FCC 15.249 2.4 GHz Report

for

Chungear Industrial Co., Ltd.

106 Kanho Rd., Taichung, Taiwan

Product Name : Ceiling Fan Remote Controller

Model Name : MR101F-4

FCC ID : KUJCE10412

TABLE OF CONTENTS

Description	<u>Page</u>
TEST REPORT CERTIFICATION	4
1. REPORT HISTORY	
2. SUMMARY OF TEST RESULTS	5
3. GENERAL INFORMATION	
3.1. Description of EUT	
3.2. EUT Specifications Assessed in Current Report	
3.3. Antenna Information	
3.4. Test Configuration	
3.5. Setup Configuration	
3.6. Operating Condition of EUT	
3.7. Description of Test Facility	g
3.8. Measurement Uncertainty	g
4. MEASUREMENT EQUIPMENT LIST	10
4.1. Conducted Emission Measurement	10
4.2. Radiated Emission Measurement	10
5. CONDUCTED EMISSION MEASUREMET	
5.1. Block Diagram of Test Setup	
5.2. Power Line Conducted Emission Limit	
5.3. Test Procedure	
5.4. Conducted Emission Measurement Results	
6. RADIATED EMISSION MEASUREMENT	
6.1. Block Diagram of Test Setup	14
6.2. Radiated Emission Limits	
6.3. Test Procedure	
6.4. Measurement Result Explanation	
6.5. Test Results	
7. OCCUPIED BANDWIDTH 99% POWER MEASUREMEN	[T 30
9 DEVIATION TO TEST SPECIFICATIONS	32

APPENDIX A TEST PHOTOGRAPHS

TEST REPORT CERTIFICATION

Applicant : Chungear Industrial Co., Ltd.

Manufacturer #1 : Satellite Electronic (Zhongshan)., Ltd.

Manufacturer #2 : Chungear Industrial Co., Ltd.

Manufacturer #3 : Zhongshan Amity Electronic Ltd.

Product Name : Ceiling Fan Remote Controller

Model No. : MR101F-4

Serial No. : N/A

Power Supply : AC 120V/60Hz

Rules of Compliance and Measurement Standards:

FCC CFR 47 Part 15 Subpart C/Oct. 2014 ANSI C63.10-2013

AUDIX Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. **AUDIX Technology Corp.** does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Test: 2015. 12. 28~2016. 01. 12 Date of Report: 2016. 01. 14

Producer:

(Annie Yu/Administrator)

Signatory: Eln Cher

(Ben Cheng/Manager)

1. REPORT HISTORY

Revision	Date	Revision Summary	Report Number
0	2016. 01. 14	Original Report.	EM-F160027

2. SUMMARY OF TEST RESULTS

Rule	Description	Results
15.207	Conducted Emission	PASS
15.205/15.209/ 15.249(a)	Radiated Band Edge and Radiated Spurious Emission Fundamental Frequency	PASS
	Occupied Bandwidth 99% Power	Reference only
15.203	Antenna Requirement	PASS

3. GENERAL INFORMATION

3.1. Description of EUT

Product	Ceiling Fan Remote Controller
Model Number	MR101F-4
Serial Number	N/A
Applicant	Chungear Industrial Co., Ltd. 106 Kanho Rd., Taichung, Taiwan
Manufacture#1	Satellite Electronic (Zhongshan)., Ltd. 8 Chuang Ye Rd. Torch Development Zone Zhongshan. Guangdong. 528437 China
Manufacture#2	Chungear Industrial Co., Ltd. 106 Kanho Rd, Taichung ,Taiwan
Manufacture#3	Zhongshan Amity Electronic Ltd. No.16, Torch Hi-Tech Industrial Development Zone, Zhongshan City Guangdong Province China
RF Features	Bluetooth Low Energy (BLE)
Transmit Type	1T1R
Date of Receipt of Sample	2015. 12. 23

3.2. EUT Specifications Assessed in Current Report

Mode	Fundamental Range (MHz)	Channel Number	Modulation	Data Rate (Mbps)
BLE	2402-2480	40	GFSK	1

Channel List					
	BLE				
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)		
00	2402	20	2442		
01	2404	21	2444		
02	2406	22	2446		
03	2408	23	2448		
04	2410	24	2450		
05	2412	25	2452		
06	2414	26	2454		
07	2416	27	2456		
08	2418	28	2458		
09	2420	29	2460		
10	2422	30	2462		
11	2424	31	2464		
12	2426	32	2466		
13	2428	33	2468		
14	2430	34	2470		
15	2432	35	2472		
16	2434	36	2474		
17	2436	37	2476		
18	2438	38	2478		
19	2440	39	2480		

3.3. Antenna Information

Antenna Part Number	Manufacture	Antenna Type	Frequency	Max Gain (dBi)
		PCB Antenna	2.4GHz	4.33

3.4. Test Configuration

Mode	Duty Cycle (x)	T (ms)	Duty Cycle Factor (dB)
BLE	1	N/A	N/A

Note: When duty cycle is less than 98% (0.98) that duty cycle factor $10\log(1/x)$ is needed to add in conducted test items measured in average detector.

