

FCC Certification Test Report for Broadcast Sports, Inc. FCC ID: KTB-SMF-XMTR

May 6, 2004

Prepared for:

Broadcast Sports, Inc. 1360 Blair Drive Odenton, MD 21113

Prepared By:

Washington Laboratories, Ltd. 7560 Lindbergh Drive Gaithersburg, Maryland 20879

FCC Certification Test Program

FCC Certification Test Report for the Broadcast Sports, Inc. Smurf Video Transmitter FCC ID: KTB-SMF-XMTR

> **May 6, 2004** WLL JOB# 7961

Prepared by: Michael Violette President

Reviewed by: Greg Snyder. Chief EMC Engineer

Abstract

This report has been prepared on behalf of Broadcast Sports, Inc. to support the attached Application for Equipment Authorization. The test report and application are submitted for a Licensed Non-Broadcast Station Transmitter under Part 74 F of the FCC Rules and Regulations. This Federal Communication Commission (FCC) Certification Test Report documents the test configuration and test results for a Broadcast Sports, Inc. Smurf Video Transmitter.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

The Broadcast Sports, Inc. Smurf Video Transmitter complies with the limits for a Licensed Non-Broadcast Station Transmitter device under Part 74 F of the FCC Rules and Regulations.

Table of Contents

Al	ostra	ct	. ii
1		Introduction	1
	1.1	Compliance Statement	1
	1.2	Test Scope	1
	1.3	Contract Information	1
	1.4	Test Dates	1
	1.5	Test and Support Personnel	1
	1.6	Abbreviations	2
2		Equipment Under Test	3
	2.1	EUT Identification & Description	3
	2.2	Test Configuration	4
	2.3	Testing Algorithm	4
	2.4	Test Location	4
	2.5	Measurements	4
	2.	.5.1 References	4
	2.6	Measurement Uncertainty	5
3		Test Equipment	6
4		Test Results	7
	4.1	RF Power Output: (FCC Part §2.1046)	7
	4.2	Modulation Characteristics (FCC Part §2.201)	7
	4.3	Emission Designator	11
	4.4	Occupied Bandwidth: (FCC Part §2.1049)	13
	4.5	Emissions and emission limitations to § 74.637	16
	4.6	Radiated Spurious Emissions: (FCC Part §2.1053)	25
	4.	.6.1 Test Procedure	25
	4.7	Frequency Stability: (FCC Part §2.1055)	29

List of Tables

Table 1. Device Summary	4
Table 2: Test Equipment List	6
Table 3. RF Power Output	7
Table 4. Deviation Measurements	9
Table 5. Modulation Parameters	12
Table 6. Occupied Bandwidth Results	15
Table 7: Radiated Emission Test Data: Channel 1	26
Table 8: Radiated Emission Test Data: Channel 8	27
Table 9: Radiated Emission Test Data: Channel 11	28
Table 10. Frequency Deviation as a Function of Voltage	30

List of Figures

Figure 1. Modulated Carrier, Channel 1	9
Figure 2. Modulated Carrier, Channel 8	. 10
Figure 3. Modulated Carrier, Channel 11	. 11
Figure 4. Occupied Bandwidth, Channel 1	. 13
Figure 5. Occupied Bandwidth, Channel 8	. 14
Figure 6. Occupied Bandwidth, Channel 11	. 15
Figure 7. Emissions Mask, Channel 1	. 16
Figure 8. Emissions Mask, Channel 1	. 17
Figure 9. Emissions Mask, Channel 1	. 18
Figure 10. Emissions Mask, Channel 8	. 19
Figure 11. Emissions Mask, Channel 8	. 20
Figure 12. Emissions Mask, Channel 8	. 21
Figure 13. Emissions Mask, Channel 11	. 22
Figure 14. Emissions Mask, Channel 11	. 23
Figure 15. Emissions Mask, Channel 11	. 24

1 Introduction

1.1 Compliance Statement

The Broadcast Sports, Inc. Smurf Video Transmitter complies with the limits for a Licensed Non-Broadcast Station Transmitter device under Part 74F of the FCC Rules and Regulations.

