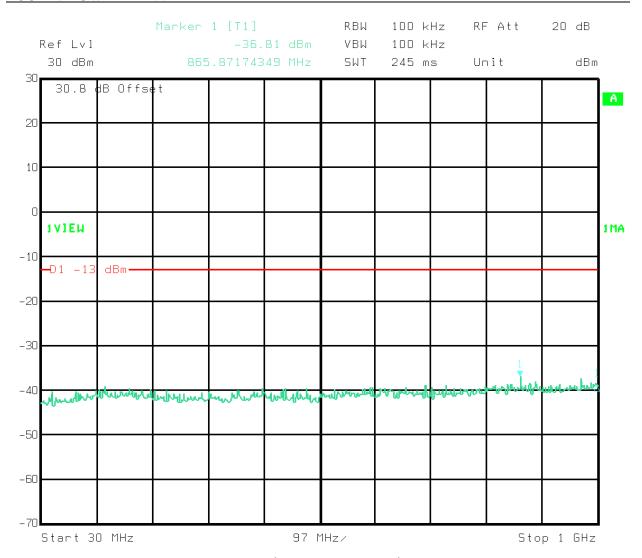

Antenna Port Spurious Emissions

Title: Antenna Port Spurious Emissions


Date: 10.AUG.1999 12:09:42

Lower Band Edge

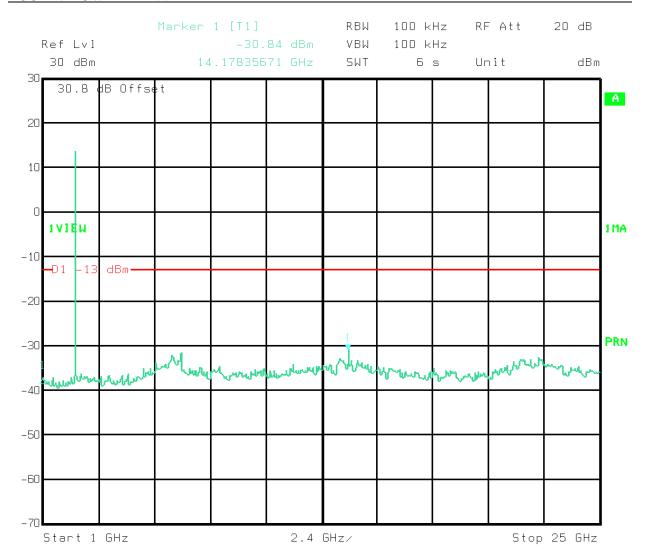
Title: Lower Band Edge
Date: 10.AUG.1999 12:15:14


Upper Band Edge

Title: Upper Band Edge
Date: 10.AUG.1999 12:23:50

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR


Title: Antenna Port Conducted (385700-4000-001)

Comment A: APSE1

Date: 26.0CT.1999 8:40:09

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

Title: Antenna Port Conducted (385700-4000-001)

Comment A: APSE2

Date: 26.0CT.1999 8:44:13

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS

PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier

FCC ID: KUWMDL2400BDR

Spurious Emissions (Radiated) Section 7.

NAME OF TEST: Spurious Emissions (Radiated) PARA. NO.: 15.247(c)

TESTED BY: Ron Gaytan DATE:8/17/99

Complies. The worst-case noise floor emission level is 61.3 **Test Results**

dBµV/m @ 3m at 4.833 GHz. This is 5.6 dB below the

specification limit.

Measurement Data: See attached table.

NOTE: Spurious emissions were measured with the EUT in the following modes:

1. MW-2 Set for full transmit power(1 watt) operating into a leaky coaxial cable emitter.

2. MW-3 Set to +24 dBm feeding a 12 dBi gain antenna.

Page 28 of 50

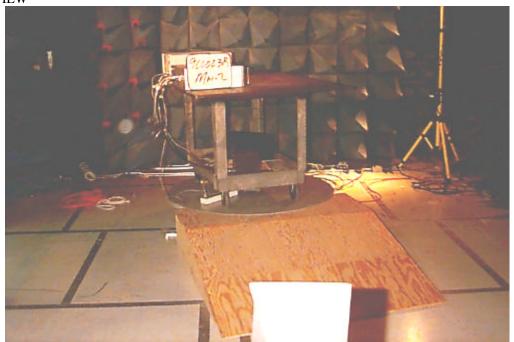
FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