	AC Conduction
Test Case	Normal operation

Item		Mode	Data Rate	Test Channel
	Radiated Band Edge Note1	BLE	1Mbps	00/39
Radiated Spurious Emission Note1		BLE	1Mbps	00/19/39
Test Case	Fundamental Frequency	BLE	1Mbps	00/19/39
	Occupied Bandwidth 99% Power	BLE	1Mbps	00/19/39

Note 1:

Mobile Device

Portable Device, and 3 axis were assessed. The worst scenario for Radiated Spurious Emission as follow:

Lie

Side

Stand

3.5. Setup Configuration

3.5.1. EUT Configuration for Power Line and Radiated Emission

3.6. Operating Condition of EUT

To set EUT RF function under continues transmitting and choosing channel.

3.7. Description of Test Facility

Test Firm Name : AUDIX Technology Corporation

EMC Department

No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

Test Location & Facility : No. 8 Shielded Room

No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

Semi-Anechoic Chamber

No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

Fully Anechoic Chamber

No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

NVLAP Lab. Code : 200077-0

TAF Accreditation No : 1724

3.8. Measurement Uncertainty

Test Item	Frequency Range	Uncertainty
Conduction Test	150kHz~30MHz	±3.5dB
	30MHz~300MHz	± 3.64dB
Radiation Test (Distance: 3m)	300MHz~1000MHz	± 4.70dB
	Above 1GHz	± 1.60dB

Remark: Uncertainty = $ku_c(y)$

Test Item	Uncertainty
Occupied Bandwidth 99% Power	± 1kHz

4. MEASUREMENT EQUIPMENT LIST

4.1. Conducted Emission Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Test Receiver	R&S	ESR3	101774	2015. 02. 06	1 Year
2.	A.M.N.	R&S	ENV4200	100169	2015. 05. 08	1 Year
3.	L.I.S.N.	Kyoritsu	KNW-407	8-855-9	2015. 12. 23	1 Year
4.	Pulse Limiter	R&S	ESH3-Z2	100354	2015. 01. 17	1 Year

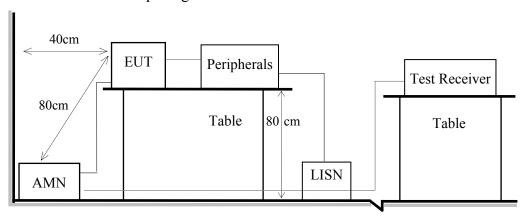
4.2. Radiated Emission Measurement

4.2.1. Frequency Range 30MHz~1000MHz (Semi-Anechoic Chamber)

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2015. 09. 14	1 Year
2.	Test Receiver	R & S	ESCS30	100338	2015. 06. 24	1 Year
3.	Amplifier	HP	8447D	2944A06305	2015. 02. 12	1 Year
4.	Bilog Antenna	CHASE	CBL6112D	33821	2015. 02. 27	1 Year

4.2.2. Above 1000MHz (Fully Anechoic Chamber)

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	E4446A	US44300366	2015. 08. 20	1 Year
2.	Amplifier	HP	8449B	3008A02678	2015. 03. 04	1 Year
3.	Horn Antenna	EMCO	3115	9609-4927	2015. 06. 22	1 Year
1 4	2.4GHz Notch Filter	K&L	7NSL10-244 1.5E130.5-00		2015. 07. 22	1 Year


File Number: C1M1512273 Report Number: EM-F160027

5. CONDUCTED EMISSION MEASUREMET

5.1. Block Diagram of Test Setup

Shielded Room Setup Diagram

Ground Plane

5.2. Power Line Conducted Emission Limit

Eraguanav	Conducted Limit				
Frequency	Quasi-Peak Level	Average Level			
150kHz ~ 500kHz	66 ~ 56 dBμV	$56 \sim 46 \; dB \mu V$			
500kHz ~ 5MHz	56 dBμV	46 dBμV			
5MHz ~ 30MHz	60 dBμV	50 dBμV			

Remark 1.: If the average limit is met when using a Quasi-Peak detector, the measurement using the average detector is not required.

2.: The lower limit applies to the band edges.

