Nemko Test Report:	4L0489RUS1rev1
Applicant:	Andrew Corporation.
Equipment Under Test: (E.U.T.)	385700-5000-001 to -004
In Accordance With:	FCC Part 15, Subpart C, 15.247 Digital Transmission System Transmitter
Tested By:	Nemko Dallas Inc. 802 N. Kealy Lewisville, Texas 75057-3136
Authorized By:	Tom Tidwell, Frontline Manager
Date:	15 September, 2005

Table of Contents

Section 1.	Summary of Test Results	3
Section 2.	Equipment Under Test (E.U.T.)	5
Section 3.	Powerline Conducted Emissions	6
Section 4.	Occupied Bandwidth	12
Section 5.	Maximum Peak Output Power	16
Section 6	Spurious Emissions at Antenna Terminals	20
Section 7.	Radiated Emissions	25
Section 8.	Peak Power Spectral Density	29
Section 9.	Test Equipment List	33
ANNEX A -	TEST DETAILS	34
ANNEX B -	TEST DIAGRAMS	45

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

Section 1. Summary of Test Results

Manufacturer: Andrew Corporation

Model No.: 385700-5000-001 to -004

Serial No.: None

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 for Direct Sequence Spread Spectrum devices. Radiated tests were conducted is accordance with ANSI C63.4-2003. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC.

\boxtimes	New Submission	Production Unit
	Class II Permissive Change	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE. NONE See "Summary of Test Data".

NVLAP LAB CODE: 100426-0

Nemko Dallas Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Dallas Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

Summary Of Test Data

NAME OF TEST	PARA. NO.	RESULT
Powerline Conducted Emissions	15.207(a)	Complies
Minimum 6 dB Bandwidth	15.247(a)(2)	Complies
Maximum Peak Power Output	15.247(b)(1)	Complies
Spurious Emissions (Antenna Conducted)	15.247(c)	Complies
Spurious Emissions (Restricted Bands)	15.247(c)	Complies
Peak Power Spectral Density	15.247(d)	Complies

Footnotes:

Page 4 of 47

EQUIPMENT: 385700-5000-001 to -004

TEST REPORT NO.:4L0489RUS1rev1

Section 2. Equipment Under Test (E.U.T.)

General Equipment Information

Frequency Band: 2448 to 2472 MHz

Channel Spacing: 5 MHz

User Frequency Adjustment: Software controlled

Detachable antenna: Yes. The radio is professionally installed.

Page 5 of 47

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

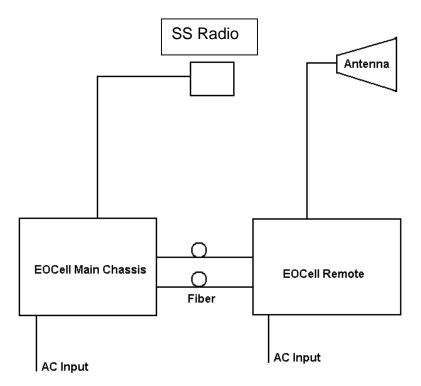
Description of EUT

Provide optical signal routing.

The 385700-5000-001 to -004 system consists of the Andrew EOCell Remote model number 385700-5000, the Andrew EOCell Master model number 385700-6000 the Invensys Safetran Spread Spectrum Radio model number ATC-24027 and Andrew Radiax antenna p/n(s) RCT6-S-1A-AX, RCT6-S-1A-RN, RCT6-S-1A-RNT1 or RCT6-S-1A-RNT or 12 dBi gain horn.

The horn antenna is for point to point operation.

The electrical characteristics are equal on all antennas. The differences are listed below.


- (1) RCT6-S-1A-AX --> 1-1/4" Tuned Foil RADIAX w/BUMP, For outdoor installation with no fire retardant properties, halogen free
- (2) RCT6-S-1A-RN --> 1-1/4" Tuned Foil RADIAX w/BUMP, Fire Retardant, Low Smoke and Fume (LSF), halogen free
- (3) RCT6-S-1A-RNT1 --> 1-1/4" Tuned Foil RADIAX w/BUMP, Fire Retardant, Low Smoke and Fume (LSF), halogen free with single mica tape
- (4) RCT6-S-1A-RNT --> 1-1/4" Tuned Foil RADIAX w/BUMP, Fire Retardant, Low Smoke and Fume (LSF), halogen free with double mica tape

Radiax antennas have 20 dBi loss.

EQUIPMENT: 385700-5000-001 to -004

TEST REPORT NO.:4L0489RUS1rev1

System Diagram

FCC PART 15, SUBPART C

Nemko Dallas

EQUIPMENT: 385700-5000-001 to -004 TEST REPOR

TEST REPORT NO.:4L0489RUS1rev1

Section 3. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

TESTED BY: Kevin Rose DATE: 3/31/05

Test Results: Complies.

Measurement Data: See attached plots.

