

FCC Part 74F Certification Test Report For the Broadcast Sports International HD In-Car Transmitter

FCC ID: KTB-13418-9-001

WLL JOB# 14329-01 Rev 2 January 05, 2016

> Re-Issued June 7, 2016

> Prepared for:

Broadcast Sports International 7455 Race Road Hanover, MD 21076

Prepared By:

Washington Laboratories, Ltd. 7560 Lindbergh Drive Gaithersburg, Maryland 20879

Testing Certificate AT-1448

FCC Part 74F Certification Test Report For the Broadcast Sports International HD In-Car Transmitter FCC ID: KTB-13418-9-001

WLL JOB# 14329-01 Rev 2 January 05, 2016 Re-Issued June 07, 2016

Prepared by:

P. Repello

John P. Repella Compliance Engineer

Reviewed by:

86 D.r

Steven D. Koster President

Abstract

This report has been prepared on behalf of Broadcast Sports International to support the attached Application for Equipment Authorization. The test report and application are submitted for a Licensed Non-Broadcast Station Transmitter under Part 74 F of the FCC Rules and Regulations. This Federal Communication Commission (FCC) Certification Test Report documents the test configuration and test results for a Broadcast Sports International HD In-Car Transmitter.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by ANAB under Certificate AT-1448 as an independent FCC test laboratory.

The Broadcast Sports International HD In-Car Transmitter complies with the limits for a Licensed Non-Broadcast Station Transmitter device under Part 74 F of the FCC Rules and Regulations.

Revision History	Reason	Date
Rev 0	Initial Release	January 05, 2016
Rev 1	Updated to reflect correct device name and customer name	May 18, 2016
Rev 2	Update the report to reflect the correct frequency tolerances for the device	June 7, 2016

Table of Contents

A	bstra	net	iii
1		Introduction	
	1.1	Compliance Statement	1
	1.2	Test Scope	1
	1.3	Contract Information	
	1.4	Test Dates	
	1.5	Test and Support Personnel	
	1.6	Abbreviations	
2		Equipment Under Test	
	2.1	EUT Identification & Description	
	2.2	Port and Cabling	
	2.3	Support Equipment	
	2.4	Test Configuration	5
	2.5	Testing Algorithm	6
	2.6	Test Location	6
	2.7	Measurements	6
	2.8	Measurement Uncertainty	6
3		Test Equipment	
4		Test Results	
	4.1	RF Power Output (FCC Part §2.1046 & §74.636)	9
	4.2	Occupied Bandwidth: (FCC Part §2.1049 & §74.637)	
	4.3	Emission Limitations per FCC Part § 74.637 (Emission Masks & Spurious Emissions)	
	4.4	Radiated Spurious Emissions (EIRP): (FCC Part §2.1053)	
	4.5	Frequency Stability: (FCC Part §2.1055)	101

List of Tables

Table 1: Device Summary	3
Table 1: Device Summary Table 2: Equipment Configuration	3
Table 3: Ports & Cabling	4
Table 4: Support Equipment	4
Table 5: Expanded Uncertainty List	7
Table 6: Test Equipment List	8
Table 7: RF Power Output (QPSK Modulation)	9
Table 8: RF Power Output (16QAM Modulation)	9
Table 9: RF Power Output (64QAM Modulation)	
Table 10: Occupied Bandwidth Results (QPSK)	
Table 11: Occupied Bandwidth Results (16QAM)	
Table 12: Occupied Bandwidth Results (64QAM)	
Table 13: Radiated Emission Test Data	98
Table 14: Radiated Emission Test Data, TX @ 2.033GHz	
Table 15: Radiated Emission Test Data, TX @ 2.0675GHz	99
Table 16: Radiated Emission Test Data, TX @ 2.1015GHz	
Table 17: Radiated Emission Test Data, TX @ 2.4585GHz	100
Table 18: Frequency Stability Test Data TX @ 2101.5MHz	
Table 19: Frequency Stability Test Data TX @ 2458.5MHz	103
Table 20: Frequency Stability Test Data (Voltage Variation) TX @2101.5MHz	104
Table 21: Frequency Stability Test Data (Voltage Variation) TX @2458.5MHz	104