3. Test Data - Radiated Emissions (PEAK/AVERAGE)

Microwave Radiated Emissions Data											
Complete	Complete X Preliminary Page 1 of										
Client: Andrew Corporation Test #: MW-2 W.O.#: 9L00023R											
EUT: 2400 Base Data Radio S/N: BDR052 Photo ID: 9L0023R MW-2											
Technician: Ron Gaytan Specification: CFR 47 Part 15.247 Lab: ANC1 Date: 8/17/99											
Equipment Used: G2200-G2626-CF31-G2034-934-G2235-CF34-CF35											
Configuration: Tx mode, Full power output, Leaky coax radiator											
Bandwidth: 1 MHz Video Bandwidth: 1 MHz Antenna Distance 3 m Detector:											
Climatic Conditions: EUT Power: X 115 V.A.C. X 60 Hz X Peak Temperature: 25 C 208 V.A.C. 50 Hz Average Relative Humidity: 38 % 230 V.A.C. Atmospheric Pressure: 1002 mbar Other X 1 Phase 3 Phase											
Freq.	Meter Reading	Antenna Factor	Cable Loss	RF Gain	Corrected Reading	Spec. Limit	Pol.	Comments:			
(GHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)					
2.417	65.6	28.5	3.1	32	65.2	N/A	V	Fundamental Freq.			
2.328	47.2	28.4	3.0	31.6	47	54	V				
4.833	45.9	33	4.6	30.3	53.2	54	V	Refer to Average Det.			
4.833 7.250	41.1 48.0	33 36.2	4.6 5.8	30.3	48.4 56.2	54 108.8	V	Average Detector			
7.250	40.9	36.2	5.8	33.8 33.8	49.1	108.8		Refer to Average Det. Average Detector			
9.667	40.1	37.6	6.8	33.9	50.6	108.8	V	Average Detector Average Detector			
12.084	37.6	39.3	8.0	33.5	51.4	54	V	Average Detector, N.F			
14.502	39.6	43.4	8.7	30.7	61	108.8	V	Average Detector, N.F			
16.919	39.8	43.0	9.8	31.3	61.3	108.8	V	Average Detector, N.F			
19.336	44.6	40.3	9.4	43.1	51.2	108.8	V	Average Detector, N.F			
2.417	61.0	28.5	3.1	32	60.6	N/A	Н	Fundamental Freq.			
2.328	45.5	28.4	3.0	31.6	45.3	54	H	r undamentar req.			
4.833	37.5	33	4.6	30.3	44.8	54	H	Average Detector			
7.25	38.2	36.2	5.8	33.8	46.4	108.8	H	Average Detector, N.F			
9.667	38.2	37.6	6.8	33.9	48.7	108.8	Н	Average Detector, N.F			
12.084	37.6	39.3	8.0	33.5	51.4	54	Н	Average Detector, N.F			
14.502	39.6	43.4	8.7	30.7	61	108.8	Н	Average Detector, N.F			
DATACOMMON\FORMS\TESTDATASHEETS\MICRORE REV 030597											

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS


EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

Test Data - Radiated Emissions (PEAK/AVERAGE)

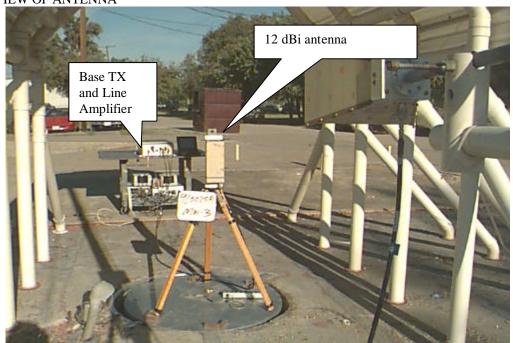

Microwave Radiated Emissions Data Continuation Page										
Complete X Preliminary Prelimi										
Client: Andr	rew Corp	oration		Test #:MW-2			V-2	W.O.#: 9L0023R		
EUT: 2400 Base Data Radio S/N: BDR052 Photo ID: 9L0023R M										
Technician: Ron Gaytan Specification: CFR 47 Part 15.247 Lab: ANC1 Date: 8/17/99										
	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	RF Gain (dB)	Corrected Reading (dBuV/m)	Spec. Limit (dBuV/m)	Pol.	Comments:		
16.919	39.8	43.0	9.8	31.3	61.3	108.8	Н	Average Detector, N.F		
19.336	44.6	40.3	9.4	43.1	51.2	108.8	Н	Average Detector, N.F		
19.330	44.0	40.5	5.4	40.1	31.2	100.0		Scanned 1-25 GHz		
								 		
