

Report No.	•	AB0001833	Date:	January 12, 2022

Application No. : LA035718

Applicant : Capital Prospect Ltd

Rm 03, 13/F, Block B, Veristrong Industrial Building,

34-36 Au Pui Wan Street, Fo Tan, N.T.,

Hong Kong

Sample Description : One(1) item of submitted sample stated to be:

Sample Description	Model No.	Serial Number
318MHz Transmitter	KN-318	ES0003

Radio Frequency : 318MHz

Rating : 1 x 1.5V AAA battery
No. of submitted sample : One (1) piece
Sample registration No. : RA020320-001-8

Date Received : Nov 1, 2021

Test Period : Nov 1, 2021 – Dec 2, 2021

Test Requested : FCC 47CFR Part 15 Certification.

ISED Canada Radio Standards Specification RSS-210.

Test Method : 47 CFR Part 15 (10-1-20 Edition)

ANSI C63.10 – 2013 RSS-210 Issue 10 RSS-GEN Issue 5

Test Result : See attached sheet(s) from page 2 to 20.

Conclusion : The submitted sample and related models were found to comply with requirement of FCC

47CFR Part 15 Subpart C and ISED Canada RSS-210 Issue 10.

For and on behalf of

CMA Industrial Development Foundation Limited

Authorized Signature : Page 1 of 20

Wong Lap Pong / Andrew Deputy Technical Manager

FCC ID: KUTKN-318

IC: 4454A-KN318X
The conformity statement stated in Conclusion above is based on the decision rule agreed with applicant and listed in www.cmatesting.org/qac/statement-of-conformity.pdf.
This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatesting.org.
This document shall not be reproduced except in full without written approval by CMA Testing. The results apply to the sample as received unless otherwise specified. The observations and test results in this report are relevant only to the sample tested.

Report No. : AB0001833 Date : January 12, 2022

Table of Contents

1	Gen	neral Information	3
	1.1	General Description	
	1.2	Location of the test site	
	1.3	List of measuring equipment	5
	1.4	Measurement Uncertainty	
	1.5	Test Summary	
2	Des	cription of the radiated emission test	
	2.1	Test Procedure	
	2.2	Test Setup	8
	2.3	Test Result	
3	Des	scription of the Line-conducted Test	13
	3.1	Test Procedure	13
	3.2	Test Result	13
	3.3	Test Setup	13
	3.4	Graph and Table of Conducted Emission Measurement Data	13
4	Sup	plementary document	14
	4.1	Bandwidth	14
	4.2	Average Factor	14
	4.3	Transmission time	
5	Apr	pendices	16

Page 2 of 20

Report No. : AB0001833 Date : January 12, 2022

1 General Information

1.1 General Description

The equipment under test (EUT) model KN-318 are a wireless transmitter. It operates at frequency 318MHz for transmitter 10kbps ASK modulation. The oscillation of radio control is generated by a 9.9375MHz crystal for RF transmitter. Model: KN-318 is powered by one 1.5V AAA battery. Model: KN-318 contains a 12 keys keypad. The key(s) is/are used to control the corresponding receiver.

The 0dBi wire antenna is used. The RF output power is unable to adjust.

No any firmware and software are associated with the device.

The brief circuit description is listed as follows:

Model: KN-318
-S1 – S12, and its associated circuit act as the key input
-U32 and its associated circuit act as RFIC, SYN115
-Y1 and its associated circuit act as oscillation clock, 9.9375MHz
-U33 and its associated circuit act as MCU, STM32L011G4U6.
-C1,C6,C8,L1,L3,L5 and its associated circuit act as matching network

Model:	KN-318
HVIN:	KN-318A
PMN:	KN-318

Page 3 of 20

Report No. : AB0001833 Date : January 12, 2022

1.2 Location of the test site

Radiated emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.4 – 2014. A Semi-Anechoic Chamber Testing Site is set up for investigation and located at:

Ground Floor, Yan Hing Centre, 9 – 13 Wong Chuk Yeung Street, Fo Tan, Shatin, New Territories, Hong Kong.