Measurement Uncertainty: +/- 1.7 dB

EQUIPMENT: 385700-5000-001 to -004

Test Data – Powerline Conducted Emissions

				P			Emission Measure						
Complet Prelimin		X		•	OWC:	io voltage	, measure	Job # :)E 1	Test #	: <u>CEPV-</u>	
		A malmovy C									•		
Client Na EUT Na		Andrew C 2.4 GHz E											
EUT Mo		385700-5			and -10	1 to -104							
EUT Pa		385700-5	000-001	to -004	and -10	1 to -104							
EUT Se		NA	ina DE C	ianala fr	om rom	ata ta maa	ster (vice ve	2500)					
EUT Co	niig	Hansmill	ing Kr S	signais ii	om rem	ote to mas	ster (vice ve	ersa)					
Specific	ation :	EN 50121	-4:2000				_	Refer	ence :	EN 610	000-4-6		
Transdu		969		Temp. (_				03/31/05		
HP Filte		704	•	Humidit		56	_			Time :			
Cable 1 Cable 2		1553 1115	•	EUT Vo	-	230 : 60	_		١n	cation :	Kevin Rose	ರ	
Detector		716	•	Peak Ba			_				4L0489E C	CEPV-01	
Detector		NA		QP Ban		9kHz	_						
Limiter #	# :	<u>NA</u>	•	Avg. Ba	ndwidth	9kHz	_						
Meas.	EUT	Detector	Limit	Meter	Path	Transduce	r Corrected	Spec	c.limit	CR/SL	Pass		
Freq.	Test	Туре	Туре	Reading	Loss	Factor	Reading	(dE	BuV)	Diff.	Fail		
(MHz)	Point	(P,QP, A)	(QP, A)	(dBuV)	(dB)	(dB)	(dBuV)	Q.P.	Avg.	(dB)	Unc.	Comm	nent
2.68	N N	QP A	QP A	33.0 22.0	0	0	33.0 22.0	73 73	60 60	-40.0 -38.0	Pass Pass		
2.00	IN	Λ	А	22.0	0	U	* RBW 1			rker			
ı P	Ref 9	7 dBµV		At	t 10	dB	*VBW 1 SWT 3	0 kHz 00 ms		1.	34.73 22460000	dBµV	
	O£	fset 1	0 dB		LI	MIT CHE	CK PA	ss					
IFOVL	-90												A
1 PK VIEW	-80												
	70												LVL
	CIS22	AAV											
	-50												
	Aut 1	١											
	July I					1							
	30	444	A .			. A	<u> </u>	1			, , <u> </u>	l d	
	-20	WWW	/ / / / / / / / / /	May W	hull/h	Mary Mary		MALL			1 M/	Wyne	
	-				*	• •		~	MIMM	·····	MINAN A		
	-10												
	-0												
	Start	150 kHz	:	I	I	2.985	MHZ/		•		Stop	30 MHz	
Date:		31.MAR.				ie Rev C v	I Documen	nt Contro	l #FM∩	DS EM	COND VO	ı T	
\LIVICS	iiaie AU	I OIVIA I E\I	אואטו	113/CEF	_voitag	je iver c.x	i. Documen	ii Coniii C	n #LIVIC	DO EIV	I COND VO	'L1	

EQUIPMENT: 385700-5000-001 to -004

Test Data – Powerline Conducted Emissions

				_		icted Emi		4					
Complet	е	Х		F	'owerline	Voltage Me	easureme		4L0489I	E	Test #:	CEPV	-01
Prelimin		X							Page	2	of	2	
Ol: 4 NI		AI O	·								-		
Client Na EUT Nai		Andrew C 2.4 GHz E											
EUT Mo		385700-5			and -101 t	o -104							
EUT Par	t#:	385700-5	000-001	to -004	and -101 t	o -104							
EUT Ser		NA	DE 0				, :						
EUT Co	ntig. :	Transmitt	ing RF S	signais fr	om remote	e to master	(vice versa	a)					
Specifica	ation :	EN 50121	I-4:2000					Refe	rence :	EN 610	000-4-6		
Meas.	EUT	Detector	Limit	Meter	Path	Transducer	Corrected	Spe	c.limit	CR/SL	Pass		
Freq.	Test	Type	Туре	Reading	Loss	Factor	Reading	,	BuV)	Diff.	Fail		
(MHz) 2.68	Point H	(P,QP, A)	(QP, A)	(dBuV)	(dB)	(dB)	(dBuV) 34.2	Q.P. 73	Avg.	(dB)	Unc. Pass	Comm	ent
2.68	H	A	A	31	0	0	31.0	73	60	-29.0	Pass	 	
1.61	Н	QP	QP	39	0	0	39.0	73	60	-34.0	Pass		
161	Н	Α	Α	31	0	0	31.0	73	60	-29.0	Pass		
IEW	70————————————————————————————————————	AAV											Ľ
_	-20		Mh	Muly		h. M. Malum	Miller III	Mary	han hul	uh mu	WAW	White was	
	.0												
<u> </u> _	Start	150 kHz	 :			2.985 MI	Hz/				Stop	30 MHz	1
Date:		31.MAR.				Rev C.xls	Documen	t Contro	ol #EMC	DS FM	COND	VOLT	

