KTL Test Report:	0L0296RUS1
Applicant:	Andrew Corporation 2601 Telecom Parkway Richardson, Texas 75082-3521
Equipment Under Test:	InCell Fiber Optic Distributed Antenna System Model: InCell-800
FCC ID:	KUWINCELL800
In Accordance With:	FCC Part 22, Subpart H Cellular Band Repeaters
Tested By:	KTL Dallas Inc. 802 N. Kealy Lewisville, TX 75057-3136
Authorized By:	Ole 1. Figure 1
	Dale Reynolds, EMC Group Manager
Date:	12/6/00
Total Number of Pages:	56

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Table of Contents

SECTION 1. SUMMARY OF TEST RESULTS	3
SECTION 2. GENERAL EQUIPMENT SPECIFICATION	5
SECTION 3. RF POWER OUTPUT	7
SECTION 4. OCCUPIED BANDWIDTH	8
SECTION 5. SPURIOUS EMISSIONS AT ANTENNA TERMINALS	17
SECTION 6. FIELD STRENGTH OF SPURIOUS	36
SECTION 7. FREQUENCY STABILITY	39
SECTION 8. TEST EQUIPMENT LIST	40
ANNEX A - TEST DETAILS	41
ANNEX B - TEST DIAGRAMS	50

FCC PART 22, SUBPART H CELLULAR BAND REPEATERS

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Section 1. Summary of Test Results

Manufacturer: Andrew Corporation

Model No.: InCell-800

Serial No.: CDU S/N. P001, RAU S/N. P001

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 22, Subpart H.

New Submission	Production Unit
Class II Permissive Change	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

NVLAP

NVLAP LAB CODE: 100426-0

KTL Dallas Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. KTL Dallas Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

FCC PART 22, SUBPART H CELLULAR BAND REPEATERS

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Summary Of Test Data

NAME OF TEST	PARA. NO.	SPEC.	RESULT
RF Power Output	22.913(a)	500W ERP	Complies
Occupied Bandwidth (Voice & SAT)	22.917(c)	Mask	Complies
Occupies Bandwidth (Wideband Data)	22.917(d)	Mask	Complies
Occupied Bandwidth (ST)	22.917(d)	Mask	Complies
Occupied Bandwidth (Digital)	None	None	Complies
Spurious Emissions at Antenna Terminals	22.917	-13 dBm	Complies
Field Strength of Spurious Emissions	22.917	-13 dBm E.I.R.P.	Complies
Frequency Stability	22.355	1.5 ppm	Not Applicable

Footnotes:

1. The E.U.T. does not perform frequency conversion. The frequency stability of the transmitted signal is entirely dependant on the frequency stability of the rf input signal.

Measurement uncertainty for each test configuration is expressed to 95% probability.

_

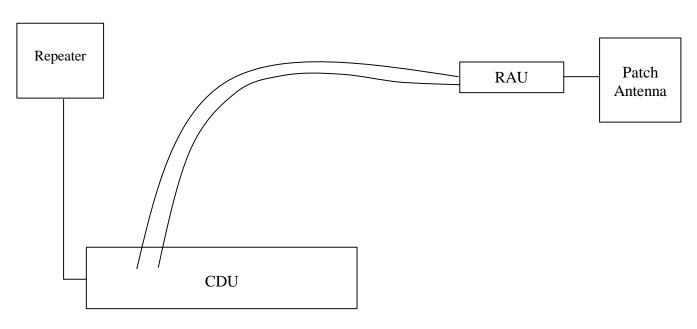
FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Section 2. General Equipment Specification

Supply Voltage Input(CDU): Supply Voltage Input(RAU):	120 VAC via powe 24 VDC from CDU		
Frequency Range Uplink:	869 – 894 MHz 824 – 849 MHz (D fiber optic and coax		
Type of Modulation and Designator:	CDMA (F9W)	NADC (DXW)	AMPS (F8W, F1D)
Output Impedance:	50 ohms		
Max. Input Power (before damage):	+20 dBm		
Max. Input Power:	+0 dBm		
Downlink: RF Output (Rated):	Voice 15 dBm, 2 carriers 12 dBm, 4 carriers 9 dBm, 8 carriers	NADC 15 dBm, 2 carriers 12 dBm, 4 carriers 9 dBm, 8 carriers	CDMA 10 dBm, 1 carrier 4 dBm, 2 carriers
Frequency Translation:	F1-F1	F1-F2	N/A
Band Selection:	Software	Duplexer Change	Fullband Coverage

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Description of Operation


The DUT (Device Under Test) is a distributed antenna system designed to extend rf coverage into buildings and hard to penetrate indoor areas that experience rf coverage problems.

This system is made up of two components:

- 1) CDU (Central Distribution Unit) This unit is typically located in a wiring closet. Each CDU can interface to six RAU (Remote Antenna Units). The CDU collects and distributes voice and data signals through fiber cable pairs. The CDU connects to the output of a repeater unit. The Uplink direction is a directly wired connection and cannot connect directly to an antenna. The transmit signals from the repeater are converted from rf to optical and distributed via the fiber cables to a RAU.
- 2) RAU (Remote Antenna Unit) This unit converts the signal received from the CDU back to rf and transmits the rf to subscriber units within its coverage range. Conversely it receives the rf signals transmitted by the subscriber units, converts the rf to an optical signal and sends it to the CDU via fiber.

The overall rf gain of the system in the downlink direction is nominally 15 dB.

System Diagram

KTL Dallas

FCC PART 22, SUBPART H CELLULAR BAND REPEATERS

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Section 3. RF Power Output

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

TESTED BY: Tom Tidwell DATE: 10/24/00

Test Results: Complies.

Test Data:

	Modulation Type	Per Channel Power Output (dBm)	Composite Power Output (dBm)
Uplink	AMPS	N/A	N/A
Downlink	AMPS	+120	+15.0
Uplink	CDMA	N/A	N/A
Downlink	CDMA	+10 single or +1.0 w/ 2 carriers	+10 single, +4 w 2 carriers
Uplink	NADC	N/A	N/A
Downlink	NADC	+11.9	+14.9

Equipment Used: 1464, 1477, 1081, 1083

Measurement Uncertainty: +/- 0.6 dB

Temperature: 27 °C

Relative 43 %

Humidity:

FCC PART 22, SUBPART H CELLULAR BAND REPEATERS

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

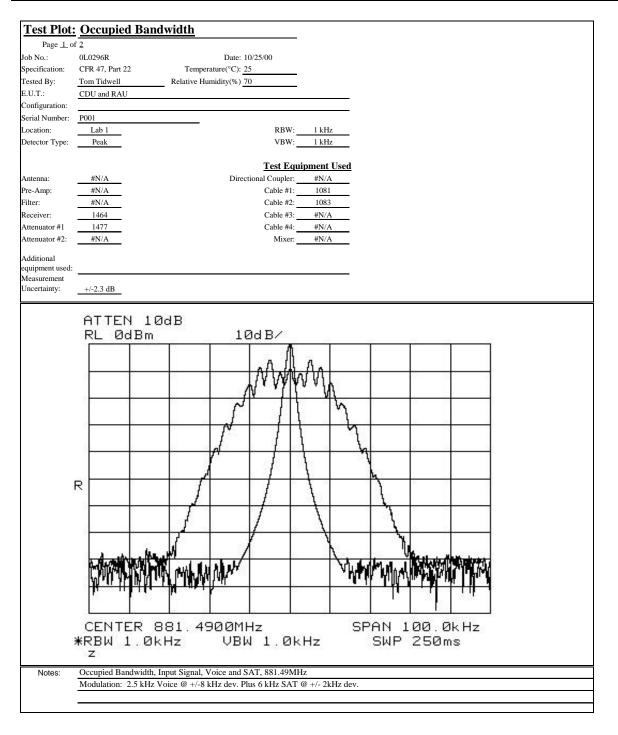
FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Section 4. Occupied Bandwidth