5.3. Test Procedure

- 5.3.1. To set up the EUT as indicated in ANSI C 63.10. The EUT was placed on the table which has 80 cm height to the ground and 40 cm distance to the conducting wall.
- 5.3.2. Power supplier of the EUT was connected to the AC mains through an Artificial Mains Network (A.M.N.).
- 5.3.3. The AC power supplies to all peripheral devices must be provided through line impedance stabilization network (L.I.S.N.)
- 5.3.4. Checking frequency range from 150 kHz to 30 MHz and record the emission which does not have 20 dB below limit.

5.4. Conducted Emission Measurement Results PASSED.

Test Date	2016/01/12	Temp./Hum.	26 /45%
Test Voltage	A	C 120V, 60Hz	

AUDIX Technology Corp. EMC Department
No.53-11, Dingfu, Linkou Dist., New Taipei City
244, Taiwan R.O.C.
Tel:+886-2-26092133 Fax:+886-2-26099303

Email:emc@audixtech.com

Data: 1 File: D:\test data\REPORT\2015\C1M1512XXX\C1M1512273-C-D.EM6 (2) 80 Level (dBuV) Date: 2016-01-12 FCC PART 15C 60 FCC PART 15C (AV) 50 40 30 20 10 0.5 2 5 20 30 Frequency (MHz)

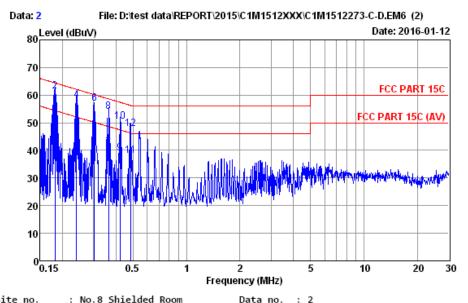
Site no. : No.8 Shielded Room Data no. : 1
Condition : ENV4200 100169 Phase : NEUTRAL
Limit : FCC PART 15C

Env. / Ins. : 26*C / 45% ESR3 (1774) Engineer : Tim

EUT : MR101F-4 Power Rating : 120Vac/60Hz Test Mode : Operating

	Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Pulse Att. (dB)	Reading (dBµV)	Emission Level (dBµV)	Limits (dBμV)	Margin (dB)	Remark
1	0.182	11.31	0.03	9.87	26.02	47.23	54.42	7.19	Average
2	0.182	11.31	0.03	9.87	41.08	62.29	64.42	2.13	QP
3	0.242	11.18	0.03	9.87	25.04	46.12	52.04	5.92	Average
4	0.242	11.18	0.03	9.87	38.93	60.01	62.04	2.03	QP
5	0.303	11.10	0.03	9.87	23.94	44.94	50.15	5.21	Average
6	0.303	11.10	0.03	9.87	36.96	57.96	60.15	2.19	QP
7	0.363	11.03	0.03	9.87	22.45	43.38	48.65	5.27	Average
8	0.363	11.03	0.03	9.87	34.86	55.79	58.65	2.86	QP
9	0.544	10.98	0.04	9.88	20.28	41.18	46.00	4.82	Average
10	0.544	10.98	0.04	9.88	29.86	50.76	56.00	5.24	QP
11	0.728	10.97	0.04	9.88	17.29	38.18	46.00	7.82	Average
12	0.728	10.97	0.04	9.88	24.37	45.26	56.00	10.74	QP

Remarks: 1. Emission Level= AMN Factor + Cable Loss + Pulse Att. + Reading.


AUDIX Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan Tel: +886 2 26099301 Fax: +886 2 26099303

AUDIX Technology Corp. EMC Department No.53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan R.O.C.

Tel:+886-2-26092133 Fax:+886-2-26099303

Email:emc@audixtech.com

Site no. : No.8 Shielded Room Condition : ENV4200 100169 Limit : FCC PART 15C

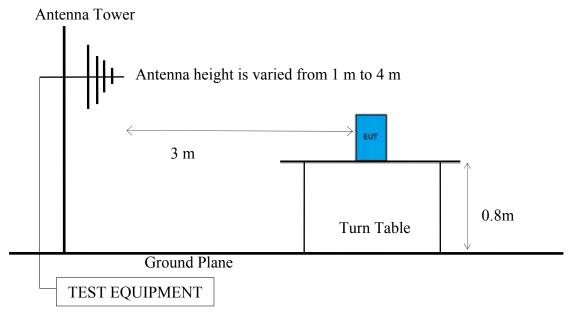
V4200 100169 Phase : LINE

Engineer : Tim

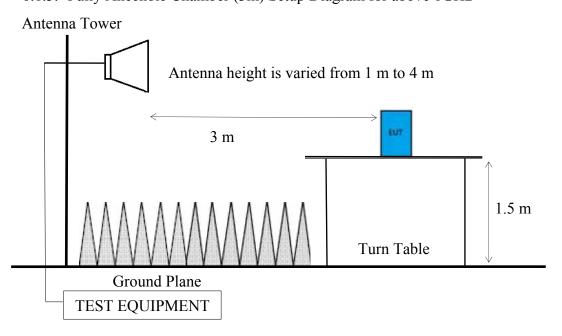
Env. / Ins. : 26*C / 45% ESR3 (1774)