Photos – Powerline Conducted Emissions

Front

Side

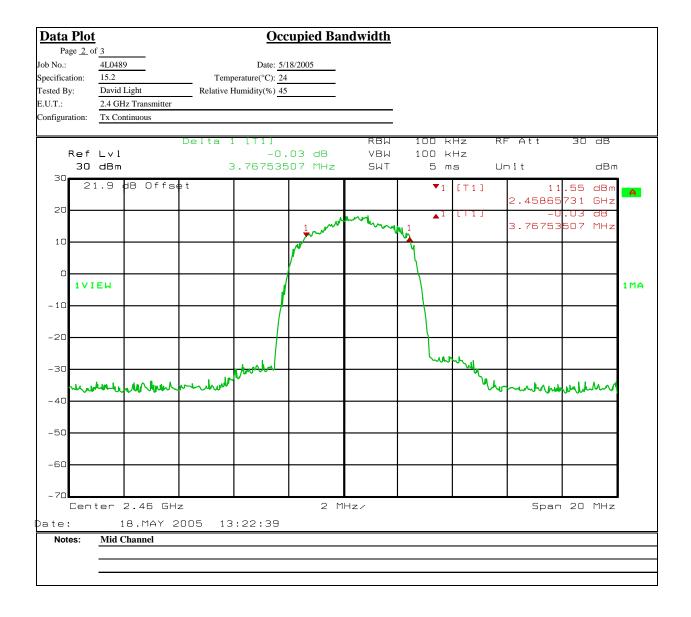
Nemko Dallas FCC PART 15, SUBPART C

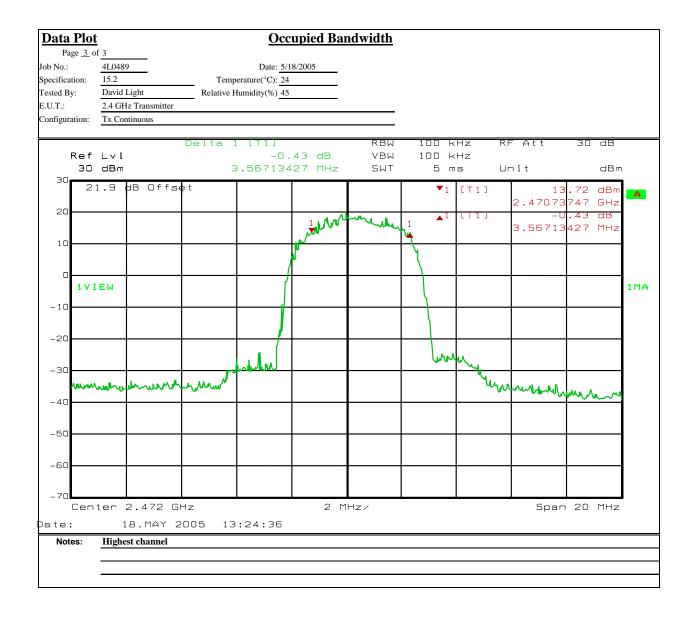
EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

Section 4. Occupied Bandwidth

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(2)

TESTED BY: David Light DATE: 5/18/05


Test Results: Complies.


Measurement Data: See 6 dB BW plot

Measured 6 dB bandwidth: 3.8 MHz max

Channel Separation: 5 MHz

Data F	<u>Plot</u>				9	Occ	cupied Ba	<u>andwidth</u>								
	e <u>1</u> of										C	omplete	<u> X</u>			
Job No.:		4L048			Date	_	5/18/2005				Prelin	ninary	:			
Specification		15.247			emperature(°C	_	24									
Tested By:		David	_	Relati	ive Humidity(9	6) <u> </u>	45									
E.U.T.:			Iz Transmitter													
Configurati			ntinuous													
Sample Nu	ımber:	1			_											
Location:		Lat	0 1				-	100 kHz								
Detector T	ype:	Pe	ak				VBW:	100 kHz								
Test Equ	iipme	nt Us	<u>ed</u>													
Antenna:					D	irecti	ional Coupler:									
Pre-Amp:							Cable #1:	1973								
Filter:							Cable #2:									
Receiver:		10:	36				Cable #3:									
Attenuator	#1						Cable #4:									
Attenuator	#2:	14	72				Mixer:									
Additional	equipn	nent use	ed:													
Measureme	ent Unc	ertainty	y: +/-1.7	dB												
				Delta	a 1 LT1	1		RBW	1 1	nn 1.	. U =	RI	- Att	30	dВ	
_	e f	1 1		Derta	1 1 1 1		.63 dB	VBW			(Hz (Hz	KI	- ни	30	αБ	
	30				3 126		.03 00 251 MHz	SWT	10		15	1.16	nit		dBm	
30_	JU	االحال			J. 120	202	201 11112	ואכ		וו כ	10	اں	111		abili	
	21	.9	dB Offs	s e t						▼ 1	[T 1]	12	. 79	dBm	A
													2.44681	764	GHz	-
20				+			No No.	1	l l	1	LT1			. 63	dB	
							₩	The same	1				3.12625	251	MHz	
10							No.	•	<u> </u>				ļ	<u> </u>		
							V		I \							
							l		1 \							
0 -						7										4 54 4
	1 V I E	- W				- 1										1MA
- 10				-		+			<u> </u>		<u> </u>		-	<u> </u>		
										\						
-20						1				1						
-20-						Т				abla						
						ı				MA	how	Ш				
-30				+		_		+	<u> </u>		1 may	╁┼	<u> </u>	 		
				Marrow	AN COMPANY							Wh	mund	Liber	why	
-40	<u> </u>	- W	WHIT IN	U T												
-50 -				1				1			<u> </u>				$\overline{}$	
-60														<u> </u>		
70																
-70 L	`oo +	00	2.448 0				2	MHz/					Spac	1 20	мы¬	J
	ent						2	11127					apai	1 20	111112	
Date:		1	.8.MAY	2005	13:19:2	29										
Notes	s:	Lowe	st Channel													
							-									

Nemko Dallas FCC PART 15, SUBPART C

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

Section 5. Maximum Peak Output Power

NAME OF TEST: Maximum Peak Output power PARA. NO.: 15.247(b)(1)

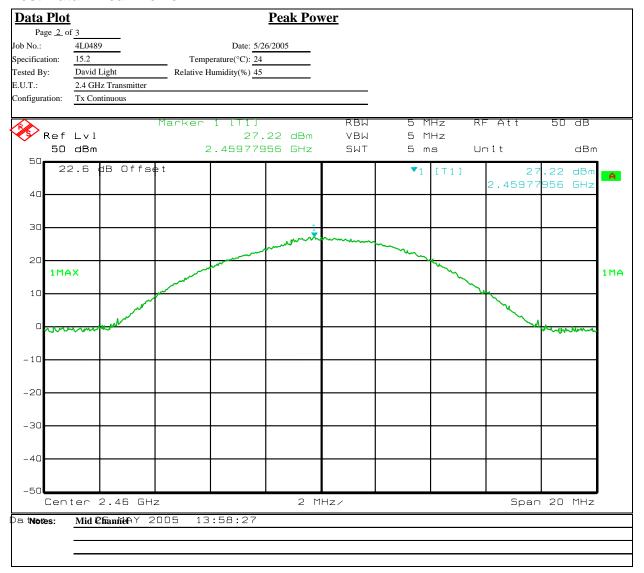
TESTED BY: David Light DATE: 5/26/05

Test Results: Complies.