Conducted emissions measurements are investigated and also taken pursuant to the procedures of ANSI C63.4 – 2014. A shielded room is located at :

Ground Floor, Yan Hing Centre, 9 – 13 Wong Chuk Yeung Street, Fo Tan, Shatin, New Territories, Hong Kong.

FCC Accredited Lab (Designation Number: HK0004) ISED Wireless Test Site (ISED Assigned Code: 4093A)

Page 4 of 20

Report No. : AB0001833 Date : January 12, 2022

1.3 List of measuring equipment

Equipment	Manufacturer	Model No.	Serial No.	Calibration Due Date	Calibrati on Period
EMI Test Receiver	Rohde & Schwarz	ESCI	100152	23 Dec 2021	1Year
Spectrum Analyzer	R&S	FSV40	100964	14 Dec 2021	1Year
Log Periodic Antenna	TESEQ	UPA6109	Log Periodic Antenna	29 Nov 2022	2Years
Biconical Antenna	Rohde & Schwarz	HK116	Biconical Antenna	29 Nov 2022	2Years
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-531	02 Feb 2023	3Years
Broadband Pre- Amplifier	Schwarzbeck	BBV 9718	9718-119	02 Feb 2023	3Years
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA917044 2	14 Sep 2023	3Years
Broadband Pre- Amplifier	Schwarzbeck	BBV 9719	9719-010	14 Sep 2023	3Years
Coaxial Cable	Suhner	Sucoflex 106	N/A	03 May 2022	1Year
Coaxial Cable	Suhner	Sucoflex_104	N/A	14 Jan 2022	2Year
LISN	Rohde & Schwarz	ENV216	101323	23 Dec 2021	1Year
Coaxial Cable	Tyco Electronics	RG 58C/U	N/A	18 Oct 2022	1Year

Page 5 of 20

Report No. : AB0001833 Date : January 12, 2022

1.4 Measurement Uncertainty

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%.

Radiated emissions

Frequency	Uncertainty (U _{lab})
30MHz ~ 200MHz (Horizontal)	4.59dB
30MHz ~ 200MHz (Vertical)	4.49dB
200MHz ~1000MHz (Horizontal)	4.94dB
200MHz ~1000MHz (Vertical)	4.97dB
1GHz ~ 6GHz	4.52dB

1.5 Test Summary

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
Radiated emission	15.231(b)	RSS-210 Annex A1.2	Comply
Assigned bandwidth (20dB)	15.231(c)	-	Comply
Occupied bandwidth >0.25% of the center frequency	-	RSS-210 Annex A1.3	Comply
Transmission time after manual activation	15.231(a)	RSS-210 Issue 10 Annex A1.1.1	Comply
Frequency Stability	-	RSS-Gen, Clause 8.11	Comply

Page 6 of 20

Report No. : AB0001833 Date : January 12, 2022

2 Description of the radiated emission test

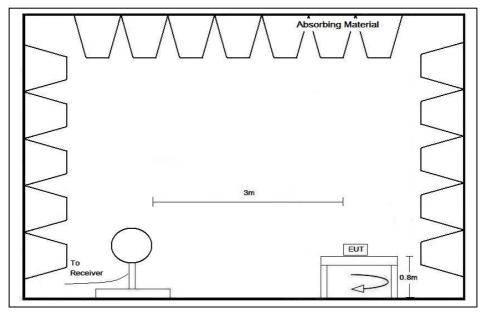
2.1 Test Procedure

Radiated emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.10 - 2013.