EUT : MR101F-4

Power Rating : 120Vac/60Hz Test Mode : Operating


	Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Pulse Att. (dB)	Reading (dBμV)	Emission Level (dBµV)	Limits (dBμV)	Margin (dB)	Remark
1	0.182	10.71	0.03	9.87	25.15	45.76	54.42	8.66	Average
2	0.182	10.71	0.03	9.87	40.81	61.42	64.42	3.00	QP
3	0.240	10.65	0.03	9.87	22.47	43.02	52.08	9.06	Average
4	0.240	10.65	0.03	9.87	37.68	58.23	62.08	3.85	QP
5	0.302	10.60	0.03	9.87	22.01	42.51	50.18	7.67	Average
6	0.302	10.60	0.03	9.87	36.36	56.86	60.18	3.32	QP
7	0.364	10.57	0.03	9.87	20.54	41.01	48.64	7.63	Average
8	0.364	10.57	0.03	9.87	33.53	54.00	58.64	4.64	QP
9	0.421	10.55	0.03	9.87	18.38	38.83	47.42	8.59	Average
10	0.421	10.55	0.03	9.87	30.11	50.56	57.42	6.86	QP
11	0.486	10.55	0.03	9.88	17.57	38.03	46.23	8.20	Average
12	0.486	10.55	0.03	9.88	27.30	47.76	56.23	8.47	QР

Remarks: 1. Emission Level= AMN Factor + Cable Loss + Pulse Att. + Reading.


6. RADIATED EMISSION MEASUREMENT

6.1. Block Diagram of Test Setup

- 6.1.1. Block Diagram of EUT Indicated as section 3.6
- 6.1.2. Semi-Anechoic Chamber (3m) Setup Diagram for 30-1000 MHz

6.1.3. Fully Anechoic Chamber (3m) Setup Diagram for above 1GHz

File Number: C1M1512273 Report Number: EM-F160027

6.2. Radiated Emission Limits

6.2.1. General Limit

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with section 6.2.2. Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Eraguanay (MHz)	Distance (m)	Field Strengths Limits			
Frequency (MHz)			$dB\mu V/m$		
30 ~ 88	3	100	40.0		
88 ~ 216	3	150	43.5		
216 ~ 960	3	200	46.0		
Above 960	3	500	54.0		
Above 1000	2	74.0 dBμV/m (Peak)			
Above 1000	3	54.0 dBμV/m (Average)			

Remark: (1) $dB\mu V/m = 20 \log (\mu V/m)$

- (2) The tighter limit applies to the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) Fundamental and emission fall within operation band are exempted from this section.
- (5) Pursuant to ANSI C63.10: 6.6.4.3, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

6.2.2. Limite for Fundamental & Harmonics Frequency

Fundamental	Field stren	gth of fundamental	Field strength of harmonics		
Frequency	mV/m $dB\mu V/m$		μV/m	$dB\mu V/m$	
902-928MHz	50	114 (Peak)	500	74 (Peak)	
902-928WIIIZ	30	94 (Average)	300	54 (Average)	
2400-2483.5MHz	50	114 (Peak)	500	74 (Peak)	
2400-2483.3MITZ	30	94 (Average)	300	54 (Average)	
5725-5875MHz	50	114 (Peak)	500	74 (Peak)	
3/23-38/3WITZ	30	94 (Average)	300	54 (Average)	
24.0-24.25GHz	250	128 (Peak)	2500	88 (Peak)	
24.0-24.23GHZ	230	108 (Average)	2300	68 (Average)	

Remark: $mV/m = 1000 \mu V/m$; $dB\mu V/m = 20 \log (\mu V/m)$

6.3. Test Procedure

The EUT setup on the turn table which has 1.5 m height to the ground. The turn table rotated 360 degrees and antenna varied from 1 m to 4 m to find the maximum emission level. Both horizontal and vertical polarization are required. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

Frequency below 1 GHz:

Spectrum Analyzer is used for pre-testing with following setting:

- (1) RBW = 120KHz
- (2) $VBW \ge 3 \times RBW$.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the Q.P. detector is not required. Otherwise using Q.P. for finally measurement.

Frequency above 1GHz to 10th harmonic:

Peak Detector:

- (1) RBW = 1MHz
- (2) $VBW \ge 3 \times RBW$.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the average detector is not required. Otherwise using average for finally measurement.

Average Measurement:

Option 1:

- (1) RBW = 1 MHz
- (2) VBW = 1/T or 10Hz when duty cycle > 98%.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.