NAME OF TEST: Occupied Bandwidth (Digital Mod.) PARA. NO.: 2.1049

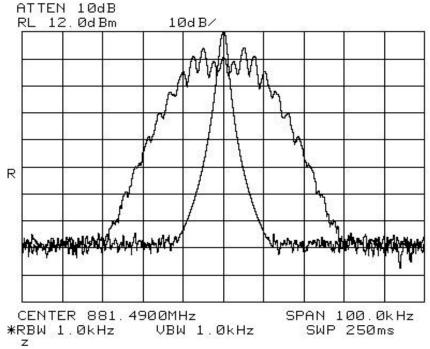
TESTED BY: Tom Tidwell DATE: 10/25/00

Test Results: Complies.

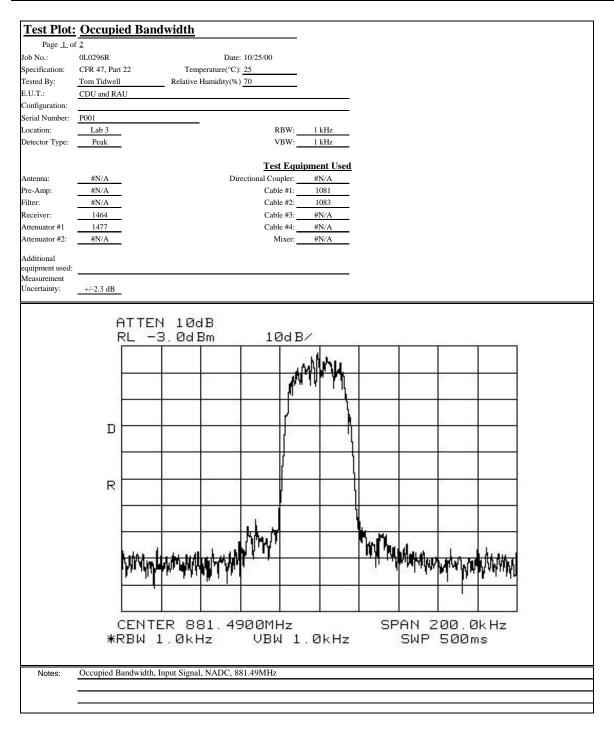

Test Data: See attached plots

Measurement Uncertainty: +/- 2.3 dB

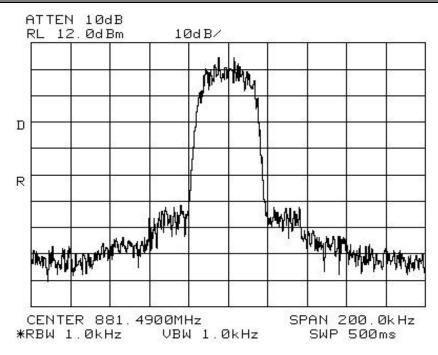
Temperature: 25 °C


Relative 70 %

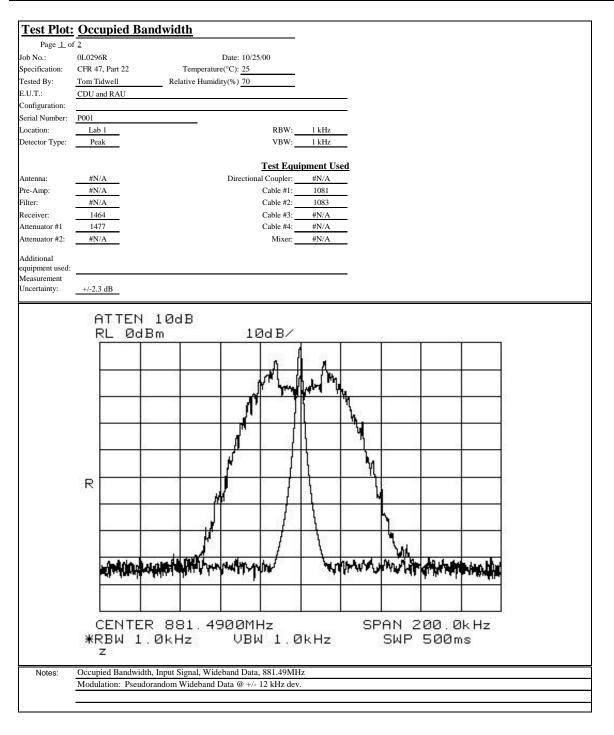
Humidity:


FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

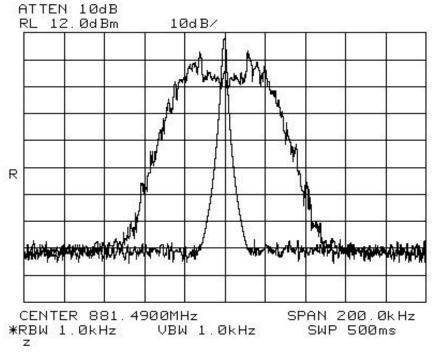
Test Plot:	Occupied Ba	ndwidth
Page <u>2</u> of	f 2	
Job No.:	0L0296R	Date: 10/25/00
Specification:	CFR 47, Part 22	Temperature(°C): 25
Tested By:	Tom Tidwell	Relative Humidity(%) 70
E.U.T.:	CDU and RAU	
Configuration:		



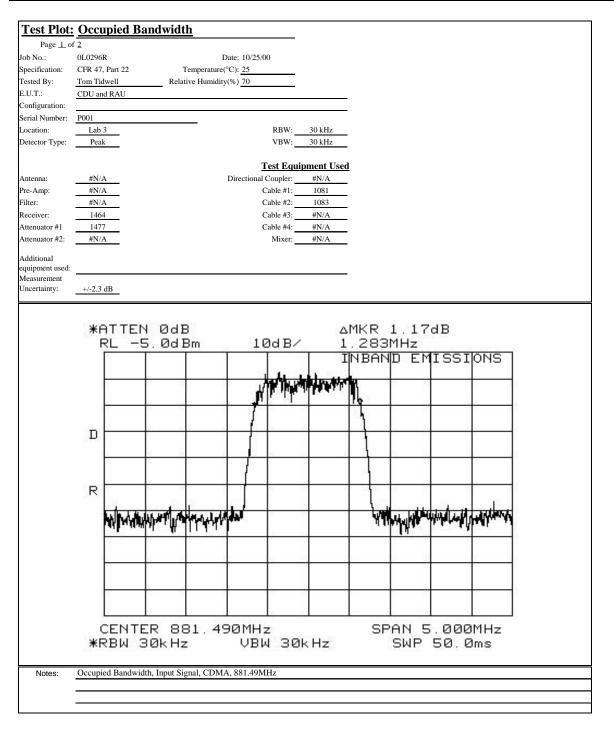
Notes: Occupied Bandwidth, Output Signal, Voice and SAT, 881.49MHz


Modulation: 2.5 kHz Voice @ +/-8 kHz dev. Plus 6 kHz SAT @ +/- 2kHz dev.