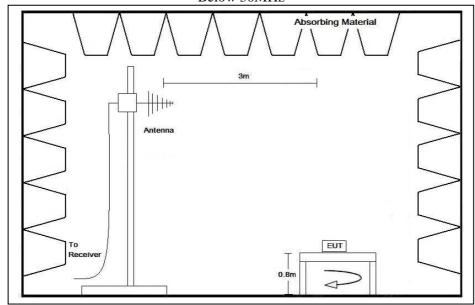
A non-conductive turntable with dimensions of 1.5m x 0.4m x 0.8m (L x W x H) placed above the reference ground plane. The equipment under test (EUT) was placed at 0.8m height for below 1GHz measurement and 1.5m height for above 1GHz measurement. The test distance is 3m between EUT and receiving antenna. A broadband antenna mounting on the mast received the signal strength. The turntable was rotated to maximize the emission level. The antenna was moving along the mast from 1m up to 4m until no more higher value was found. Both horizontal and vertical polarization of the antenna were placed and investigated. Additional absorbing material will be placed between the EUT and receiving antenna for above 1GHz measurement.

For below 30MHz, a loop antenna with its vertical plane is placed 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1 m above the ground.

The device was rotated through three orthogonal axes to determine which attitude and configuration produce the highest emission during measurement.


The EUT was pressed to make the continuous transmission during Radiated Emission test.

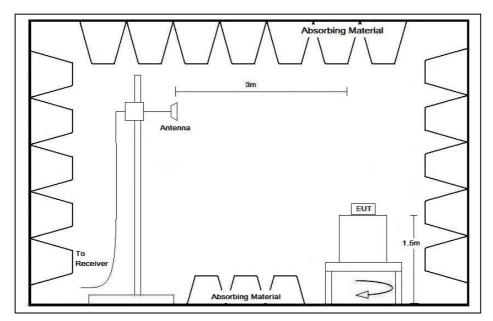
Page 7 of 20



Report No. : AB0001833 Date : January 12, 2022

2.2 Test Setup

Below 30MHz


30MHz-1GHz

Page 8 of 20

Report No. : AB0001833 Date : January 12, 2022

2.2 Test Setup

Above 1GHz

Page 9 of 20

Report No. : AB0001833 Date : January 12, 2022

2.3 Test Result

Peak Detector data was measured unless otherwise stated.

The radiated emissions are measured from 9kHz to 4GHz (the tenth harmonics)

The worst case configuration is shown on the worst case configuration of test setup photo.

"#" means emissions appearing within the restricted bands of 47 CFR Part 15 section 15.205 and "*" means emission appearing within the restricted band of RSS-GEN section 8.10.

The frequencies from fundamental up to tenth harmonics were investigated, and emissions more 20dB below limit were not reported. Thus, those highest emissions were presented in next pages.

The EUT has been tested in Transmission mode.

It was found that the EUT meet the FCC and RSS requirement.

Page 10 of 20

Report No. : AB0001833 Date : January 12, 2022

2.4 Radiated Emission Measurement Data

Radiated emission

Environmental conditions:

Parameter	Recorded value	
Ambient temperature:	24.3	° C
Relative humidity:	49.8	%

Model: KN-318

Polarization	Frequency	Reading at 3m	Antenna	Field	Limit at	Margin	Detector
	(MHz)	(dBµV)	Factor and	Strength at	3m	(dB)	Type
			Cable Loss	3m	$(dB\mu V/m)$		
			(dB/m)	(dBµV/m)			
Н	318.019	61.5	16.9	78.4	95.8	-17.4	Peak
V	318.022	56.4	16.9	73.3	95.8	-22.5	Peak
Н	636.043	35.7	23.8	59.5	75.8	-16.3	Peak
Н	954.056	31.4	28.3	59.7	75.8	-16.1	Peak
Н	#1272.005	59.3	-8.2	51.1	74.0	-22.9	Peak
Н	*#1590.041	65.6	-8.0	57.6	74.0	-16.4	Peak
V	1908.046	59.8	-7.2	52.6	75.8	-23.2	Peak
Н	*#2226.090	64.3	-6.7	57.6	74.0	-16.4	Peak
Н	2544.145	59.5	-4.7	54.8	75.8	-21.0	Peak
V	*#2862.141	62.3	-4.7	57.6	74.0	-16.4	Peak
V	3180.125	59.3	-3.3	56.0	75.8	-19.8	Peak

Remark: 1) * The emission is fall in the restricted band of FCC section 15.205.

Page 11 of 20

^{2) #} The emission is fall in the restricted band of RSS-Gen Table 6.