Measurement Data: 27.5 dBm / 562 mW Max Refer to attached data

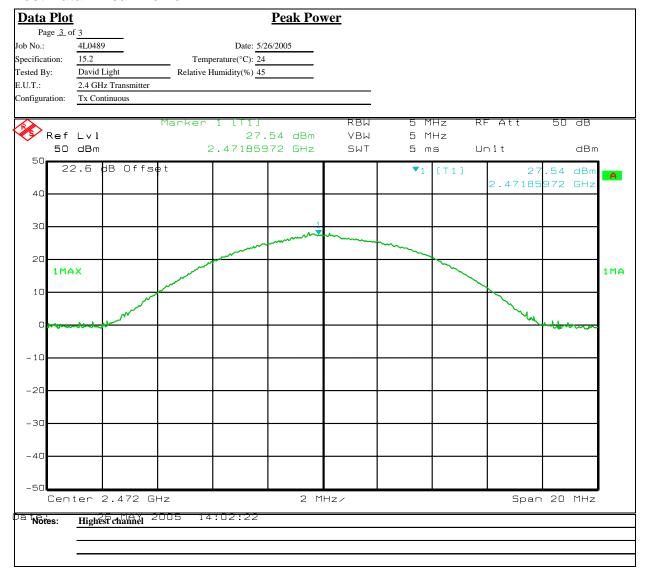
The measurement was repeated at +/- 15% of nominal supply voltage with no variation noted in rf power output.

Antenna Gain:


Horn +12 dBi (Point to point operation)

Radiax 20 dBi loss

Test Data – Peak Power


Data Pl	<u>ot</u>				Peak Pov	<u>ver</u>					
Page _						_		Complete	<u> X</u>		
Job No.:	4L0489)		Date:	5/26/2005			Complete Preliminary			
Specification	15.247		Temp	erature(°C):	24						
Tested By:	David l	Light	Relative H	Iumidity(%)	45						
E.U.T.:	2.4 GH	z Transmitter									
Configuration	n: Tx Con	tinuous									
Sample Num											
Location:	Lab	1			RBW: 10						
Detector Typ	e: Pea	ık			VBW: 10	0 kHz					
Test Equip	pment Use	<u>ed</u>									
Antenna:				Direction	onal Coupler:						
Pre-Amp:					Cable #1:	1973					
Filter:					Cable #2:						
Receiver:	103	<u> </u>			Cable #3:						
Attenuator #1		10			Cable #4:						
Attenuator #2 Additional ec					Mixer:						
Measurement			dB								
_			Marker	1 1 7 1 1		RBW	E N	Hz R	- A 1 1	En 28	
S P C	ef ∟∨l		Harker	1 [T1]	65 dBm	VBW	5 M 5 M		FAtt	50 dB	
-	iO dBm		5	.02 2.447458		SWT	5 m		nit	dBm	,
50				+ + + 5	0112	JAI			1111		•
	22.6	dB Offs	e t				v ₁	[T1]	28	6.65 dBm	A
									2.44745	892 GHz	
40 —											1
30—			+		1_				1	+	ł
20—				The same of the sa			-				
	MAX		سمسر								1MA
			June Value								
10		AP	1						The same of the sa		1
		الممهر									
۔ م		~	+						_	4	
- 10											
0.0											
-20											1
-30										+	1
-40											
-50 L C∈	enter :	2.448 G	6Hz	l	2 M	Hz/	l		Spar	n 20 MHz	•
Ja t Notes :	Low	Channel	2005 13	:56:24							
	201163	·······································									

Test Data - Peak Power

TEST REPORT NO.:4L0489RUS1rev1

Test Data - Peak Power

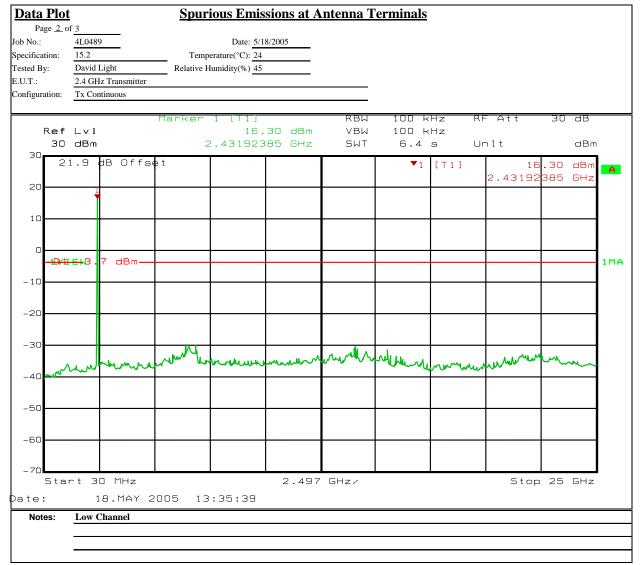
EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

Section 6 Spurious Emissions at Antenna Terminals

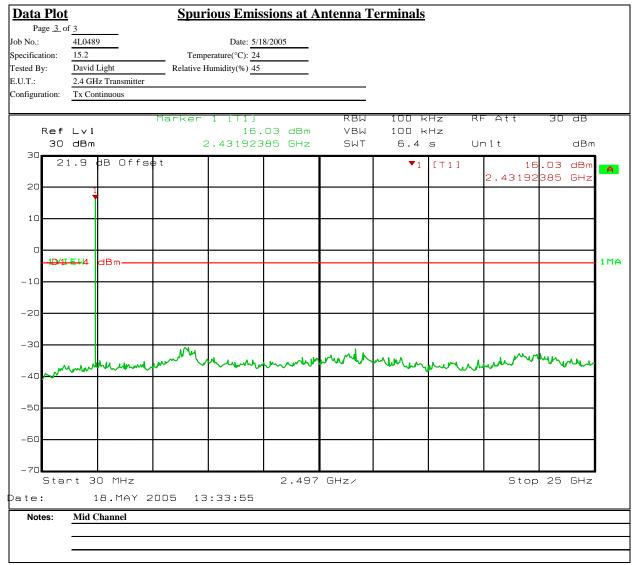
NAME OF TEST: Spurious Emissions at Antenna Terminals PARA. NO.: 15.247 (c)