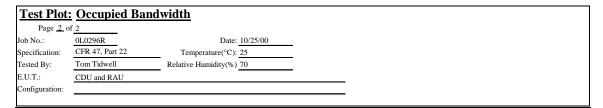
Test Plot :	Occupied Bar	ndwidth_
Page <u>2</u> o	f 2	
Job No.:	0L0296R	Date: 10/25/00
Specification:	CFR 47, Part 22	Temperature(°C): 25
Tested By:	Tom Tidwell	Relative Humidity(%) 70
E.U.T.:	CDU and RAU	
Configuration:		

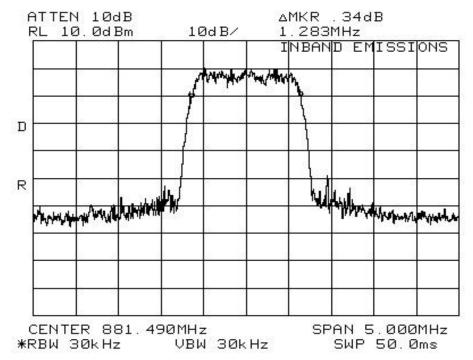


Notes:	Occupied Bandwidth, Output Signal, NADC, 881.49MHz


FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Test Plot :	Occupied Bar	<u>ndwidth</u>
Page <u>2</u> o	ıf <u>2</u>	
Job No.:	0L0296R	Date: 10/25/00
Specification:	CFR 47, Part 22	Temperature(°C): 25
Tested By:	Tom Tidwell	Relative Humidity(%) 70
E.U.T.:	CDU and RAU	
Configuration:		




Notes: Occupied Bandwidth, Output Signal, Wideband Data, 881.49MHz

Modulation: Pseudorandom Wideband Data @ +/- 12 kHz dev.

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Notes: Occupied Bandwidth, Output Signal, CDMA, 881.49MHz

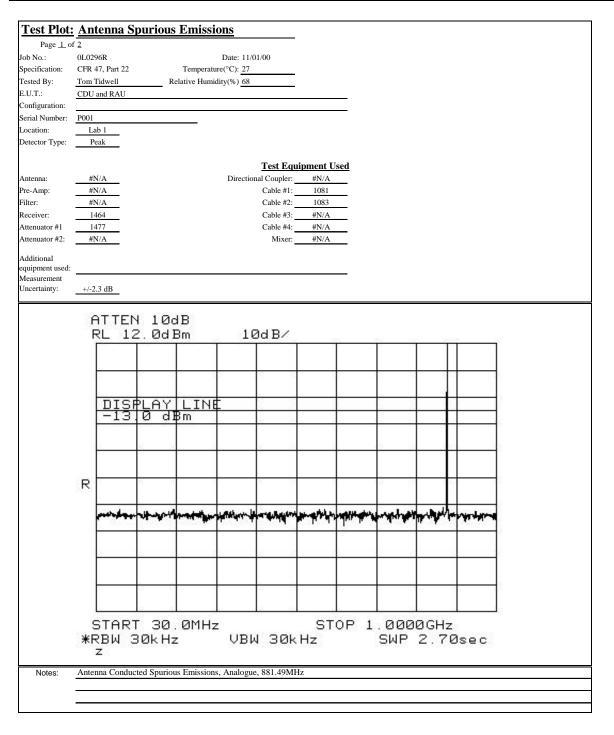
FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Section 5. Spurious Emissions at Antenna Terminals

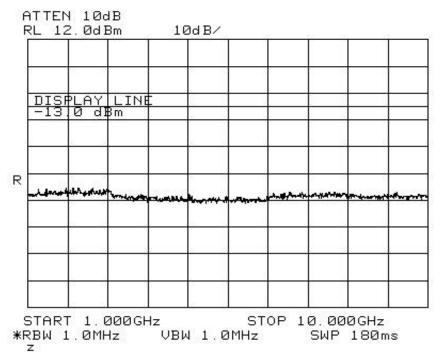
NAME OF TEST: Spurious Emissions @ Antenna Terminals PARA. NO.: 2.1051

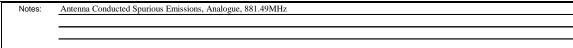
TESTED BY: Tom Tidwell DATE: 11/01/00

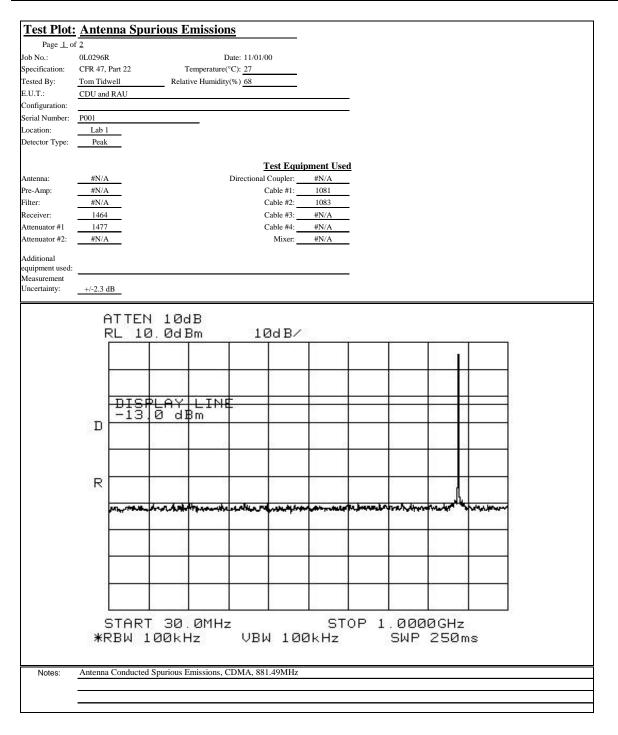
Test Results: Complies.