								 		

Radiated Photographs (Worst Case Configuration)

FRONT VIEW

REAR VIEW

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS


EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

Microwave Radiated Emissions Data										
Complete	X	Prelimina	ary			Page <u>1</u> of <u>1</u>				
Client: An	drew Corp	oration				Test #: MW-3 W.O.#: 9L0024R			: <u>9L0024R</u>	
EUT: <u>38</u>	5700-4000)-001				S/N: None Photo ID: 9L0024R MW-3				
Technician: Ron Gaytan Specification: CFR 47 Part 15.247 Lab: A OATS Date: 10/27/99										
Equipment Used: 677-2023-CF31										
Configuration: Base TX and Line Amplifier - +24 dBm into 12 dBi antenna										
Bandwidth: 1 MHz Video Bandwidth: 1 MHz Antenna Distance 3 m Detector:										
Climatic Conditions: EUT Power: X 115 V.A.C. X 60 Hz X Peak Temperature: 22 C 208 V.A.C. 50 Hz Average Relative Humidity: 42 % 230 V.A.C. Atmospheric Pressure: 998 mbar Other 1 Phase 3 Phase										
Freq. (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	RF Gain (dB)	Conver. Factor	Corrected Reading (dBuV/m)	Spec. Limit (dBuV/m)	Pol.	Comments:	
4.834	16	34	4.6	0	0	54.6	54	V		
4.834	4	34	4.6	0	0	42.6	54	V	Average Det.	
7.251	7	37.2	5.7	0	0	49.9	67.7	V	Avg Det. N.F	
12.085	4	39.6	8.0	0	0	51.6	54.0	V	Avg Det. N.F	
4.834	16	34	4.6	0	0	54.6	54	Н		
4.834	2	34	4.6	0	0	40.6	54	H	Average Det.	
7.251	7	37.2	5.7	0	0	49.9	67.7	H	Avg Det. N.F	
12.085	4	39.6	8.0	0	0	51.6	54.0	H	Avg Det. N.F	
									Scanned 1-18 GHz	
		\TESTDATA		2225	REV 030597					

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

FRONT VIEW OF ANTENNA

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS

PROJECT NO.: 9L0023RUS

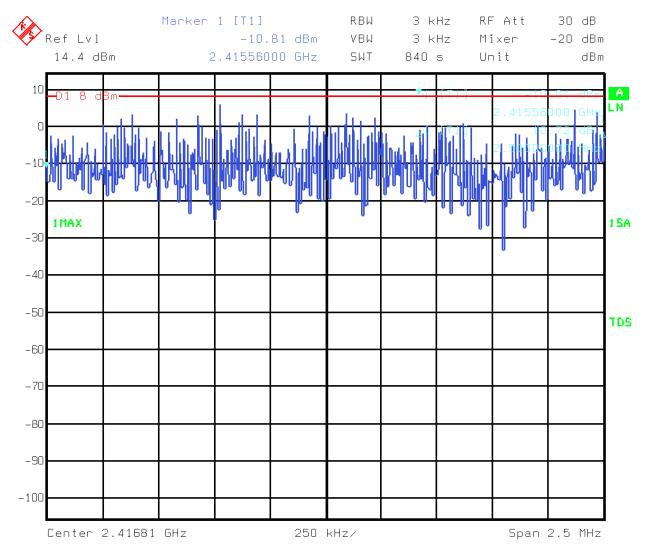
EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier

FCC ID: KUWMDL2400BDR

Section 8. **Transmitter Power Density**

NAME OF TEST: Transmitter Power Density PARA. NO.: 15.247(d)

TESTED BY: Ron Gaytan DATE: 8/13/99


Complies. **Test Results:**

See attached graphs. **Measurement Data:**

NOTE: Power output was set to +30 dBm (1 watt) using a peak power meter.

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

Power Spectral Density Data-

Title: Power Spectral Density Date: 10.AUG.1999 10:41:09

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS

PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier

FCC ID: KUWMDL2400BDR

Processing Gain Section 9.