TESTED BY: David Light DATE: 5/24/05

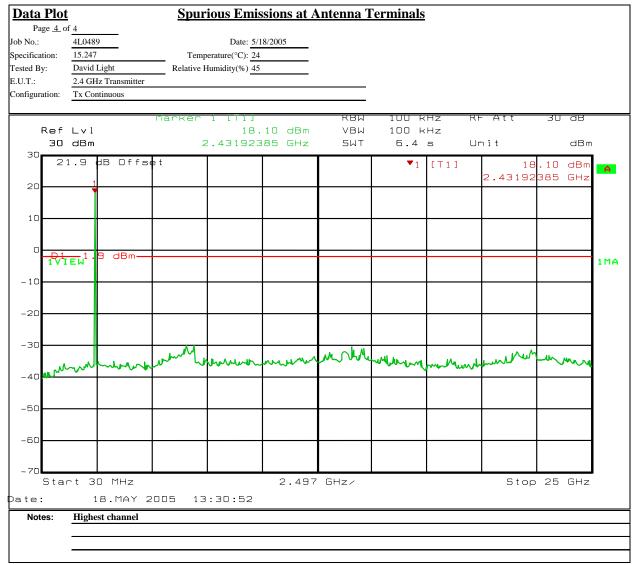
Test Results: Complies.


Measurement Data: See attached plots.

The spectrum was thoroughly searched to the 10th harmonic in all modes on three channels. There were no emissions detected within 20 dB of the specification limit of -20 dBc in any 100 kHz bandwidth.


Test Data – Spurious Emissions at Antenna Terminals

Data Plot		Spur	ious Emis	sions at	Antenna T	<u>'erminals</u>					
Page <u>1</u> c	f <u>3</u>						Complete	X			
Job No.:	4L0489		Date:	5/18/2005			Preliminary:				
Specification:	15.247	Temp	erature(°C):	24			Ž				
Tested By:	David Light		fumidity(%)								
E.U.T.:	2.4 GHz Transmitter										
Configuration:	Tx Continuous				•						
Sample Number											
Location:	Lab 1			RBW:	100 kHz						
Detector Type:	Peak			-	100 kHz						
				_							
Test Equipm	ent Used		751	10 1							
Antenna:			Directio	onal Coupler:							
Pre-Amp:				Cable #1:	1973						
Filter:				Cable #2:							
Receiver:	1036			Cable #3:							
Attenuator #1				Cable #4:							
Attenuator #2:	1472			Mixer:							
Additional equip											
Measurement U	ncertainty: +/-1.7	dB									
		Delta 1	[1]		RBW	100 k	Hz RF	- Att	30 c	зв	
Ref	∟∨ l			01 dB	VBW		Hz				
	dBm	48	.396793		SWT	25 m		ηīt	c	dBm	
30		1.								_	
2	1.9 dB Offs	i e t				▼ 1	[T 1]	-35		IB ₁ m	A
0.0								2.40000	000 G	Hz	
20						<u>^</u> 1	[1]	58	.U1 d	BY	
							4	8.39679	359 M	Hz	
10		+			_	-				-	
0											
1 1 1	EU										1MA
1 1 1											
- 10		+			_	-				-	
-20											
-20											
									الما		
-30		+			 				'	\dashv	
40.0	A SULL MANAGEMENT	Unnerver	mark have	mun	hurren	Lomber	Luman Mila	markani	ww/		
-40	/				•		• • • • •				
-50										\dashv	
-60											
-70 L	top 2 4 CII		1	1 0	MU ·	I		Coon	100 M		
	ter 2.4 GHz			1 U	MHz/			Span	100 11	ΠZ	
Date:	18.MAY :	2005 13	:37:07								
Notes:	Lowest Channel										
	Lower band edge										


Test Data - Spurious Emissions at Antenna Terminals

Test Data - Spurious Emissions at Antenna Terminals

Test Data - Spurious Emissions at Antenna Terminals

FCC PART 15, SUBPART C

Nemko Dallas

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

Section 7. Radiated Emissions

NAME OF TEST: Radiated Emissions PARA. NO.: 15.247 (c)

TESTED BY: David Light DATE: 5/24/05

Test Results: Complies.

Measurement Data: See attached table.

Note: The EUT was tested from 30 MHz to 25 GHz. There were no emissions detected above the noise floor. Data provided to show band edge compliance.

EQUIPMENT: 385700-5000-001 to -004

TEST REPORT NO.:4L0489RUS1rev1

Radiated Emissions - Radiax Antenna

Radiated	Emissions

Page <u>1</u> of <u>1</u>

 Job No.:
 4L0489
 Date: 5/24/2005

 Specification:
 15.247/15.205
 Temperature(°C): 22

Tested By: David Light Relative Humidity(%) 55

E.U.T.: 2.4 GHz DTS System

Configuration: Tx Continuous at full power

Sample Number: ____1

 Location:
 AC 3
 RBW:
 1 MHz

 Detector Type:
 Peak
 Peak VBW:
 1 MHz

Average VBW: 1 kHz

Test Equipment Used

1304 Directional Coupler: #N/A Antenna: Pre-Amp: 1016 Cable #1: 1484 Filter: 1482 1485 Cable #2: Receiver: 1464 Cable #3: #N/A 1472 #N/A Attenuator #1 Cable #4: #N/A #N/A Attenuator #2: Mixer:

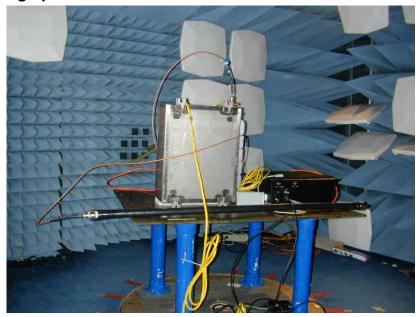
Measurement Uncertainty: +/- 3.6 dB

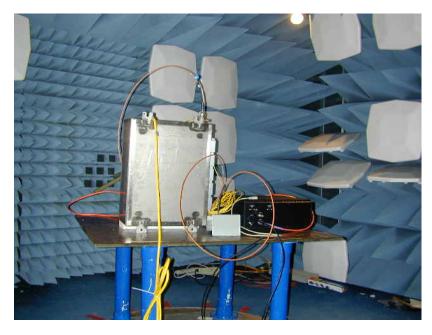
Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)		Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Detector / Polarity
								Tx at 2472 MHz
2.4835	45.0	28.2	3.1	12.8	63.5	74	54	
2.4835	32.3	28.2	3.1	12.8	50.8	74	54	
2.4835	45.0	28.2	3.1	12.8	63.5	74	54	
2.4835	32.3	28.2	3.1	12.8	50.8	74	54	

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

Radiated Emissions - Horn Antenna

		Radiated Emissions	
Page 1 of	<u>1</u>		
Job No.:	4L0489	Date: 5/24/2005	
Specification:	15.247/15.205	Temperature(°C): 22	
Tested By:	David Light	Relative Humidity(%) 55	
E.U.T.:	2.4 GHz DTS System		
Configuration:	Tx Continuous at full pov	wer	
Sample Number:	1		
Location:	AC 3	RBW:	1 MHz
Detector Type:	Peak	Peak VBW:	1 MHz
		Average VBW: 1	kHz
		Test Equipment Used	


Antenna: 1304 Directional Coupler: #N/A Pre-Amp: 1016 1484 Cable #1: Filter: 1482 Cable #2: 1485 Receiver: 1464 Cable #3: #N/A 1472 #N/A Attenuator #1 Cable #4: Attenuator #2: #N/A #N/A Mixer:


Measurement Uncertainty: +/- 3.6 dB

Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)		Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Detector / Polarity
								Tx at 2472 MHz
2.4835	45.0	28.2	3.1	12.8	63.5	74	54	
2.4835	32.3	28.2	3.1	12.8	50.8	74	54	
2.4835	45.0	28.2	3.1	12.8	63.5	74	54	
2.4835	32.3	28.2	3.1	12.8	50.8	74	54	

EQUIPMENT: 385700-5000-001 to -004

Radiated Photographs

FCC PART 15, SUBPART C

Nemko Dallas

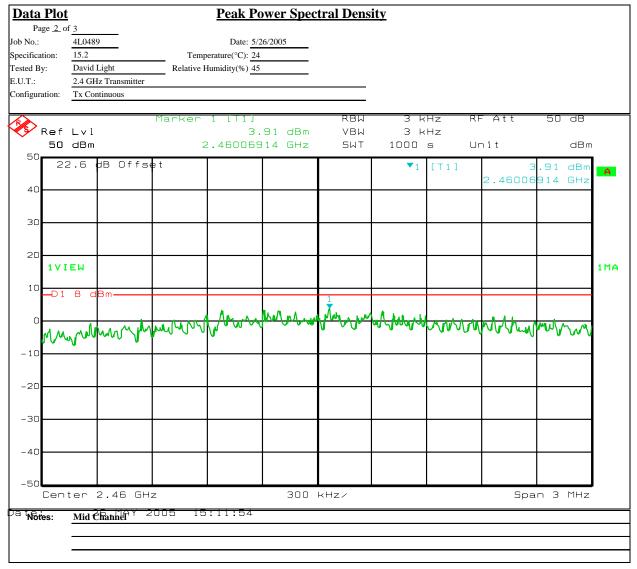
EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

Section 8. Peak Power Spectral Density

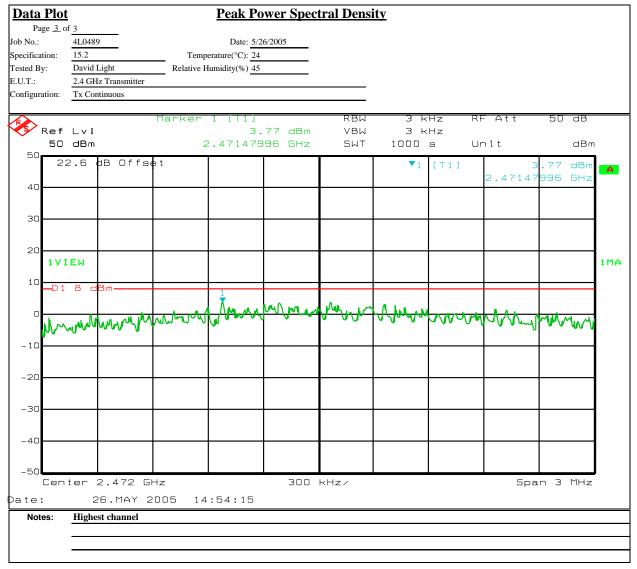
NAME OF TEST: Peak Power Spectral Density PARA. NO.: 15.247(d)

TESTED BY: David Light DATE: 5/26/05

Test Results: Complies.


Measurement Data: See attached data..

