PROPRIETARY INFORMATION

ORI OFFICE

CPL CAPITAL PROSPECT LTD

MODEL : QS-101 BLOCK DIAGRAM DATE :6 JUN, 2007

PAGE: 1 OF 1

SmartRF® CC1100

14 Circuit Description

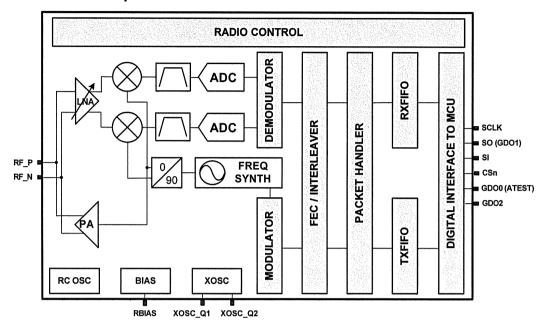


Figure 2: **CC1100** Simplified Block Diagram

A simplified block diagram of *CC1100* is shown in Figure 2.

CC1100 features a low-IF receiver. The received RF signal is amplified by the low-noise amplifier (LNA) and down-converted in quadrature (I and Q) to the intermediate frequency (IF). At IF, the I/Q signals are digitised by the ADCs. Automatic gain control (AGC), fine channel filtering, demodulation bit/packet synchronization is performed digitally.

The transmitter part of *CC1100* is based on direct synthesis of the RF frequency. The

15 Application Circuit

Only a few external components are required for using the *CC1100*. The recommended application circuit is shown in Figure 3. The external components are described in Table 14, and typical values are given in Table 15.

Bias resistor

The bias resistor R171 is used to set an accurate bias current.

frequency synthesizer includes a completely on-chip LC VCO and a 90 degree phase shifter for generating the I and Q LO signals to the down-conversion mixers in receive mode.

A crystal is to be connected to XOSC_Q1 and XOSC_Q2. The crystal oscillator generates the reference frequency for the synthesizer, as well as clocks for the ADC and the digital part.

A 4-wire SPI serial interface is used for configuration and data buffer access.

The digital baseband includes support for channel configuration, packet handling and data buffering.

Balun and RF matching

C131, C121, L121 and L131 form a balun that converts the differential RF port on *CC1100* to a single-ended RF signal (C124 is also needed for DC blocking). Together with an appropriate LC network, the balun components also transform the impedance to match a 50Ω antenna (or cable). Component values for the RF balun and LC network are easily found using the SmartRF® Studio software. Suggested values for 315MHz, 433MHz and 868/915MHz are listed in Table 15.