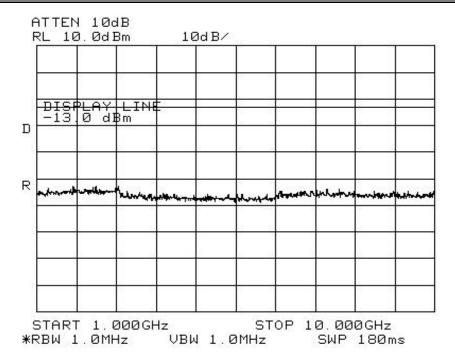

Test Data: See attached plots

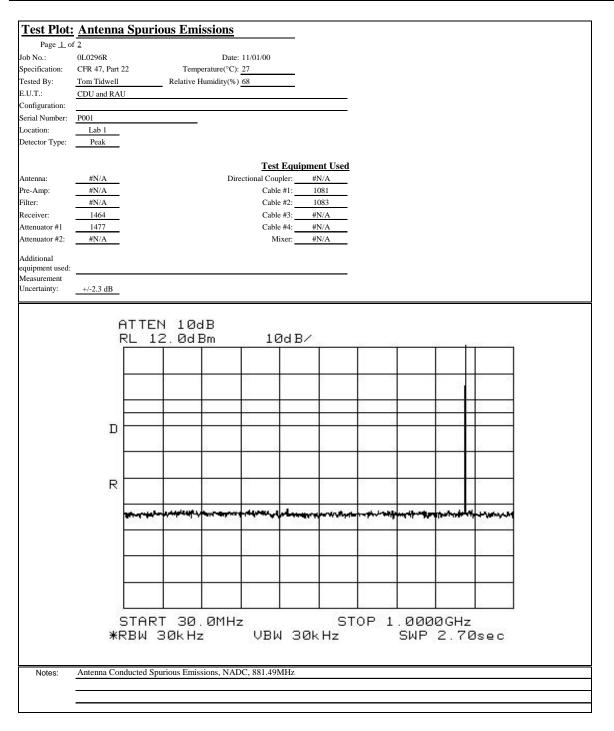
Measurement Uncertainty: +/- 1.6 dB

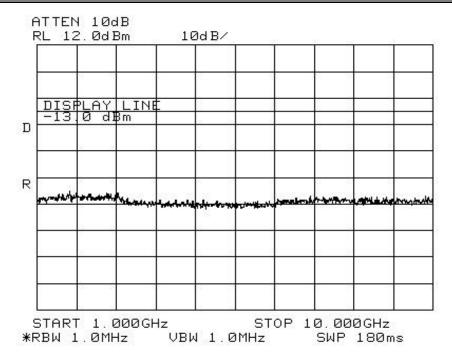

Temperature: 27 °C

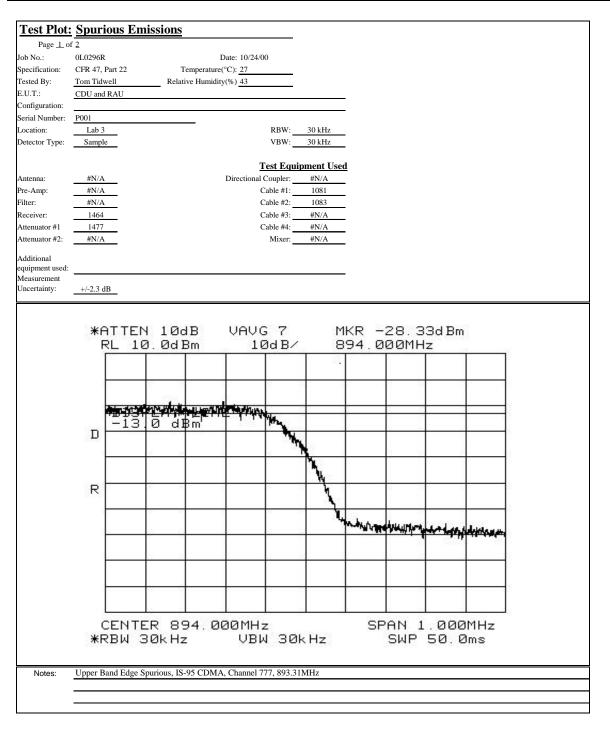

Relative 68 %

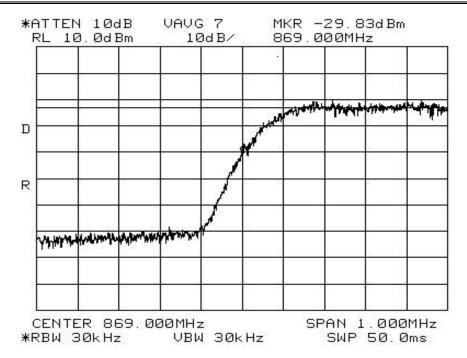

Humidity:

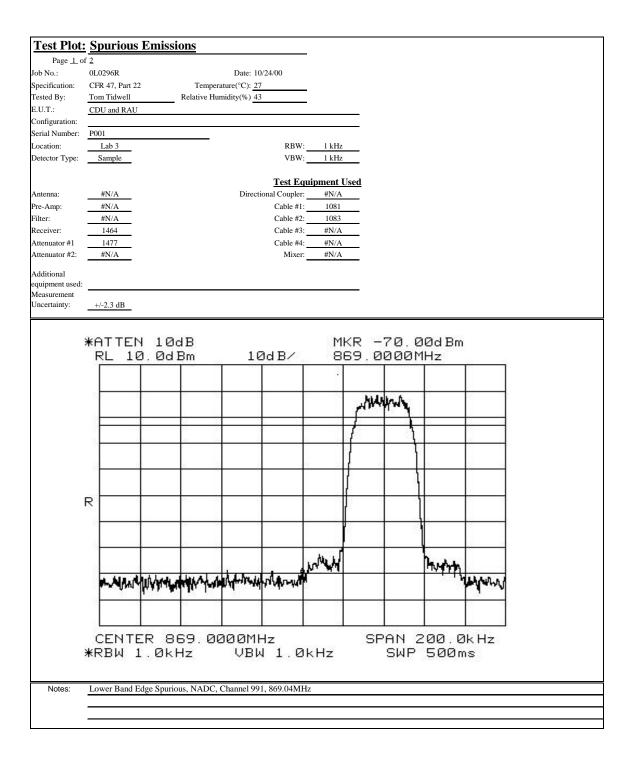

Test Plot:	Antenna Spu	rious Emissions
Page 2 or	f 2	
Job No.:	0L0296R	Date: 11/1/00
Specification:	CFR 47, Part 22	Temperature(°C): 27
Tested By:	Tom Tidwell	Relative Humidity(%) 68
E.U.T.:	CDU and RAU	
Configuration:		
		·

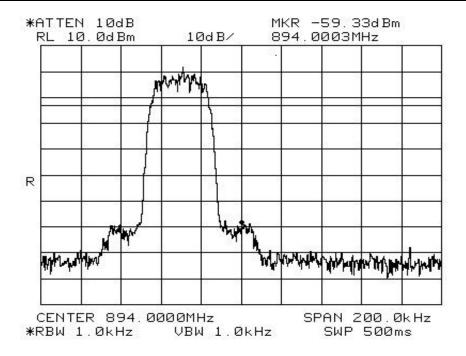


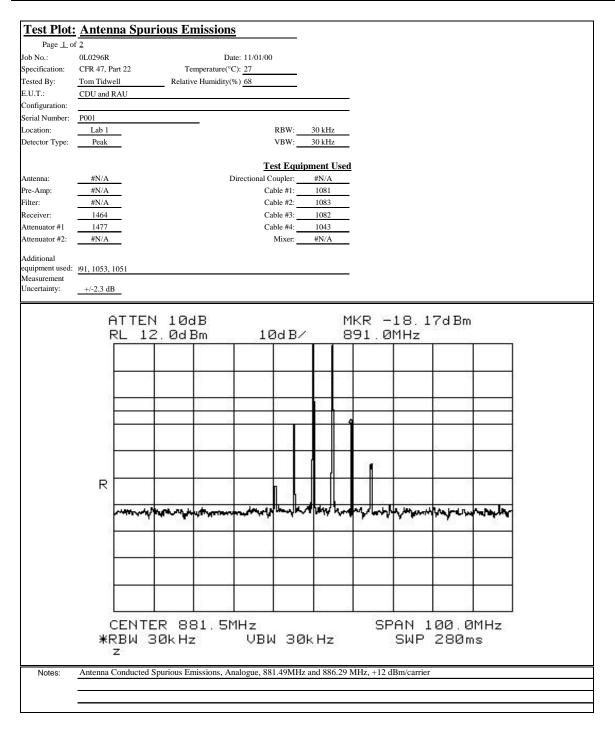

Test Plot:	Antenna Spu	rious Emissions
Page 2 or	f 2	
Job No.:	0L0296R	Date: 11/1/00
Specification:	CFR 47, Part 22	Temperature(°C): 27
Tested By:	Tom Tidwell	Relative Humidity(%) 68
E.U.T.:	CDU and RAU	
Configuration:		
		·