1.2 Test Scope

Tests for radiated and conducted emissions were performed. All measurements were performed according to the 2001 version of ANSI C63.4. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

1.3 Contract Information

Customer:	Broadcast Sports, Inc. 1360 Blair Drive
	Odenton, MD 21113
Purchase Order Number:	4472DW
Quotation Number:	60412-A

1.4 Test Dates

Testing was performed from February 23, 2004 to March 11, 2004.

1.5 Test and Support Personnel

Washington Laboratories, LTD James Ritter

1.6 Abbreviations

А	Ampere
Ac	alternating current
AM	Amplitude Modulation
Amps	Amperes
b/s	bits per second
BW	Bandwidth
CE	Conducted Emission
cm	Centimeter
CW	Continuous Wave
dB	Decibel
dc	direct current
EMI	Electromagnetic Interference
EUT	Equipment Under Test
FM	Frequency Modulation
G	giga - prefix for 10 ⁹ multiplier
Hz	Hertz
IF	Intermediate Frequency
k	kilo - prefix for 10^3 multiplier
М	Mega - prefix for 10^6 multiplier
m	Meter
μ	micro - prefix for 10 ⁻⁶ multiplier
NB	Narrowband
LISN	Line Impedance Stabilization Network
RE	Radiated Emissions
RF	Radio Frequency
rms	root-mean-square
SN	Serial Number
S/A	Spectrum Analyzer
V	Volt

2 Equipment Under Test

2.1 EUT Identification & Description

The SMF-Xmtr is a portable video transmitter specifically designed to meet the growing needs of the mobile television broadcast industry. The unit is designed to be Certificated per CFR 47, Part 74, Subpart F and functions as a stand-alone transmitter for a TV ENG station. The transmitter has 16 preset channels that are factory tuned to any frequency between 1999 to 2496 MHz in 250 kHz steps in accordance with FCC specifications.

The SMF-Xmtr has one video and one audio input. The programmable audio sub-carrier provides for the transmission of voice or telemetry. A TTL level interface enables the unit to be remotely operated and provides control of all internal functions and status monitoring.

SMF-XMTR RF FRONT VIEW

ITEM	DESCRIPTION
Manufacturer:	Broadcast Sports, Inc.
FCC ID Number	KTB-SMF-XMTR
EUT Name:	Video Transmitter
Model:	Smurf
FCC Rule Parts:	§74 F
Frequency Range:	1999M – 2492MHz
Maximum Output Power:	250mW
Modulation:	FM
Necessary Bandwidth:	8.84 MHz
Keying:	Continuous
Type of Information:	Video and Audio
Number of Channels:	16 (0-15)
Power Output Level	Fixed
Antenna Type	Connector
Frequency Tolerance:	>0.005%
Emission Type(s):	FM
Interface Cables:	1 Power/Audio/Remote
	1 Video in
	1 RF out
Power Source & Voltage:	12Vdc from vehicle
Emissions Designator	8M84F3W

Table 1. Device Su	immarv
--------------------	--------

2.2 Test Configuration

The EUT was configured with the required cables, power supply, and a Tektronix NTSC Signal Generator.

2.3 Testing Algorithm

The Smurf was operated continuously by supplying an NTSC signal to the input, adjusted for peak signal, which modulated the carrier.

Worst-case emission levels are provided in the test results data.

2.4 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

2.5 Measurements

2.5.1 References

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

Land Mobile FM or PM Communications Equipment Measurement and Performance Standards (ANSI/TIA/EIA-603-93)

2.6 Measurement Uncertainty

All results reported herein relate only to the equipment tested. For the purposes of the measurements performed by Washington Laboratories, the measurement uncertainty is ± 2.3 dB. This has been calculated for a *worst-case situation* (radiated emissions measurements performed on an open area test site).

The following measurement uncertainty calculation is provided:

Total Uncertainty =
$$(A^2 + B^2 + C^2)^{1/2}/(n-1)$$

where:

A = Antenna calibration uncertainty, in dB = 2 dB

B = Spectrum Analyzer uncertainty, in dB = 1 dB

C = Site uncertainty, in dB = 4 dB

n = number of factors in uncertainty calculation = 3

Thus, Total Uncertainty = $0.5 (2^2 + 1^2 + 4^2)^{1/2} = \pm 2.3 \text{ dB}.$

3 Test Equipment

Table 2 shows a list of the test equipment used for measurements along with the calibration information.