Report No. : AB0001833 Date : January 12, 2022

Model: KN-318

Polarization	Frequency (MHz)	Field Strength at 3m in Peak data (dBµV/m)	¹ Average Factor (dB)	² Average Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
Н	318.019	78.4	-4.5	73.9	75.8	-1.9
V	318.022	73.3	-4.5	68.8	75.8	-7.0
Н	636.043	59.5	-4.5	55.0	55.8	-0.8
Н	954.056	59.7	-4.5	55.2	55.8	-0.6
Н	#1272.005	51.1	-4.5	46.6	54.0	-7.4
Н	*#1590.041	57.6	-4.5	53.1	54.0	-0.9
V	1908.046	52.6	-4.5	48.1	55.8	-7.7
Н	*#2226.090	57.6	-4.5	53.1	54.0	-0.9
Н	2544.145	54.8	-4.5	50.3	55.8	-5.5
V	*#2862.141	57.6	-4.5	53.1	54.0	-0.9
V	3180.125	56.0	-4.5	51.5	55.8	-4.3

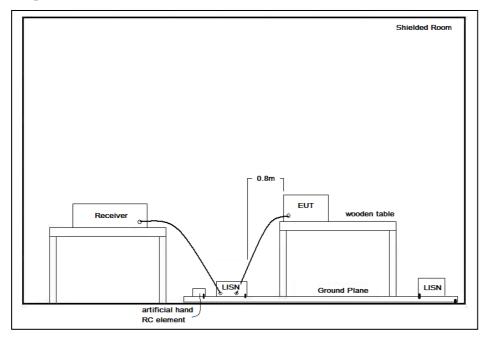
Remark: 1) Average factor is calculated from section 4.2 of this report.

- 2) The Average Field Strength (in Column 5) are calculated by Peak Field Strength (in Column 3) plus Average Factor (in Column 4).
- 3) # The emission is fall in the restricted band of RSS-Gen Table 6
- 4) * The emission is fall in the restricted band of FCC section 15.205.

Page 12 of 20

Report No. : AB0001833 Date : January 12, 2022

3 Description of the Line-conducted Test


3.1 Test Procedure

Conducted emissions measurements are investigated and also taken pursuant to the procedures of ANSI C63.10 - 2013. The EUT was setup as described in the procedures, and both lines were measured.

3.2 Test Result

No measurement is required as the EUT is a battery-operated product.

3.3 Test Setup

3.4 Graph and Table of Conducted Emission Measurement Data

Not Applicable

Page 13 of 20

Report No. : AB0001833 Date : January 12, 2022

4 Supplementary document

The following document were submitted by applicant, and for electronic filing, the document are saved with the following filenames:

Document	Filename
ID Label/Location	Label Artwork and Location.pdf
Block Diagram	Block Diagram.pdf
Schematic Diagram	Schematic.pdf
Users Manual	User Manual.pdf
Operational Description	Operation Description.pdf

4.1 Bandwidth

Appendices A1 is shown the worst case fundamental emission of three models is confined in the specified band. The 20dB bandwidth is 15.763kHz and 99% bandwidth is 22.775kHz. The bandwidth requirement is 0.25% of 318MHz = 795kHz. It also shows that the EUT met the FCC Part 15.231(c) and RSS-210 Annex A1.3 bandwidth requirement and frequency stability requirement.

4.2 Average Factor

All keys are tested and found that the "#" key is the worst case of average factor.

Note: Where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval.

Duty Cycle = (18.675 ms x 1 + 3.9125 ms x 2 + 1.4125 ms x 18 + 0.6875 ms x 11)/100 ms = 0.594875

Therefore, the average factor is found by $20 \log_{10} 0.594875 = -4.5 \text{ dB}$

Page 14 of 20

Report No. : AB0001833 Date : January 12, 2022

4.3 Transmission time

All keys are tested and following worst case found:

Worst case: the "#" key

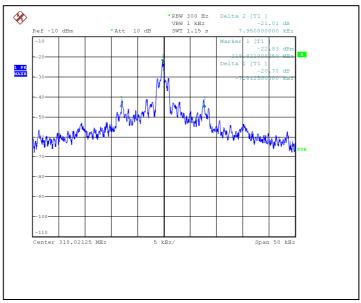
Duration of each transmission = 1.40s

The duration of the transmission is less than 5s after the transmission is activated by remote controller. An Appendices A3 is shown the EUT to comply with FCC part 15, section 15.231(a)(1) and RSS-210, Annex 1, section A1.1.1.