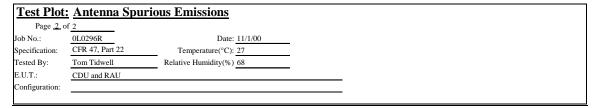

Notes:	Antenna Conducted Spurious Emissions, CDMA, 881.49MHz

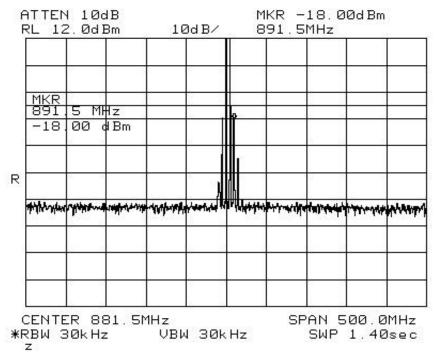

Test Plot: Antenna Spurious Emissions			
Page 2 o	f 2		
Job No.:	0L0296R	Date: 11/1/00	
Specification:	CFR 47, Part 22	Temperature(°C): 27	
Tested By:	Tom Tidwell	Relative Humidity(%) 68	
E.U.T.:	CDU and RAU		
Configuration:			


Notes:	Antenna Conducted Spurious Emissions, NADC, 881.49MHz

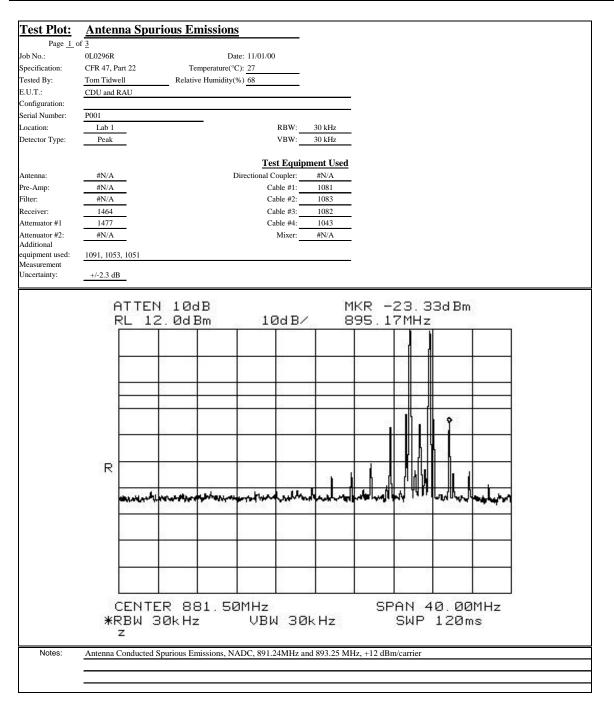

Test Plot :	Spurious Em	<u>issions</u>
Page <u>2</u> o	ıf <u>2</u>	
Job No.:	0L0296R	Date: 10/24/00
Specification:	CFR 47, Part 22	Temperature(°C): 1/27/00
Tested By:	Tom Tidwell	Relative Humidity(%) 2/12/00
E.U.T.:	CDU and RAU	
Configuration:		
	,	


Notes:	Lower Band Edge Spurious, IS-95 CDMA, Channel 1013, 869.7MHz

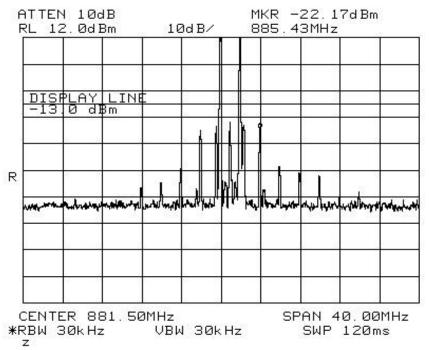

Test Plot: Spurious Emissions			
Page 2 o	of 2		
Job No.:	0L0296R	Date: 10/24/00	
Specification:	CFR 47, Part 22	Temperature(°C): 1/27/00	
Tested By:	Tom Tidwell	Relative Humidity(%) 2/12/00	
E.U.T.:	CDU and RAU		
Configuration:			

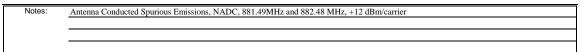


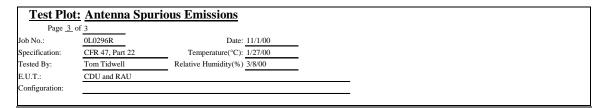
Notes:	Upper Band Edge Spurious, NADC, Channel 799, 893.97MHz			

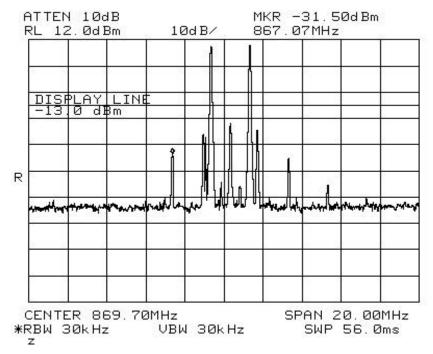


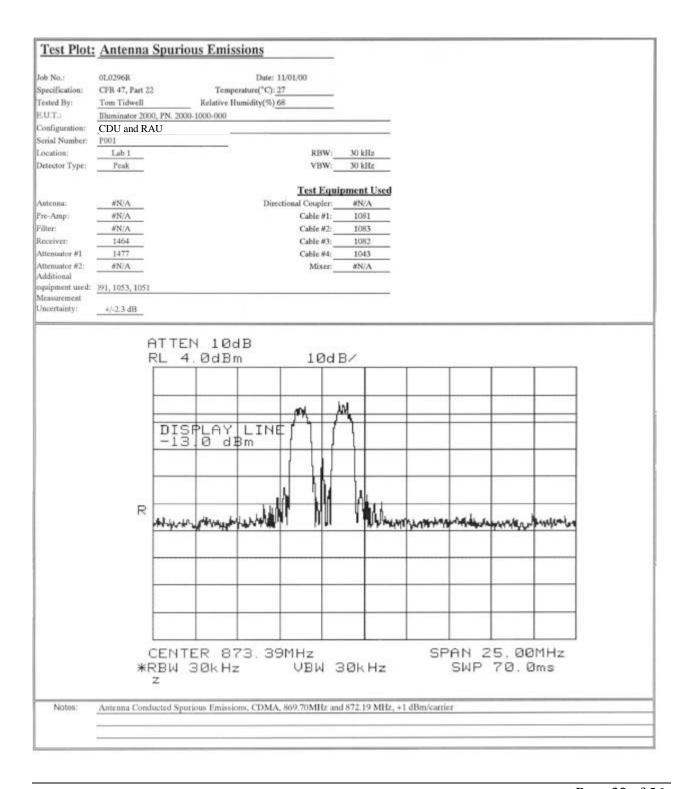
FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