Equipment	Serial Number	Calibration Due
Sunol JB1 Biconilog Antenna	A090501	10/21/04
ARA DRG118/A Microwave Horn Antenna	1010	2/17/06
ARA Biconilog Antenna	1044	6/20/2004
A.H. Systems Log Periodic Antenna: SAS-200/518	117	3/11/2006
Narda Standard Gain Horn Antenna: V638		7/22/2004
Hewlett-Packard Spectrum Analyzer: HP 8568B (Site 1)	2928A04750	7/02/04
Hewlett-Packard Quasi-Peak Adapter: HP 85650A (Site 1)	3303A01786	7/08/04
Hewlett-Packard RF Preselector: HP 85685A (Site 1)	3146A01296	7/02/04
Hewlett-Packard Spectrum Analyzer: HP 8593A	3009A00739	6/25/04
Hewlett-Packard Spectrum Analyzer: HP 8563A	500	4/04/04
Hewlett-Packard Microwave Preamp: 8449B	3008A00729	2/11/05
A.H. Systems Pre-Amplifier 18GHz-40 GHz	126	1/6/2005
Hewlett-Packard Synth. Signal Generator: 8672A	2311A03131	3/23/2005
Hewlett-Packard Power Meter: 438A	3048U02786	3/10/2005
Hewlett-Packard 30dB Attenuator: 8481B	331BA04749	3/10/2005
Hewlett-Packard Power Head: 8481B	331BA04749	3/10/2005
Solar Electronics LISN 8012-50-R-24-BNC	8379493	6/30/04

 Table 2: Test Equipment List

4 Test Results

4.1 RF Power Output: (FCC Part §2.1046)

The output from the transmitter was connected to a power meter and the output power measured.

Channel and/or Frequency	Measured	Measured	Rated	Limit
	Level	Level		
	(dBm)	(Watts)	(Watts)	(Watts)
Channel 1- 1999 MHz	19.80	0.095	0.250	12
Channel 8- 2458 MHz	22.05	0.160	0.250	12
Channel C – 2316 MHz	23.8	0.240	0.250	12

 Table 3. RF Power Output

4.2 Modulation Characteristics (FCC Part §2.201)

To determine the deviation frequency, an RF signal generator was input to the modulation input of the transmitter. The transmitter output was connected to a spectrum analyzer. The 1Vp-p sinewave modulating frequency was increased and the carrier observed on the spectrum analyzer.

As the modulation frequency is increased, the fundamental signal was observed for nulls. At the null the side lobes were measured and compared to the Bessel Function chart for a modulation index of 2.4. Only one null was located as the modulation frequency was scanned up through 15MHz.

The spectrum was plotted at each of the three carrier frequencies measured and the first four Bessel terms measured. Adjusting the modulation frequency for a null in carrier and where the Bessel functions yield:

Deviations	for	each	channel	are	recorded	in
Jc4 = -23.9 dB						
Jc3 = -14.1 dB						
Jc2 = -7.3 dB						
Jc1 = -5.8 dB						

Table 4.

Table 4.	Deviation Measurements
----------	-------------------------------

Frequency	Deviation Frequency (MHz)
Channel 1: 1999 MHz	1.297
Channel 8: 2454 MHz	1.288
Channel 11: 2316 MHz	1.304

Figure 1. Modulated Carrier, Channel 1

Figure 2. Modulated Carrier, Channel 8

Figure 3. Modulated Carrier, Channel 11

4.3 Emission Designator

The emission designator is determined from the necessary bandwidth, the type of modulation and the information conveyed in the signal.