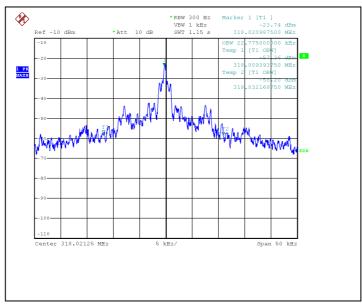
Page 15 of 20

Report No. : AB0001833 Date : January 12, 2022

5 Appendices


A1.	Bandwidth Plot	1	page
A2.	Average Factor Plot	2	pages
A3.	Transmission Time Plot	1	Page

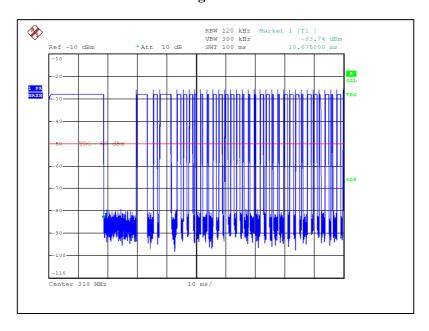
Page 16 of 20

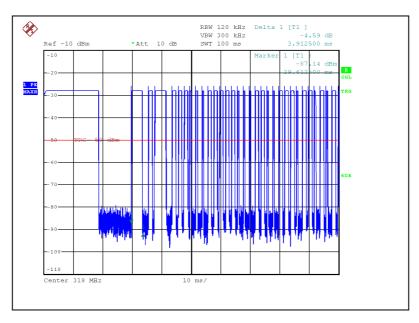


Report No. : AB0001833 Date : January 12, 2022

A1. Bandwidth Plot

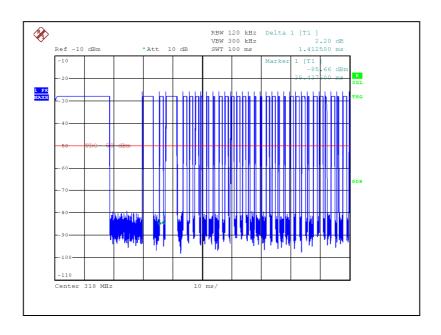
20dB bandwidth

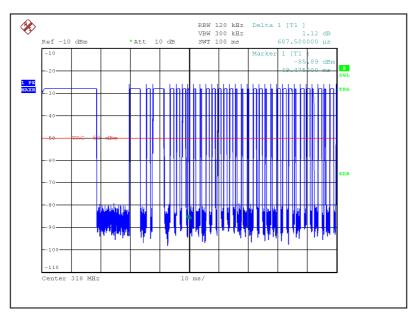

99% bandwidth


Page 17 of 20

Report No. : AB0001833 Date : January 12, 2022

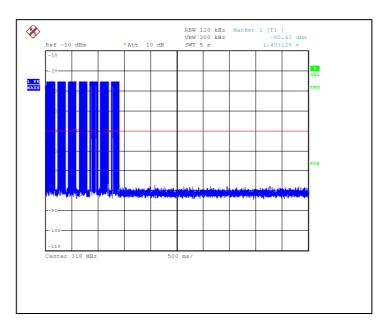
A2. Average Factor Plot





Page 18 of 20

Report No. : AB0001833 Date : January 12, 2022



Page 19 of 20

Report No. : AB0001833 Date : January 12, 2022

A3. Transmission Time Plot

***** End of Report *****

FCC ID: KUTKN-318 IC: 4454A-KN318X

Page 20 of 20