Option 2:

Average Emission Level= Peak Emission Level+ D.C.C.F.

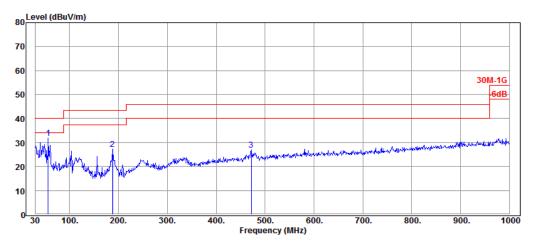
6.4. Measurement Result Explanation

Peak Emission Level=Antenna Factor + Cable Loss + Meter Reading Average Emission Level l=Antenna Factor + Cable Loss + Meter Reading Average Emission Level= Peak Emission Level+ DCCF Duty Cycle Correction Factor (DCCF)= 20log (TX on/TX on+off) presented in section 3.4

6.5. Test Results

PASSED.

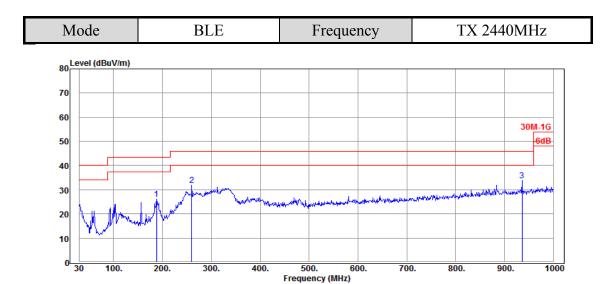
Test Date	2016/01/07	Temp./Hum.	22~24	/56~58%
Test Voltage		AC 120V, 60Hz		


6.5.1. Emissions within Restricted Frequency Bands

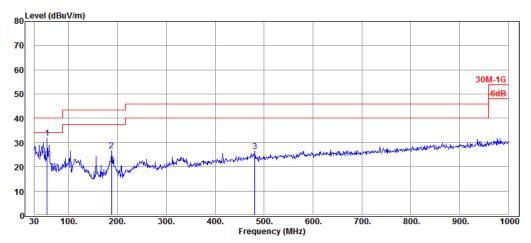
6.5.1.1. Frequency Below 1 GHz

80 Level (dBuV/m)					
70						
60						30M-1G
50						6dB
40						3
30	2			the same and a larger property	hit was a way of the	· Amanda
20	handle har	Martin and Strategic Strat	Matter of the state of the stat	median and ding a		
10	*,					

Antenna at Horizontal Polarization

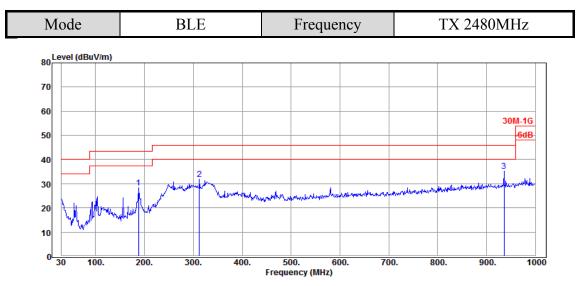

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
188.11	9.19	3.89	13.97	27.05	43.50	16.45	Peak
259.89	12.55	4.40	14.46	31.41	46.00	14.59	Peak
935.98	20.77	7.75	5.43	33.95	46.00	12.05	Peak

Antenna at Vertical Polarization

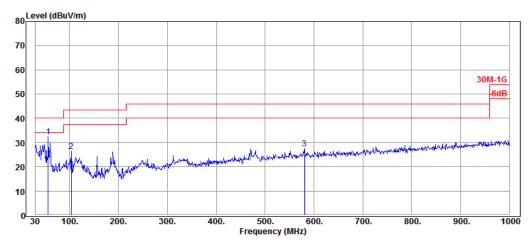

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(\text{dB}\mu\text{V})$	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
56.19	7.02	2.69	22.12	31.83	40.00	8.17	Peak
188.11	9.19	3.89	14.06	27.14	43.50	16.36	Peak
471.35	16.60	6.24	4.13	26.97	46.00	19.03	Peak

File Number: C1M1512273 Report Number: EM-F160027

Antenna at Horizontal Polarization


Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
188.11	9.19	3.89	12.92	26.00	43.50	17.50	Peak
259.89	12.55	4.40	15.00	31.95	46.00	14.05	Peak
935.98	20.77	7.75	5.28	33.80	46.00	12.20	Peak