NAME OF TEST: Processing Gain PARA. NO.: 15.247(e)

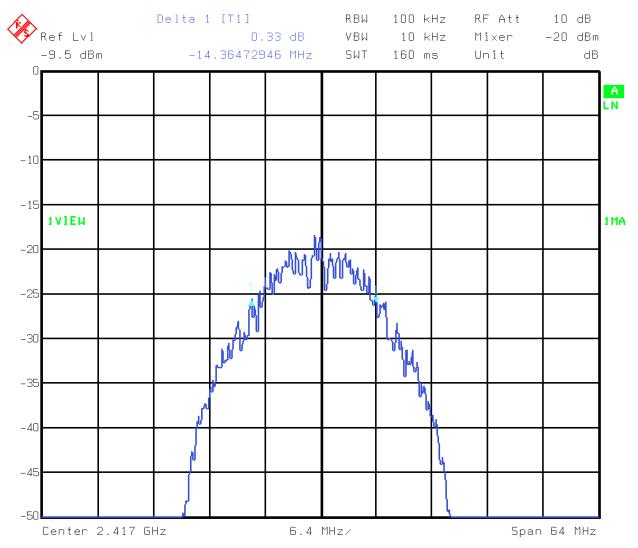
TESTED BY: Ron Gaytan DATE: 8/13/99

Test Results: Complies. The processing gain of the system is 15.9 dB.

Measurement Data: See attached data.

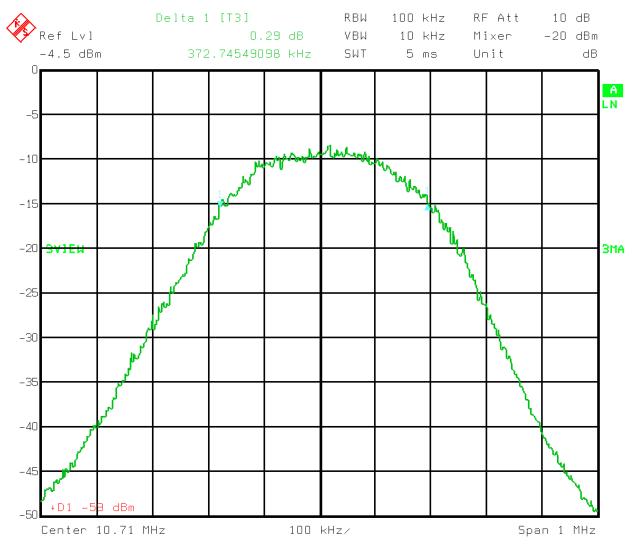
The processing gain of the system was demonstrated by measuring the rf signal before decorrelation and after de-correlation and comparing the bandwidth of the two waveforms.

1st graph is the RF output from the base transmitter


2nd graph is plot of the IF spectrum measured at the output of the correlator.

Gp=10 Log(BW defore de-correlation/BW after de-correlation)

Gp=10 Log(14.36/.373)


Gp=15.85 dB

Processing Gain Data (Base RF Out)

Title: 6 dB BW of Transm...
Pate: 13.AUG.1999 11:13:30 6 dB BW of Transmitted Signal (Base RF Out)

Processing Gain Data (Mobile IF)

Title: 6 dB BW of De-Correlated Signal (Mobile IF)

Date: 13.AUG.1999 10:59:59

Section 10. Test Equipment List

KTL ID	<u>Description</u>	<u>Manufacturer</u>	Serial Number	<u>Calibration</u>
		Model Number		<u>Date</u>
C24	CABLE, 14.8m	KTL	N/A	08/10/99
		RG223		
CF31	CABLE, 7.6m	KTL	N/A	01/29/99
		Semi-Flex, Storm		
CF34	CABLE, 12'	KTL	N/A	04/01/99
		Armored, Storm CABLE		
CF35	CABLE, 12'	KTL	N/A	04/01/99
		Armored, Storm CABLE		
934	HORN ANTENNA (18-26.5GHZ)	EMCO	9705-1079	08/13/97
		3160-09		
G2034	ANTENNA-HORN	ELECTRO METRICS	6174	06/28/99
		RGA-60		
G2200	AMPLIFIER	HEWLETT PACKARD	2749A00159	06/11/99
		8449A		
G2235	PRE-AMP, 18-40 GHz	KTL	1	11/23/99
		BB1		
G2408	RECEIVER (9 kHz-30 MHz)	ROHDE & SCHWARZ	860318/012	04/03/99
		ESH 3		
G2624	SPECTRUM ANALYZER	HP	3551A04428	11/03/99
		8563E		
G2626	SPECTRUM ANALYZER	HEWLETT PACKARD	2618A02843	04/21/99
		8566B		
Lab 1	Lab #1			CNR
	(Indoor)			
ANC1	Anechoic Chamber			CNR
	#1			

Calibration interball on all items is typically 12 months from the calibration date shown. Where relevant, measuring equipment is subjected to in-service checks between testing. Should any measurement equipment be utilized beyond its scheduled calibration date, the measuring equipment is subjected to in-service checks prior to use. KTL shall notify clients promplty, in writing, of identification of detective measuring equipment that casts doubt on the validity of results given in this report.