Necessary bandwidth is determined from:

Bn = 2M + 2 DK

Where,

M = Deviation = 1.304 MHz

D = Deviation X Modulation Index = 1.304 MHz X 2.4 = 3.13MHz

And K=1

Parameter	Result
Modulation Index	2.4%
(from Bessel function plot)	
M Deviation	1.304MHz
D = 2.4M	3.13MHz

Thus,

Bn = 2M + 2DK = (2 X 1.304) + (2 X 3.13) = 8.84MHz

First Symbol: F (Frequency Modulation)

Second Symbol: 3 (Single channel carrying analogue information)

Third Symbol: W (video and audio)

Emission Designator: 8M84F3W

4.4 Occupied Bandwidth: (FCC Part §2.1049)

Occupied bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer.

At full modulation, the occupied bandwidth was measured with the following results:

Figure 4. Occupied Bandwidth, Channel 1

Figure 5. Occupied Bandwidth, Channel 8

Figure 6. Occupied Bandwidth, Channel 11

Table 6 provides a summary of the Occupied Bandwidth Results.

Frequency	Occupied Bandwidth
	(20dB)
Low Channel: 1999MHz	8.5 MHz
Mid Channel: 2315.3MHz	8.4 MHz
High Channel: 2454MHz	8.43 MHz

Table 6. Occupied Bandwidth Results	Table 6.	Occupied	Bandwidth	Results
-------------------------------------	----------	----------	------------------	----------------

4.5 Emissions and emission limitations to § 74.637

Emissions limitations are specified in § 74.637. The output of the transmitter was connected to the input of the spectrum analyzer and the transmitter modulated. The emissions from 30 MHz to the tenth harmonic of the operating frequency were measured and provided in the following figures.

For the emission mask measurements the resolution bandwidth was set to 100kHz and the video bandwidth was set to 3MHz.

Figure 7. Emissions Mask, Channel 1

Figure 8. Emissions Mask, Channel 1

Figure 9. Emissions Mask, Channel 1

Figure 10. Emissions Mask, Channel 8

Figure 11. Emissions Mask, Channel 8

Figure 12. Emissions Mask, Channel 8

Figure 13. Emissions Mask, Channel 11

Figure 14. Emissions Mask, Channel 11

Figure 15. Emissions Mask, Channel 11

4.6 Radiated Spurious Emissions: (FCC Part §2.1053)

The EUT must comply with requirements for radiated spurious emissions.

4.6.1 Test Procedure

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.4-2001. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

The Effective Isotropic Radiated Power (EIRP) levels were measured and compared with the limit of -13 dBm per FCC Part 74. The limit of -13dB is derived from the formula of 43+10LOG(P) dB per §74637(a)(3).

Emissions were measured for Channel 1, Channel 8 and Channel 11 and are reported in the following tables. Emissions were scanned up to the 10th harmonic of the fundamental. No emissions were detected above 18GHz. The signal substitution method was used to obtain EIRP levels.

Table 7: Radiated Emission Test Data: Channel 1

CLIENT:	Broadcast Sports	DATE:	3/9/04
TESTER:	James Ritter	JOB #:	7961
EUT Information:		Test Requirements:	
EUT:	Smurf	TEST STANDARD:	FCC Part 74
CONFIGURATION:	CH1 (1999 MHz TX)	DISTANCE:	3m
CLOCKS:	Modulated w/NTSC video/aud	io CLASS:	В
<u>Test Equipment/Limit:</u>			
ANTENNA:	A00425	LIMIT:	EIRP
CABLE:	CSITE1_HF	AMPLIFIER (dB)	A00066