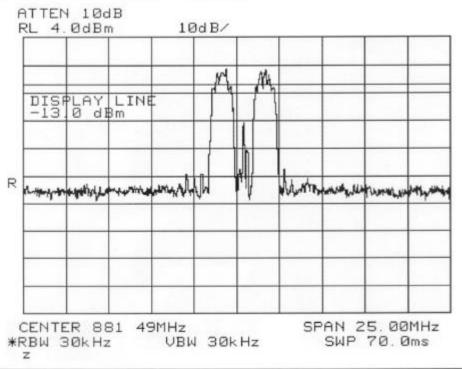


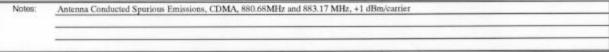



Notes: Antenna Conducted Spurious Emissions, Analogue, 881.49MHz and 886.29 MHz, +12 dBm/carrier

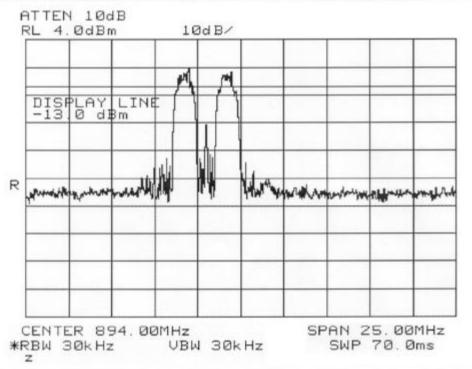


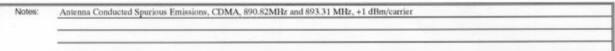






Notes:	Antenna Conducted Spurious Emissions, NADC, 869.04MHz and 871.05 MHz, +12 dBm/carrier





FCC PART 22, SUBPART H CELLULAR BAND REPEATERS

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Section 6. Field Strength of Spurious

NAME OF TEST: Field Strength of Spurious PARA. NO.: 2.1053

TESTED BY: David Light DATE: 11/2/00

Test Results: Complies. There were no emissions detected. The noise floor

was -45 dBm e.i.r.p.

Test Data: See attached table.

Measurement Uncertainty: +/- 3.6 dB

Temperature: 22 °C

Relative 50 %

Humidity:

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

		Field Strength of	Spurious	Emissions	
Page 1 of	f <u>1</u>			Complete _	X
Job No.:	0L0296R	Date: 11/2/00		Preliminary	
Specification:		Temperature(°C): 22			
Tested By:	David Light	Relative Humidity(%) 50			
E.U.T.:	CDU and RAU				
Configuration:	TRANSMIT CW	SIGNAL @881.49 MHz, +15 dBm		Peak rf power output(dBm):	15
Sample Number:					
Location:	AC 3	RBW:	1 MHz	Measurement	
Detector Type:	Peak	VBW:	300 kHz	Distance	3
		<u>Test Equ</u>	<u>ipment Used</u>		
Antenna:	993	Directional Coupler:	#N/A		
Pre-Amp:	1016	Cable #1:	1485		
Filter:	#N/A	Cable #2:	1484		
Receiver:	1464	Cable #3:	#N/A		
Attenuator #1	#N/A	Cable #4:	#N/A		
Attenuator #2:	#N/A	Mixer:	#N/A		
Additional					
equipment used:					
Measurement					
Uncertainty:	+/-3.4 dB				

Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)	Corrected Reading (dBuV/m)	EIRP (W)	EIRP (dBm)	dBc	Polarity	Comments
1.763	50.3	26.7	2.7	31.7	48	0.00	-47.23	-62.23	Н	
2.644	45.8	29.2	3.5	32.5	46	0.00	-49.23	-64.23	Н	NOISE FLOOR
3.526	46	30	3.5	31.9	48	0.00	-47.63	-62.63	Н	NOISE FLOOR
4.407	41.3	31.9	4.1	31.3	46	0.00	-49.23	-64.23	Н	NOISE FLOOR
5.289	38.8	33.7	4.5	28.9	48	0.00	-47.13	-62.13	Н	NOISE FLOOR
6.17	38.5	34.7	4.9	31.6	47	0.00	-48.73	-63.73	Н	NOISE FLOOR
7.052	38.8	35.7	5	33.4	46	0.00	-49.13	-64.13	Н	NOISE FLOOR
7.933	40	37.6	5.7	33.1	50	0.00	-45.03	-60.03	Н	NOISE FLOOR
8.815	39.2	36.9	5.5	33.2	48	0.00	-46.83	-61.83	Н	NOISE FLOOR
1.763	47.7	26.7	2.7	31.7	45	0.00	-49.83	-64.83	V	
2.644	45.8	29.2	3.5	32.5	46	0.00	-49.23	-64.23	V	NOISE FLOOR
3.526	46	30	3.5	31.9	48	0.00	-47.63	-62.63	V	NOISE FLOOR
4.407	41.3	31.9	4.1	31.3	46	0.00	-49.23	-64.23	V	NOISE FLOOR
5.289	38.8	33.7	4.5	28.9	48	0.00	-47.13	-62.13	V	NOISE FLOOR
6.17	38.50	34.70	4.90	31.60	46.50	0.00	-48.73	-63.73	V	NOISE FLOOR
7.052	38.8	35.7	5	33.4	46	0.00	-49.13	-64.13	V	NOISE FLOOR
7.933	40	37.6	5.7	33.1	50	0.00	-45.03	-60.03	V	NOISE FLOOR
8.815	39.2	36.9	5.5	33.2	48	0.00	-46.83	-61.83	V	NOISE FLOOR
Notes:	SCANNEI	D EUT TO	 THE 10T	H HARMO!	NIC					<u> </u>

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Test Setup Photos

KTL Dallas

FCC PART 22, SUBPART H CELLULAR BAND REPEATERS

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Section 7. **Frequency Stability**

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

TESTED BY: DATE:

Test Results: Complies.

Test Data:

de Politique de la constant de la co MHz

Equipment Used:

Measurement Uncertainty: +/- 1 x 10⁻⁷ ppm

Temperature: °C

Relative %

Humidity:

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Section 8. Test Equipment List

KTL ID	Description	Manufacturer	Serial Number	Calibration
		Model Number		Date
993	Horn antenna	A.H. Systems SAS-200/571	XXX	07/16/99 2 yr. cycle
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	11/03/99 2 yr. cycle
1485	Cable 2.0-18.0 GHz	Storm PR90-010-216	N/A	05/25/00
1484	Cable 2.0-18.0 GHz	Storm PR90-010-072	N/A	05/25/00
1477	20db Attenuator DC 18 GHz	MCL Inc. BW-S20W5	NONE	CBU
1081	CABLE 2m	Astrolab 32027-2-29094-72TC	N/A	05/23/00
1083	Cable 2m	Astrolab 32027-2-29094-72TC	N/A	05/23/00
1091	COMBINER	MINI-CIRCUITS ZA3PD-1.5	NONE	CBU
1053	SIGNAL GENERATOR	ROHDE & SCHWARZ SMIQ 03	DE22081	04/27/00
1051	Communication Analyzer	Rhode & Schwarz CMTA-54	835875/002	03/14/00

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

ANNEX A - TEST DETAILS

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

Minimum Standard: Para. No. 22.913(a). The maximum effective radiated power (ERP)

of base transmitters and cellular repeaters must not exceed 500

watts.