Antenna at Vertical Polarization

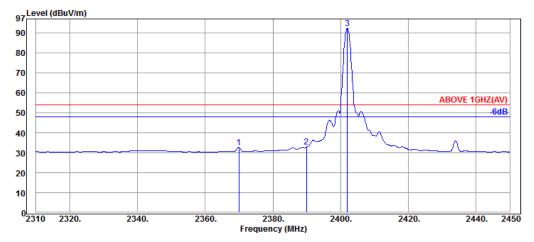

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
56.19	7.02	2.69	22.17	31.88	40.00	8.12	Peak
188.11	9.19	3.89	13.54	26.62	43.50	16.88	Peak
481.05	16.71	6.30	3.42	26.43	46.00	19.57	Peak

Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
188.11	9.19	3.89	15.27	28.35	43.50	15.15	Peak
312.27	13.46	4.79	13.60	31.85	46.00	14.15	Peak
935.98	20.77	7.75	6.64	35.16	46.00	10.84	Peak

Antenna at Vertical Polarization

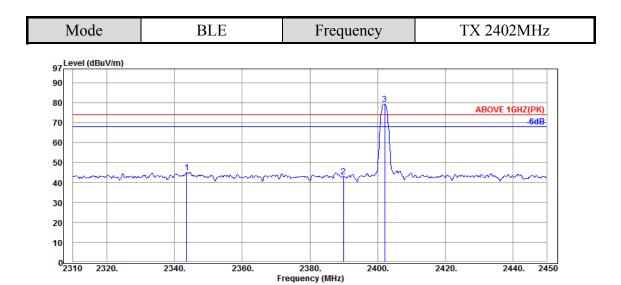
Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
56.19	7.02	2.69	22.69	32.40	40.00	7.60	Peak
103.72	11.20	3.25	11.84	26.29	43.50	17.21	Peak
580.96	18.08	6.49	2.86	27.43	46.00	18.57	Peak


6.5.1.2. Frequency Above 1 GHz to 10th harmonics

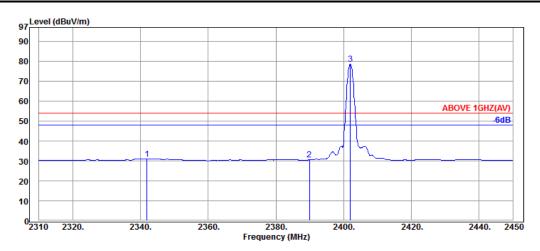
Band Edge:

97 Level (dBuV/m	1)				3		
90							
80					l.	ABOVE 1	IGHZ(PK
70							-6dE
60							
50				كمحسم	1		
40 ~~~~~	many	~~~~~~~~	~~~~~	 2/W/ 	" What	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·~~
30							
20							
10							

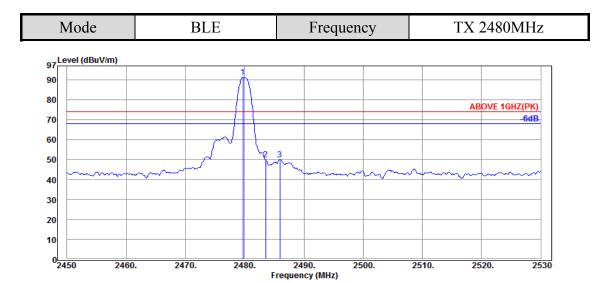
Antenna at Horizontal Polarization


Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
2382.52	32.13	5.71	6.08	43.92	74.00	30.08	Peak
2389.94	32.16	5.72	5.38	43.26	74.00	30.74	Peak
2402.26	32.16	5.72	55.28	93.16			Peak

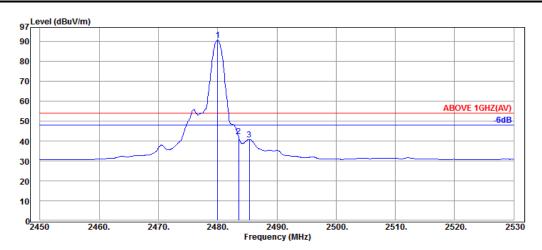
Antenna at Horizontal Polarization


Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
2369.92	32.13	5.71	-5.02	32.82	54.00	21.18	Average
2389.94	32.16	5.72	-5.02	32.86	54.00	21.14	Average
2401.98	32.16	5.72	54.40	92.28			Average

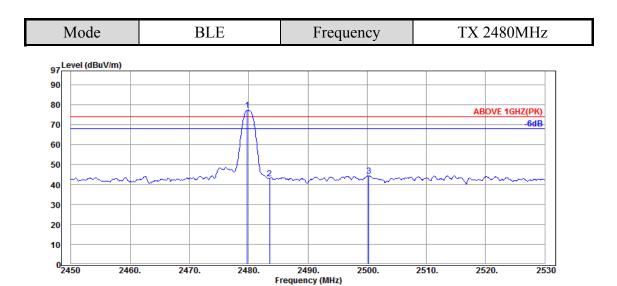
Antenna at Vertical Polarization


Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Datastar
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	Detector
2343.60	32.08	5.68	7.25	45.01	74.00	28.99	Peak
2389.94	32.16	5.72	5.19	43.07	74.00	30.93	Peak
2402.12	32.16	5.72	41.45	79.33			Peak