Peak Power Spectral Density


Data Plot				Peak Po	ower Spec	ctral Dens	<u>sity</u>				
Page <u>1</u> o	f <u>3</u>							Complete	X		
Job No.:	4L0489			Date:	5/26/2005			Preliminary:			
Specification:	15.247		Ten	nperature(°C):	24						
Tested By:	David Ligh	t		Humidity(%)	45						
E.U.T.:	2.4 GHz Tr										
Configuration:	Tx Continu										
Sample Number											
Location:	Lab 1			=	RBW: 1	00 kHz					
Detector Type:	Peak	_			VBW: 1						
Test Equipm	ent Used										
Antenna:	car cara			Directi	onal Coupler:						
Pre-Amp:		_			Cable #1:	1973					
Filter:		_			Cable #2:	1773					
Receiver:	1036	_			Cable #3:						
Attenuator #1	1050	_			Cable #4:						
Attenuator #2:	1472	_			Mixer:						
Additional equip					MIXEL.						
		1/174	D								
Measurement Ur	icertainty.	+/-1.7 d	ь								
Ŕ			Marker	1 [T1]		RBW	3 k	:Hz RI	- Att	50 dB	
Ref	∟∨1			з.	05 dBm	VBW	3 K	Hz			
50	dBm			2.448063	313 GHz	SWT	1000	s Ur	nit	dBm	
50	. c Lin	066-1		1		1		T	г		1
22	2.6 dB	Offse	e t				v ₁	[T 1]] 3	.05 dBm	A
4.0									2.44806	313 GHz	
40											
30						.					
20											
1 V I	EW										1MA
10											
-D 1	8 d B m					1					
					WAT AT .	lŤ.,					
0				1 /\/\ ₩₩	TW WWW	**************************************	h h h	MVM	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	mi A o . At	
18. AA	المما الألعامي	NYYM	MM	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	, ,		000	AN A MAN		
-10		•									
-20				+		1			1		
-30											
-30											
-40				+	-	 			-		
-50											
	ter 2.	448 G	- ->	•	300	kHz/	•	•	Sna	ın 3 MHz	J
					200	111/2/			- Jhe	5 11112	
Date:			005 1	5:30:56							
Notes:	Lowest C	nannel									

EQUIPMENT: 385700-5000-001 to -004

Peak Power Spectral Density

Peak Power Spectral Density

EQUIPMENT: 385700-5000-001 to -004

Section 9. Test Equipment List

Nemko ID	Description	Manufacturer Model Number	Serial Number	Calibration Date	Calibration Due
1482	Band Pass Filter	K & L 11SH10-4000/T12000-0/0	2	Cal B4 Use	N/A
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	11/12/04	11/12/05
1304	HORN ANTENNA	ELECTRO METRICS RGA-60	6151	09/22/03	09/22/05
1036	SPECTRUM ANALYZER	ROHDE & SCHWARZ FSEK30	830844/006	03/22/04	03/23/06
1973	CABLE, 1m	KTL 0	N/A	08/02/04	08/02/05
1472	20db Attenuator DC 18 Ghz	Omni Spectra 20600-20db	NONE	CBU	N/A
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	01/14/05	01/15/07
1472	20db Attenuator DC 18 Ghz	Omni Spectra 20600-20db	NONE	CBU	N/A
1484	Cable 2.0-18.0 Ghz	Storm PR90-010-072	N/A	08/26/04	08/26/05
1485	Cable 2.0-18.0 Ghz	Storm PR90-010-216	N/A	08/02/04	08/02/05
969	lisn	Schwarzbeck 8120	8120281	09/17/04	09/17/05
704	FILTER, HIGH PASS, 5 KHz	SOLAR 7930-5.0	933126	02/05/04	02/04/05
1553	CABLE 1m	KTL RG223	N/A	06/09/04	06/09/05
1115	CABLE, 4.5m	KTL RG223	N/A	04/27/05	04/27/06
716	Receiver	Polorad ESH2	879342/005	02/02/04	02/01/05
759	ANTENNA, LOG PERIODIC	A.H. SYSTEMS SAS-200/510	556	07/23/04	07/23/05
760	Antenna biconical	Electro Metrics MFC-25	477	06/22/04	06/22/05
791	PREAMP, 25dB	ICC LNA25	398	11/12/04	11/12/05

EQUIPMENT: 385700-5000-001 to -004

TEST REPORT NO.:4L0489RUS1rev1

ANNEX A - TEST DETAILS

Page 34 of 47

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

Minimum Standard: §15.207 Conducted limits.

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 mH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of Conducted	Limit (dBmV)		
Emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

- (b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:
- (1) For carrier current systems containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.
- (2) For all other carrier current systems: 1000 mV within the frequency band 535-1705 kHz, as measured using a 50 mH/50 ohms LISN.
- (3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits as provided in §15.205 and §\$15.209, 15.221, 15.223, 15.225 or 15.227, as appropriate.
- (c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provision for, the use of battery chargers which permit operating while charging, AC adaptors or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

FCC PART 15, SUBPART C

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(2)

Minimum Standard: The minimum 6 dB bandwidth shall be at least 500 kHz

Page 36 of 47

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

NAME OF TEST: Maximum Peak Output Power PARA. NO.: 15.247(b)(1)

Minimum Standard: The maximum peak output power shall not exceed 1 watt.

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

Substitution Antenna Method for Integral Antennas:

The peak field strength of the carrier is measured in a worst-case configuration with a RBW > 5 times the occupied bandwidth of the transmitted waveform. For cases where the RBW of the test instrument is not sufficient, the power is measured using a peak power meter instead of the spectrum analyzer.

The RBW of the spectrum analyzer shall be set to a value greater than the measured 6 dB occupied bandwidth of the E.U.T.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C

Nemko Dallas

TEST REPORT NO.:4L0489RUS1rev1 EQUIPMENT: 385700-5000-001 to -004

NAME OF TEST: Channel Separation PARA. NO.: 15.247(a)(1)

Minimum Standard: Frequency hopping systems shall have hopping

> channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping

channel, whichever is greater.

NAME OF TEST: Pseudorandom Hopping Algorithm PARA. NO.: 15.247(a)(1)

Minimum Standard: The system shall hop to channel frequencies that are selected from

a pseudo-randomly ordered list of hopping frequencies. Each frequency must be used equally on average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their transmitters and shall shift

frequencies in synchronization with the transmitted signals.

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

NAME OF TEST: Time of Occupancy PARA. NO.: 15.247(a)(1)(ii)

Minimum Standard:

Frequency	20 dB	No. of	Average Time of
Band	Bandwidth	Hopping	Occupancy
(MHz)		Channels	
902 - 928	<250 kHz	50	=<0.4 sec. in 20
			sec.
902 – 928	=>250	25	=<0.4 sec. in 10
	kHz		sec.
2400 –		75	=<0.4 sec. in 30
2483.5			sec.
5725 – 5850		75	=<0.4 sec. in 30
			sec.