Method Of Measurement:

Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter. Power output is measured with the maximum rated input level.

Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi$ $R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E = the maximum measured field strength in V/m

R =the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

NAME OF TEST: Occupied Bandwidth (Voice & SAT) PARA. NO.: 2.1049

Minimum Standard: 22.917(c) The mean power of any emission removed from the

carrier frequency by a displacement frequency (f_d in kHz) must be attenuated below the mean power of the unmodulated carrier (P) as

follows:

(i) On any frequency removed from the carrier frequency by more than 12 kHz but not more than 20 kHz:

at least 117 $\log (f_d/12)$

(ii) On any frequency removed from the carrier frequency by more than 20 kHz, up to the first multiple of the carrier frequency:

at least $100 \log (f_d/11) dB$ or $43 + 10 \log (P) dB$, whichever is the lesser attenuation.

Method Of Measurement:

Spectrum Analyzer Settings:

RBW: 300 Hz VBW: ≥ RBW Span: 100 kHz Sweep: Auto

Input Signal Characteristics (F3E/F3D):

RF level: Maximum recommended by manufacturer

AF1 frequency: 6 kHz

AF1 level: sufficient to produce 2 kHz deviation

AF2 frequency: 2.5 kHz

AF2 level: sufficient to produce 12 kHz deviation.

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

NAME OF TEST: Occupied Bandwidth (WB Data) PARA. NO.: 2.1049

Minimum Standard: 22.917(c) The mean power of any emission removed from the

carrier frequency by a displacement frequency (f_d in kHz) must be attenuated below the mean power of the unmodulated carrier (P) as

follows:

(1) On any frequency removed from the carrier frequency by more than 20 kHz but not more than 45 kHz:

at least 26 dB

(2) On any frequency removed from the carrier frequency by more than 45 kHz but not more than 90 kHz:

at least 45 dB

(3) On any frequency removed from the carrier frequency by more than 90 kHz, up to the first multiple of the carrier frequency:

at least 60 dB or 43 + 10 log (P) dB, whichever is the lesser attenuation.

Method Of Measurement:

Spectrum Analyzer Settings:

RBW: 300 Hz VBW: ≥ RBW Span: 200 kHz Sweep: Auto

Input Signal Characteristics:

RF level: Maximum recommended by manufacturer AF1 frequency: 10 kHz, random bit sequence AF1 level: sufficient to produce 8 kHz deviation

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

NAME OF TEST: Occupied Bandwidth (ST)

PARA. NO.: 2.1049

Minimum Standard: 22.917(c) The mean power of any emission removed from the

carrier frequency by a displacement frequency (f_d in kHz) must be attenuated below the mean power of the unmodulated carrier (P) as

follows:

(1) On any frequency removed from the carrier frequency by more than 20 kHz but not more than 45 kHz:

at least 26 dB

(2) On any frequency removed from the carrier frequency by more than 45 kHz but not more than 90 kHz:

at least 45 dB

(3) On any frequency removed from the carrier frequency by more than 90 kHz, up to the first multiple of the carrier frequency:

at least 60 dB or 43 + 10 log (P) dB, whichever is the lesser attenuation.

Method Of Measurement:

Spectrum Analyzer Settings:

RBW: 300 Hz VBW: ≥ RBW Span: 200 kHz Sweep: Auto

Input Signal Characteristics:

RF level: Maximum recommended by manufacturer

AF1 frequency: 10 kHz tone

AF1 level: sufficient to produce 8 kHz deviation

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

NAME OF TEST: Occupied Bandwidth (Digital Modulation) PARA. NO.: 2.1049

Minimum Standard: Not defined by FCC. Input vs. Output.

Method Of Measurement:

Spectrum Analyzer Settings:

RBW: CDMA (30 kHz), GSM (30 kHz), NADC (1 kHz) and CDPD (1 kHz)

VBW: ≥ RBW Span: As required Sweep: Auto

Input Signal Characteristics:

RF level: Maximum recommended by manufacturer

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

NAME OF TEST: Spurious Emission at Antenna Terminals PARA. NO.: 2.1051

Minimum Standard: Para. No. 22.917(e). The mean power of emissions must be

attenuated below the mean power of the unmodulated carrier on any frequency twice or more than twice the fundamental emission by at least $43 + 10 \log P$. This is equivalent to -13 dBm absolute

power.

Method Of Measurement:

Spectrum Analyzer Settings:

RBW: 30 kHz (AMPS). As required for digital modulations.

VBW: ≥ RBW

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 2.1053

Minimum Standard: Para. No. 22.917(e). The mean power of emissions must be

attenuated below the mean power of the unmodulated carrier on any frequency twice or more than twice the fundamental emission by at least $43 + 10 \log P$. This is equivalent to -13 dBm absolute

power.

Calculation Of Field Strength Limit:

An example of attenuation requirement of 43 + 10 Log P is equivalent to -13 dBm (5 x 10^{-5} Watts) at the antenna terminal. We determine the field strength limit by using the plane wave relation.

$$GP/4\pi R^2 = E^2/120\pi$$

For emissions ≤ 1 GHz:

G = 1.64 (Dipole Gain)

 $P = 10^{-5}$ Watts (Maximum spurious output power)

R = 3m (Measurement Distance)

$$E = \frac{\sqrt{30GP}}{R}$$

$$E = \frac{\sqrt{30 \times 1.64 \times 5 \times 10^{-5}}}{3} = 0.016533 \text{ V/m} = 84.4 \text{ dB} \text{mV/m}$$

For emissions > 1 GHz:

G = 1 (Isotropic Gain)

P = 1 x 10⁻⁵ Watts (Maximum spurious output power)

R = 3m (Measurement Distance)

$$E = 84.4 - 20 Log \sqrt{1.64} = 82.3 dB \, mV / m@3m$$

The spectrum is searched to 10 GHz.

EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

Minimum Standard: Para. No. 22.355. The transmitter carrier frequency shall remain

within the tolerances given in Table C-1.