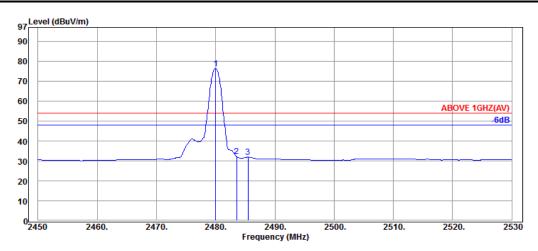
Antenna at Vertical Polarization


Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
2341.92	32.08	5.68	-6.73	31.03	54.00	22.97	Average
2389.94	32.16	5.72	-7.33	30.55	54.00	23.45	Average
2401.98	32.16	5.72	40.65	78.53			Average

Antenna at Horizontal Polarization


Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Bettetter
2479.68	32.28	5.82	53.38	91.48			Peak
2483.52	32.28	5.82	11.76	49.86	74.00	24.14	Peak
2485.92	32.28	5.82	11.86	49.96	74.00	24.04	Peak

Antenna at Horizontal Polarization


Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Datastar
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	Detector
2480.00	32.28	5.82	52.55	90.65			Average
2483.52	32.28	5.82	4.13	42.23	54.00	11.77	Average
2485.36	32.28	5.82	2.65	40.75	54.00	13.25	Average

Antenna at Vertical Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	(dB)	Detector
2479.76	32.28	5.82	39.26	77.36			Peak
2483.52	32.28	5.82	4.85	42.95	74.00	31.05	Peak
2500.32	32.30	5.84	6.14	44.28	74.00	29.72	Peak

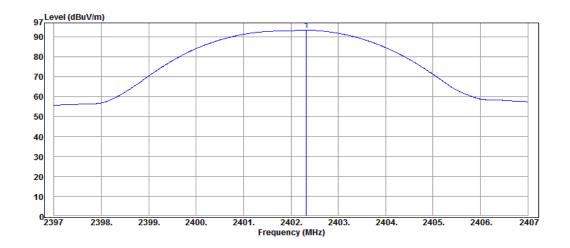
Antenna at Vertical Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2480.00	32.28	5.82	38.38	76.48			Average
2483.52	32.28	5.82	-5.89	32.21	54.00	21.79	Average
2485.44	32.28	5.82	-6.24	31.86	54.00	22.14	Average

6.5.2. Emissions outside the frequency band:

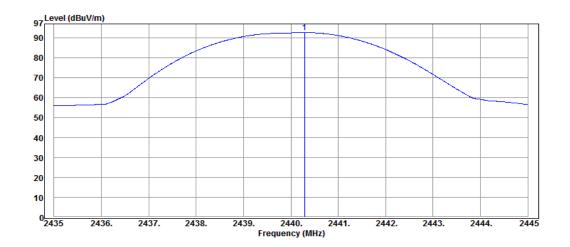
T1	he emis	ssion	s (up to	25GHz)	not	reported for	there is no e	mission t	e found.
Mode			BLE			Frequency	T	X 2402M	IHz
Antenna a	ıt Hori	zont	al Polar	ization					
Emission Frequency	Anter		Cable Loss	Mete Readii		Emission Level	Limits	Margin	Detector
(MHz)	(dB/r	n)	(dB)	(dBµV	V)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
4805.00 4860.00	34.2 34.2		7.86 8.23	8.72 4.38		50.80 46.85	54.00 54.00	3.20 7.15	Peak Peak
Antenna a	ıt Verti	ical]	Polariza	ition					
Emission Frequency	Anter Facto		Cable Loss	Mete Readii		Emission Level	Limits	Margin	Detector
(MHz)	(dB/r	n)	(dB)	(dBµV	V)	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
4805.00	34.2	2	7.86	5.72		47.80	54.00	6.20	Peak
Mode			BLE			Frequency	T	X 2440M	IHz
Mode Antenna a	at Hori	zont		rization		Frequency	T	X 2440M	IHz
	Anter Factor	nna		rization Mete Readii		Frequency Emission Level	Limits	X 2440M Margin	IHz Detector
Antenna a Emission	Anter	nna or	al Polar	Mete	ng	Emission			
Antenna a Emission Frequency	Anter Facto	nna or n)	al Polar Cable Loss	Mete Readii	ng V)	Emission Level	Limits	Margin	
Antenna a Emission Frequency (MHz) 4860.00	Anter Facto (dB/r 34.2 34.2	nna or n) 4	Cable Loss (dB) 8.23 8.35	Mete Readin (dBµV 3.31 8.05	ng V)	Emission Level (dBµV/m) 45.78	Limits (dBµV/m) 54.00	Margin (dB) 8.22	Detector Peak
Antenna a Emission Frequency (MHz) 4860.00 4880.00	Anter Facto (dB/r 34.2 34.2	nna or n) 4 5 ical l	Cable Loss (dB) 8.23 8.35	Mete Readin (dBµV 3.31 8.05	ng V)	Emission Level (dBµV/m) 45.78	Limits (dBµV/m) 54.00	Margin (dB) 8.22	Detector Peak
Antenna a Emission Frequency (MHz) 4860.00 4880.00 Antenna a Emission	Anter Facto (dB/r 34.2 34.2 at Verti	nna or n) 4 5 ical	Cable Loss (dB) 8.23 8.35 Polariza Cable	Mete Readin (dBµV 3.31 8.05	ng V) er	Emission Level (dBµV/m) 45.78 50.65	Limits (dBµV/m) 54.00 54.00	Margin (dB) 8.22 3.35	Detector Peak Peak