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: 1 MHz VBW: = RBW Span: 0 Hz

LOG dB/div.: 10 dB

Sweep: Sufficient to see one hop time sequence.

Trigger: Video

The occupancy time of one hop is measured as above. The average time of occupancy is calculated over the appropriate period of time from above table (10, 20, or 30 seconds).

Avg. time of occupancy = (period from table/duration of one hop)/no. of channels multiplied by the duration of one hop.

For instance:

If a 2.4 GHz system has a measured hop duration time of 1 msec. and uses 75 channels, then the average time of occupancy would be:

(30 sec./.001 sec.)/75 chan. = 400 x 1 msec. = 400 msec. or 0.4 sec. in 30 sec.

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(2)

Minimum Standard:

Frequency Band (MHz)	Maximum 20 dB Bandwidth
902 - 928	500 kHz
2400 – 2483.5	1 MHz
5725 – 5850	1 MHz

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: At least 1% of span/div.

VBW: >RBW

Span: Sufficient to display 20 dB bandwidth

LOG dB/div.: 10 dB

Sweep: Auto

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C

Nemko Dallas

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

NAME OF TEST: RF Exposure PARA. NO.: 15.247(b)(4)

Minimum Standard: Systems operating under the provisions of this section shall

be operated in a manner that ensures the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines stipulated in 1.1307(b)(1) of CFR

47.

Page 41 of 47

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

NAME OF TEST: Spurious Emissions(conducted) PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the

transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the

restricted bands of 15.205 shall not exceed the following field

strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM IS SEARCHED TO THE 10th HARMONIC OF THE HIGHEST FREQUENCY GENERATED IN THE EUT.

Method Of Measurement:

UUUUUUU30 MHz - 10th harmonic plot

RBW: 100 kHz VBW: 300 kHz Sweep: Auto Display line: -20 dBc

Lower Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level below center frequency.

Upper Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level above center frequency.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the

transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the

following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

15.205 Restricted Bands

MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

EQUIPMENT: 385700-5000-001 to -004 TEST REPORT NO.:4L0489RUS1rev1

NAME OF TEST: Transmitter Power Density PARA. NO.: 15.247(d)

Minimum Standard: The transmitted power density averaged over any 1 second

interval shall not be greater than +8 dBm in any 3 kHz

bandwidth.

Method Of Measurement: The spectrum analyzer is set as follows:

RBW: 3 kHz VBW: >3 kHz

Span: => measured 6 dB bandwidth

Sweep: Span(kHz)/3 (i.e. for a span of 1.5 MHz the sweep

rate is 1500/3 = 500 sec. LOG dB/div.: 2 dB

Note: For devices with spectrum line spacing =< 3 kHz, the RBW of the

analyzer is reduced until the spectral lines are resolved. The measurement data is normalized to 3 kHz by summing the power of all the individual spectral lines within a 3 kHz band in linear

power units.

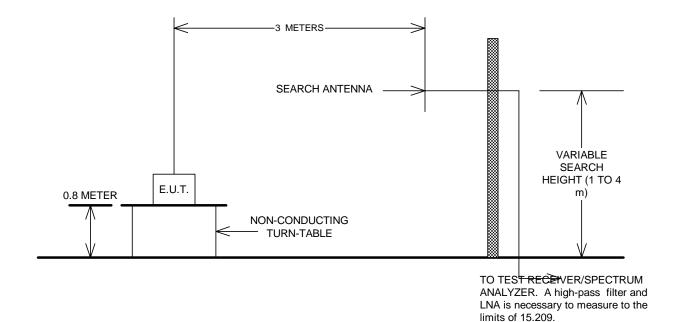
For Devices With Integral Antenna:

For devices with non-detachable antennas, the received field strength is peaked and the spectrum analyzer is set as above. The peak emission level is then measured and converted to a field strength by adding the appropriate antenna factor and cable loss. This field strength is then converted to an equivalent isotropic radiated power using the same method as described for Peak Power output.

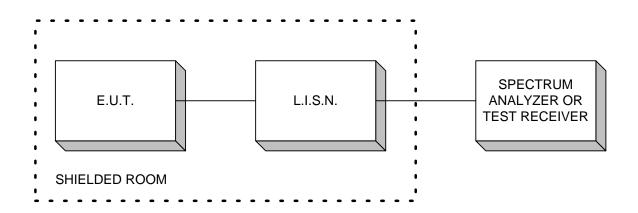
Tuning Range	Number Of Channels Tested	Channel Location In Band
1 MHz or Less	1	Middle
1 to 10 MHz	2	Top And Bottom
More Than 10 MHz	3	Top, Middle, Bottom

FCC PART 15, SUBPART C

Nemko Dallas

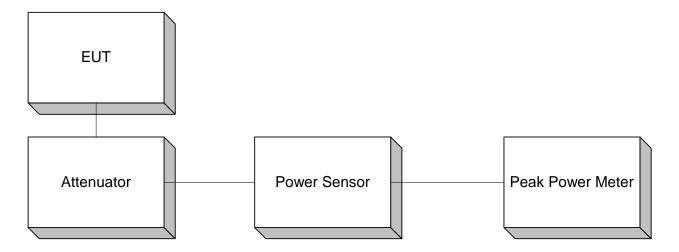

EQUIPMENT: 385700-5000-001 to -004

TEST REPORT NO.:4L0489RUS1rev1

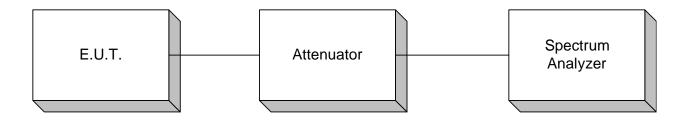

ANNEX B - TEST DIAGRAMS

EQUIPMENT: 385700-5000-001 to -004

Test Site For Radiated Emissions



Conducted Emissions



TEST REPORT NO.:4L0489RUS1rev1

Peak Power At Antenna Terminals

Minimum 6 dB Bandwidth Peak Power Spectral Density Spurious Emissions (conducted)