LEGEND:

CNR Calibration not required

N/A Not applicable

CBU Calibrated before use

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

ANNEX A - TEST METHODOLOGIES

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

PROJECT NO.: 9L0023RU

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

Minimum Standard: The R.F. that is conducted back onto the AC power line on any

frequency within the band 0.45 to 30 MHz shall not exceed $250\mu V$

(48 dBµV) across 50 ohms.

FCC PART 15, SUBPART C
DIRECT SEQUENCE TRANSMITTERS

PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier

FCC ID: KUWMDL2400BDR

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(2)

Minimum Standard: The minimum bandwidth shall be at least 500 kHz.

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: 100 kHz VBW: 100 kHz Span: >RBW LOG dB/div.: 2 dB Sweep: Auto

Tuning Range	Number Of Channels Tested	Channel Location In Band
1 MHz or Less	1	Middle
1 to 10 MHz	2	Top And Bottom
More Than 10 MHz	3	Top, Middle, Bottom

NAME OF TEST: Peak Power Output PARA. NO.: 15.247(b)

Minimum Standard:

The maximum peak power output shall not exceed 1 watt. If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 Mhz band that are used exclusively for fixed, ponit-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak outtput of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load.

Calculation Of EIRP For Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi$ $R^2=E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E =the maximum measured field strength in V/m

R =the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

The RBW of the spectrum analyzer shall be set to a value greater than the measured 6 dB occupied bandwidth of the E.U.T.

Tuning Range	Number Of Channels Tested	Channel Location In Band
1 MHz or Less	1	Middle
1 to 10 MHz	2	Top And Bottom
More Than 10 MHz	3	Top, Middle, Bottom

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier

FCC ID: KUWMDL2400BDR

NAME OF TEST: Spurious Emissions at Antenna Terminal PARA. NO.: 15.247(c)

Minimum Standard:

In any 100kHz bandwidth outside the 2400-2483.5 MHz bands emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (mV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

The spectrum was searched to the 10th harmonic.

Method Of Measurement:

Upper Band Edge Lower Band Edge

RBW: At least 1% of span/div. RBW: At least 1% of span/div.

VBW: >RBW VBW: >RBW

Span: As necessary to display any spurious at band edge. Span: As necessary to display any spurious at band edge.

Sweep: Auto Sweep: Auto

Center Frequency: 2483.5 MHz Center Frequency: 2400 MHz

Marker: Peak of fundamental emission Marker: Peak of fundamental emission Marker Δ: Peak of highest spurious level above 928 MHz Marker Δ: Peak of highest spurious level below 902 MHz

30 MHz - 10th Harmonic Plot

RBW: 100 kHz VBW: 300 kHz Sweep: Auto

Display line: -20 dBc

Tuning Range	Number Of Channels Tested	Channel Location In Band
1 MHz or Less	1	Middle
1 to 10 MHz	2	Top And Bottom
More Than 10 MHz	3	Top, Middle, Bottom

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier

FCC ID: KUWMDL2400BDR

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247(c)

Minimum Standard:

In any 100kHz bandwidth outside the 2400-2483.5 MHz bands emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. *Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:*

Frequency (MHz)	Field Strength (mV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

The spectrum was searched to the 10th harmonic.

15.205 Restricted Bands

MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

Tuning Range	Number Of Channels Tested	Channel Location In Band
1 MHz or Less	1	Middle
1 to 10 MHz	2	Top And Bottom
More Than 10 MHz	3	Top, Middle, Bottom

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier

FCC ID: KUWMDL2400BDR

NAME OF TEST: Transmitter Power Density PARA. NO.: 15.247(d)

Minimum Standard: The transmitted power density averaged over any 1 second

interval shall not be greater than +8 dBm in any 3 kHz bandwidth.