Frequency	Polarity	Azimuth	Ant	SA	Ant.	Sig.	EIRP	Limit	Margin	Notes
			Height	Level	Gain	Gen.	Level			
				(QP)		Level				
(MHz)	H/V	Degree	(m)	(dBµV)	dBi	dBm	dBm	(dBm)	dB	
Ch 1,										
1990MHz										
3998.00	Н	270.0	1.0	54.8	10.6	-51.5	-40.9	-13.0	-27.9	
5997.00	Н	0.0	1.0	42.3	10.8	-57.0	-46.2	-13.0	-33.2	amb
7996.00	Н	270.0	1.0	50.7	9.9	-43.6	-33.7	-13.0	-20.7	
9995.00	Н	0.0	1.0	45.3	10.4	-44.5	-34.1	-13.0	-21.1	amb
11994.00	Н	0.0	1.0	43.5	10.5	-46.0	-35.5	-13.0	-22.5	amb
13993.00	Н	0.0	1.0	46.0	13.3	-44.0	-30.7	-13.0	-17.7	amb
15992.00	Н	0.0	1.0	45.3	15.3	-48.0	-32.7	-13.0	-19.7	amb
17991.00	Н	0.0	1.0	46.0	11.6	-42.0	-30.4	-13.0	-17.4	amb
3998.00	V	250.0	1.0	49.5	10.6	-57.0	-46.4	-13.0	-33.4	
5997.00	V	0.0	1.0	41.3	10.8	-58.8	-48.0	-13.0	-35.0	amb
7996.00	V	180.0	1.0	48.2	9.9	-45.8	-35.9	-13.0	-22.9	
9995.00	V	0.0	1.0	45.0	10.4	-45.0	-34.6	-13.0	-21.6	amb
11994.00	V	0.0	1.0	44.7	10.5	-47.0	-36.5	-13.0	-23.5	amb
13993.00	V	0.0	1.0	45.3	13.3	-44.8	-31.5	-13.0	-18.5	amb
15992.00	V	0.0	1.0	46.1	15.3	-48.3	-33.0	-13.0	-20.0	amb
17991.00	V	0.0	1.0	46.7	11.6	-41.5	-29.9	-13.0	-16.9	amb

Table 8: Radiated Emission Test Data: Channel 8

CLIENT:	Broadcast Sports	DATE:	3/9/04
TESTER:	James Ritter	JOB #:	7961
EUT Information:		Test Requirements:	
EUT:	Smurf	TEST STANDARD:	FCC Part 74
CONFIGURATION:	CH8 (2458 MHz TX)	DISTANCE:	3m
CLOCKS:	Modulated w/NTSC video/aud	io CLASS:	В
<u>Test Equipment/Limit:</u>			
ANTENNA:	A00425	LIMIT:	EIRP
CABLE:	CSITE1_HF	AMPLIFIER (dB)	A00066

Frequency	Polarity	Azimuth	Ant. Hght	SA Level	Ant. Gain	Sig. Gen.	EIRP Level	Limit	Margin	Notes
			e	(QP)		Level				
(MHz)	H/V	Degree	(m)	(dBµV)	dBi	dBm	dBm	(dBm)	dB	
Ch 8,										
2458MHz										
4916.00	Н	270.0	1.0	49.7	11.2	-59.1	-47.9	-13.0	-34.9	
7374.00	Н	0.0	1.0	45.5	9.7	-50.6	-40.9	-13.0	-27.9	amb
9832.00	Н	270.0	1.0	45.3	10.4	-52.4	-42.0	-13.0	-29.0	amb
12290.00	Н	0.0	1.0	46.1	10.9	-47.0	-36.1	-13.0	-23.1	amb
14748.00	Н	0.0	1.0	45.0	12.6	-44.0	-31.4	-13.0	-18.4	amb
17206.00	Н	0.0	1.0	46.2	13.8	-42.0	-28.2	-13.0	-15.2	amb
4916.00	V	270.0	1.0	49.3	11.2	-50.3	-39.1	-13.0	-26.1	
7374.00	V	0.0	1.0	48.2	9.7	-56.8	-47.1	-13.0	-34.1	
9832.00	V	180.0	1.0	43.1	10.4	-52.3	-41.9	-13.0	-28.9	amb
12290.00	V	0.0	1.0	45.1	10.9	-48.0	-37.1	-13.0	-24.1	amb
14748.00	V	0.0	1.0	45.6	12.6	-43.6	-31.0	-13.0	-18.0	amb
17206.00	V	0.0	1.0	46.6	13.8	-41.5	-27.7	-13.0	-14.7	amb

Table 9: Radiated Emission Test Data: Channel 11

CLIENT:	Broadcast Sports	DATE:	3/9/04
TESTER:	James Ritter	JOB #:	7961
EUT Information:		Test Requirements:	
EUT:	Smurf	TEST STANDARD:	FCC Part 74
CONFIGURATION:	CH11 (2316MHz TX)	DISTANCE:	3m
CLOCKS:	Modulated w/NTSC video/aud	io CLASS:	В
<u>Test Equipment/Limit:</u>			
ANTENNA:	A00425	LIMIT:	EIRP
CABLE:	CSITE1_HF	AMPLIFIER (dB)	A00066