Table C-1

Freq. Range (MHz)	Base, fixed	Mobile > 3 W	Mobile £3 W
821 to 896	1.5	2.5	2.5

Method Of Measurement:

Frequency Stability With Voltage Variation:

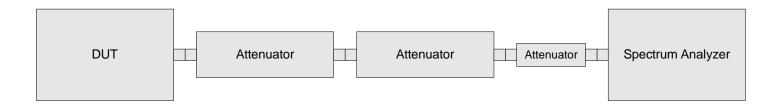
The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. The frequency counter and signal generator are phase locked with the same 10 MHz reference frequency by connecting the 10 MHz ref. out of the counter to the 10 MHz ref, in of the signal generator. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

Frequency Stability With Temperature Variation:

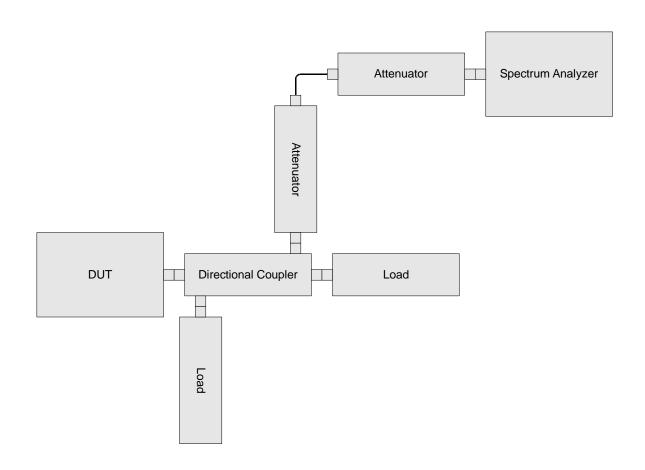
The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

KTL Dallas

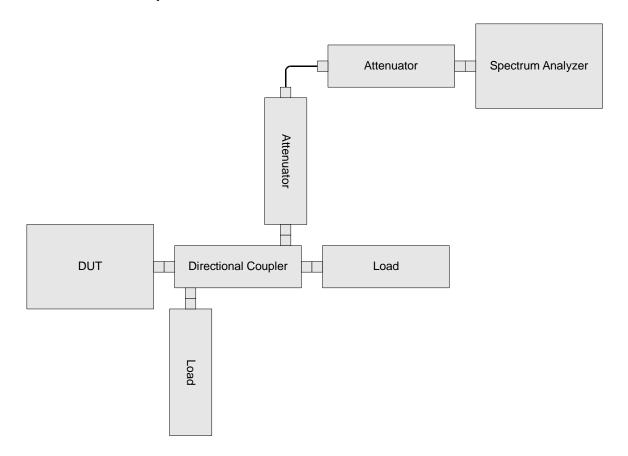
FCC PART 22, SUBPART H CELLULAR BAND REPEATERS


EQUIPMENT: InCell-800 Fiber Optic Distributed Antenna System

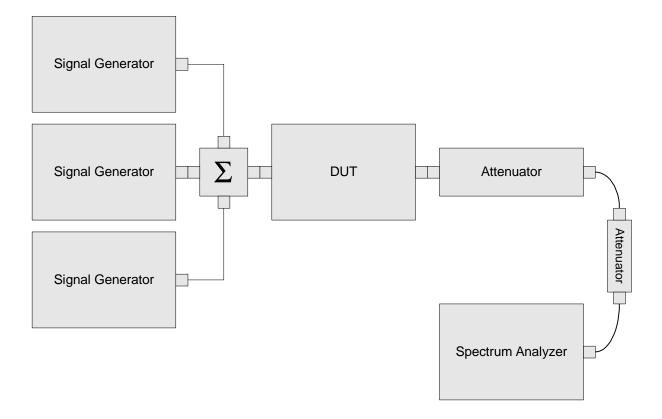
FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1


ANNEX B - TEST DIAGRAMS

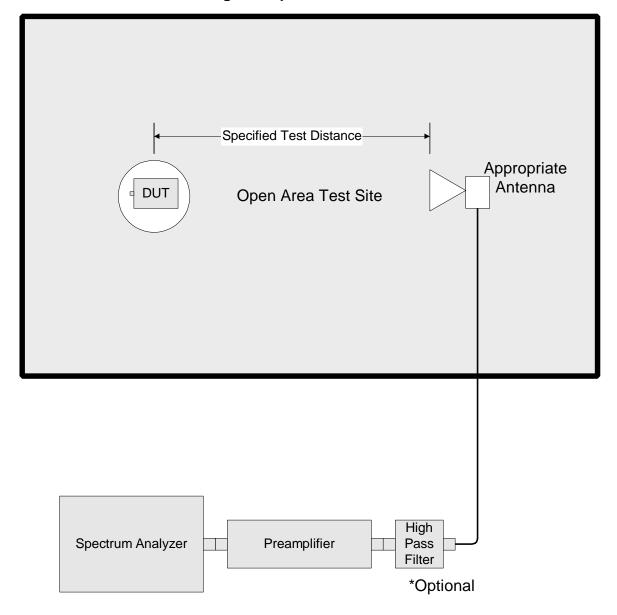
Page 50 of 56

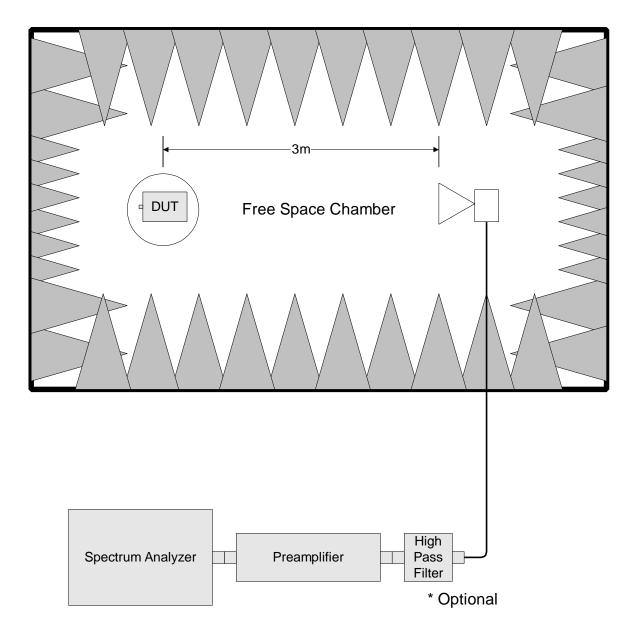

Para. No. 2.1046 - R.F. Power Output

Para. No. 2.1049 - Occupied Bandwidth

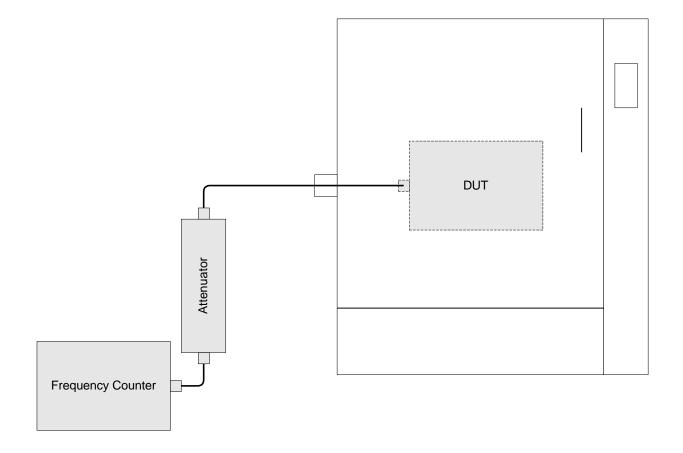


Para. No. 2.1051 Spurious Emissions at Antenna Terminals




FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Intermodulation Spurious Emissions


Para. No. 2.1053 - Field Strength of Spurious Radiation

FCC ID: **KUWINCELL800** PROJECT NO.: 0L0296RUS1

Para. No. 2.1055 - Frequency Stability