File Number: C1M1512273 Report Number: EM-F160027


Mode		BLE			Frequency	T	X 2480N	ſНz
Antenna a	t Horizon	ıtal Polar	rization					
Emission Frequency	Antenna Factor	Cable Loss	Mete Readir		Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV	V)	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
4860.00	34.24	8.23	3.42		45.89	54.00	8.11	Peak
4960.00	34.29	8.68	6.49		49.46	54.00	4.54	Peak
Antenna a	it Vertical	Polariza	ition					
Emission Frequency	Antenna Factor	Cable Loss	Mete Readir	-	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV	V)	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
4960.00	34.29	8.68	3.83		46.80	54.00	7.20	Peak

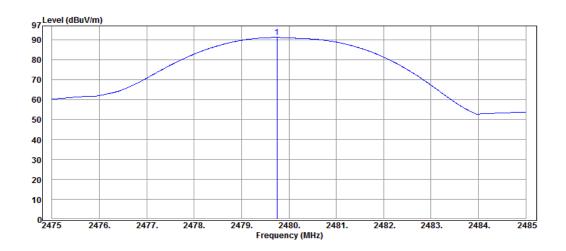
6.5.3. Fundamental Frequency:

Mode	BLE	Frequency	TX 2402MHz
------	-----	-----------	------------


Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor		Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
2402.33	32.16	5.72	55.43	93.31	94.00	0.69	Peak

Remark: Horizontal is the strongest polarization and peak value has complied with limit, so vertical won't be listed in test report.


Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor		Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
2440.29	32.23	5.78	54.61	92.62	94.00	1.38	Peak

Remark: Horizontal is the strongest polarization and peak value has complied with limit, so vertical won't be listed in test report.

Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor		Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
2479.75	32.28	5.82	53.08	91.18	94.00	2.82	Peak

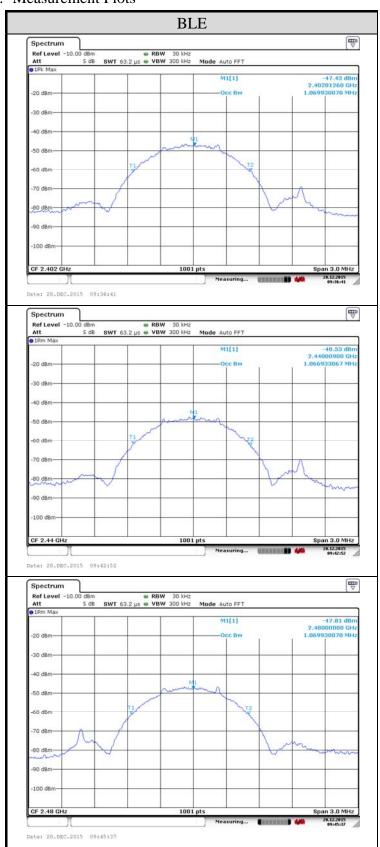
Remark: Horizontal is the strongest polarization and peak value has complied with limit, so vertical won't be listed in test report.

7. OCCUPIED BANDWIDTH 99% POWER MEASUREMENT

Test Date	2015/12/28	Temp./Hum.	23 /52%
Cable Loss		Test Voltage	AC 120V, 60Hz

7.1.1. Occupied Bandwidth 99% Power Result

Modulation Type	Centre Frequency (MHz)	Occupied Bandwidth 99% Power (MHz)
	2402	1.0699
BLE	2440	1.0669
	2480	1.0699



AUDIX Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan

Tel: +886 2 26099301 Fax: +886 2 26099303

7.1.2. Measurement Plots

8. DEVIATION TO TEST SPECIFICATIONS

[NONE]