Frequency	Polarity	Azimuth	Ant.	SA	Ant.	Sig.	EIRP	Limit	Margin	Notes
			Hght	Level	Gain	Gen.	Level			
				(QP)		Level				
(MHz)	H/V	Degree	(m)	$(dB\mu V)$	dBi	dBm	dBm	(dBm)	dB	
Ch 11,										
2316MHz										
4632.00	Н	270.0	1.0	47.1	11.0	-55.0	-44.0	-13.0	-31.0	
6948.00	Н	0.0	1.0	47.9	9.6	-56.8	-47.2	-13.0	-34.2	
9264.00	Н	0.0	1.0	45.0	10.3	-50.0	-39.7	-13.0	-26.7	amb
11580.00	Н	0.0	1.0	44.7	10.5	-48.8	-38.3	-13.0	-25.3	amb
13896.00	Н	0.0	1.0	46.7	13.5	-45.2	-31.7	-13.0	-18.7	amb
16212.00	Н	0.0	1.0	47.0	15.1	-46.0	-30.9	-13.0	-17.9	amb
4632.00	V	250.0	1.0	47.3	11.0	-56.0	-45.0	-13.0	-32.0	
6948.00	V	0.0	1.0	48.1	9.6	-48.6	-39.0	-13.0	-26.0	
9264.00	V	0.0	1.0	45.5	10.3	-50.1	-39.8	-13.0	-26.8	amb
11580.00	V	0.0	1.0	45.0	10.5	-50.0	-39.5	-13.0	-26.5	amb
13896.00	V	0.0	1.0	47.0	13.5	-45.0	-31.5	-13.0	-18.5	amb
16212.00	V	0.0	1.0	46.8	15.1	-46.0	-30.9	-13.0	-17.9	amb

4.7 Frequency Stability: (FCC Part §2.1055)

Frequency as a function of temperature and voltage variation shall be maintained within the FCC-prescribed tolerances.

The temperature stability was measured with the unit in an environmental chamber used to vary the temperature of the sample. The sample was held at each temperature step to allow the temperature of the sample to stabilize.

The EUT is powered by DC voltage supplied externally. The manufacturer's power requirements for the EUT include the following:

Low DC Voltage of 11 VDC (manufacturer's specification)

High DC Voltage of 13.8 VDC (manufacturer's specifications)

The frequency stability of the transmitter was examined at the voltage extremes and for the temperature range of -30° C to $+50^{\circ}$ C. The carrier frequency was measured while the EUT was in the temperature chamber. The reference frequency of the EUT was measured at the ambient room temperature with the frequency counter. The following are the reference frequencies at ambient for the High channel.

High Channel: 2316MHz

CLIENT:	Broadcast Sports
MODEL NO:	Smurf Video Transmitter
DATE:	3/11/2004
JOB #:	7961
BY:	James Ritter
Limit:	0.005%

Temperature	Frequency	Difference	Deviation
Degrees C	MHz	Hz	(%)
Ambient	2316.125000	0.0	0
-30	2316.111700	-13300.0	0.000574
-20	2316.119300	-5700.0	0.000246
-10	2316.128000	3000.0	0.000130
0	2316.131300	6300.0	0.000272
10	2316.132300	7300.0	0.000315
20	2316.130300	5300.0	0.000229
30	2316.127700	2700.0	0.000117
40	2316.125300	300.0	0.000013
50	2316.125800	800.0	0.000035

Voltage	Frequency	Difference	Deviation	Voltage
Volts	MHz	Hz	(%)	Volts
At rated	2316.125000	0	0.0	12VDC
At 85%	2316.124100	900	0.000039	10.9VDC
At 115%	2316.124900	100	0.000004	13.8VDC

Table 10. Frequency Deviation as a Function of Voltage

Transmit turns off below 10.9VDC