Method Of Measurement: The spectrum analyzer is set as follows:

RBW: 3 kHz VBW: >3 kHz

Span: => measured 6 dB bandwidth

Sweep: Span(kHz)/3 (i.e. for a span of 1.5 MHz the sweep rate is

1500/3 = 500 sec.LOG dB/div.: 2 dB

Note: For devices with spectrum line spacing =< 3 kHz, the RBW of the

analyzer is reduced until the spectral lines are resolved. The measurement data is normalized to 3 kHz by summing the power of all the individual spectral lines within a 3 kHz band in linear

power units.

For Devices With Integral Antenna:

For devices with non-detachable antennas, the received field strength is peaked and the spectrum analyzer is set as above. The peak emission level is then measured and converted to a field strength by adding the appropriate antenna factor and cable loss. This field strength is then converted to an equivalent isotropic radiated power using the same method as described for Peak Power output.

Tuning Range	Number Of Channels Tested	Channel Location In Band
1 MHz or Less	1	Middle
1 to 10 MHz	2	Top And Bottom
More Than 10 MHz	3	Top, Middle, Bottom

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier

FCC ID: KUWMDL2400BDR

NAME OF TEST: Processing Gain PARA. NO.: 15.247(e)

Minimum Standard: The processing gain shall be at least 10 dB.

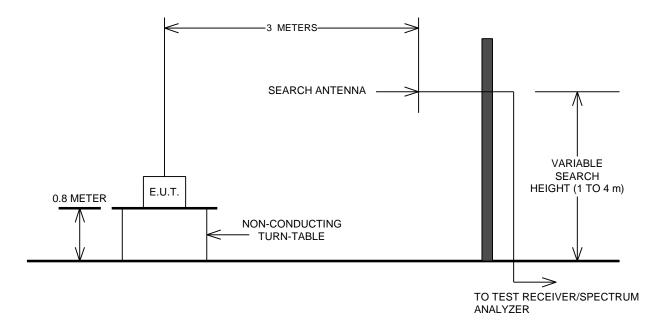
Method Of Measurement: A plot was taken of the spectrum of the transmitted rf signal and compared to a plot of the de-correlated IF waveform. The processing gain is equivalent to 10 Log (BW_1/BW_2) .

Calculation Of Processing Gain:

The processing gain was determined by the ratio of the bandwidth correlated waveform to the bandwidth of the de-correlated waveform as follows:

Gp=10 Log(BW defore de-correlation/BW after de-correlation)

Gp=10 Log(14.36/.373)


Gp=15.85 dB

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9L0023RUS

EQUIPMENT: 2400 Base Data Radio(P/N 385700-3000-001) and 4-Port Line Amplifier FCC ID: KUWMDL2400BDR

ANNEX B - BLOCK DIAGRAMS

Test Site For Radiated Emissions

Below 1 GHz

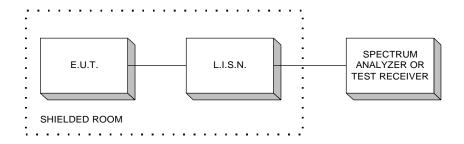
Peak detector. RBW = 100 kHz

Above 1 GHz For Peak Emission Levels

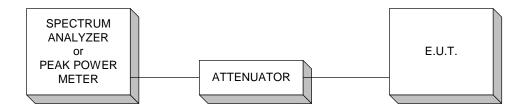
Peak detector

RBW = 1 MHz

VBW = >RBW

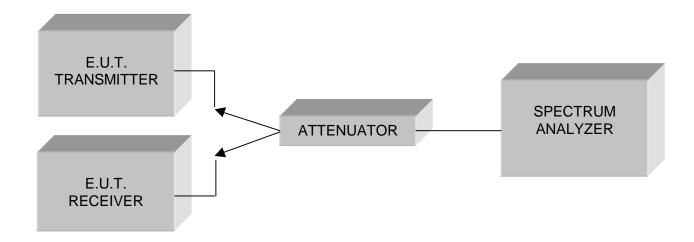

Above 1 GHz For Average Emission Levels

Peak detector


RBW = 1 MHz

VBW = 10 Hz

Conducted Emissions



Transmitter Power Density & Peak Power At Antenna Terminals

If the E.U.T. has an integral (non-detachable) antenna, the above test is performed as a radiated measurement and the result is reported as EIRP.

Processing Gain