List of Figures

Figure 1: Test Configuration	5
Figure 1: Occupied Bandwidth, QPSK Modulation, TX @ 2033MHz	11
Figure 2: Occupied Bandwidth, QPSK Modulation, TX @ 2067.5MHz	12
Figure 3: Occupied Bandwidth, QPSK Modulation, TX @ 2101.5MHz	13
Figure 4: Occupied Bandwidth, QPSK Modulation, TX @ 2458.5MHz	14
Figure 5: Occupied Bandwidth, 16QAM Modulation, TX @ 2033MHz	15
Figure 6: Occupied Bandwidth, 16QAM Modulation, TX @ 2067.5MHz	
Figure 7: Occupied Bandwidth, 16QAM Modulation, TX @ 2101.5MHz	17
Figure 8: Occupied Bandwidth, 16QAM Modulation, TX @ 2458.5MHz	
Figure 9: Occupied Bandwidth, 64QAM Modulation, TX @ 2033MHz	19
Figure 10: Occupied Bandwidth, 64QAM Modulation, TX @ 2067.5MHz	20
Figure 11: Occupied Bandwidth, 64QAM Modulation, TX @ 2101.5MHz	21
Figure 12: Occupied Bandwidth, 64QAM Modulation, TX @ 2458.5MHz	22
Figure 13: Spurious Emissions, QPSK Modulation, TX @ 2033MHz, 30MHz-1000MHz	23
Figure 14: Spurious Emissions, QPSK Modulation, TX @ 2033MHz, Emission Mask	24
Figure 15: Spurious Emissions, QPSK Modulation, TX @ 2033MHz, 2063MHz-3000MHz	25
Figure 16: Spurious Emissions, QPSK Modulation, TX @ 2033MHz, 3GHz-8GHz	26
Figure 17: Spurious Emissions, QPSK Modulation, TX @ 2033MHz, 8GHz-12GHz	27
Figure 18: Spurious Emissions, QPSK Modulation, TX @ 2033MHz, 12GHz-16GHz	
Figure 19: Spurious Emissions, QPSK Modulation, TX @ 2033MHz, 16GHz-21GHz	29
Figure 20: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, 30MHz-1000MHz	30

Figure 20: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, 1000MHz-2004MHz	
Figure 22: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, Emission Mask	
Figure 23: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, 2063.5MHz-3GHz	
Figure 24: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, 3GHz-8GHz	
Figure 25: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, 8GHz-12GHz	
Figure 26: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, 12GHz-16GHz	
Figure 27: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, 16GHz-21GHz	
Figure 28: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, 30MHz-1000MHz	
Figure 29: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, 1000MHz-2004MHz	
Figure 30: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, Emission Mask	
Figure 31: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, 2063.5MHz-3GHz	
Figure 32: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, 3GHz-8GHz	
Figure 33: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, 8GHz-12GHz	
Figure 34: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, 12GHz-16GHz	
Figure 35: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, 16GHz-21GHz	
Figure 36: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, 30MHz-1000MHz	
Figure 37: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, 1000MHz -2038MHz	
Figure 38: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, Emission Mask	
Figure 39: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, 2140MHz-10GHz	
Figure 40: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, 3GHz-8GHz	
Figure 41: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, 8GHz-12GHz	
Figure 42: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, 12GHz-16GHz	
Figure 43: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, 12GHz 10GHz.	
Figure 44: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, 30MHz-1000MHz	
Figure 45: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, 1000MHz-2038MHz	
Figure 46: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, Emission Mask	
Figure 47: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, 2097.5MHz-3GHz	
Figure 48: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, 3GHz-8GHz	
Figure 49: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, 8GHz-12GHz	
Figure 50: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, 12GHz-16GHz	
Figure 50: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, 16GHz-20GHz	
Figure 52: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, 30MHz-1000MHz	
Figure 52: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, 1000MHz-2038MHz	
Figure 54: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, Emission Mask	
Figure 55: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, 2097.5MHz-3GHz	
Figure 56: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, 3GHz-8GHz	
Figure 57: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, 8GHz-12GHz	
Figure 58: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, 12GHz-16GHz	
Figure 59: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, 12GHz-10GHz	
Figure 60: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 30MHz-1000MHz	
Figure 61: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 1000MHz-2428MHz	
Figure 62: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, Emission Mask	
Figure 63: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 2488.5MHz-3GHz	
Figure 64: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 3GHz-8GHz	
Figure 65: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 8GHz-12GHz	
Figure 66: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 12GHz-16GHz	
Figure 67: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 16GHz-20GHz	
Figure 68: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 20GHz-25GHz	
Figure 69: Spurious Emissions, 16QAM Modulation, TX @ 2456.5MHz, 30MHz-1000MHz	
Figure 07: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 1000MHz-2428MHz	
Figure 71: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, Emission Mask	

Figure 72: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 2438MHz-3GHz	82
Figure 73: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 3GHz-8GHz	83
Figure 74: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 8GHz-12GHz	84
Figure 75: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 12GHz-16GHz	85
Figure 76: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 16GHz-20GHz	86
Figure 77: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 20GHz-25GHz	87
Figure 78: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 30MHz-1000MHz	88
Figure 79: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 1000MHz-2428MHz	89
Figure 80: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, Emission Mask	90
Figure 81: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 2488MHz-3GHz	91
Figure 82: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 3GHz-8GHz	92
Figure 83: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 8GHz-12GHz	93
Figure 84: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 12GHz-16GHz	94
Figure 85: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 16GHz-20GHz	95
Figure 86: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 20GHz-25GHz	96

1 Introduction

1.1 Compliance Statement

The Broadcast Sports International HD In-Car Transmitter complies with the limits for a Licensed Non-Broadcast Station Transmitter device under Part 74F of the FCC Rules and Regulations.

1.2 Test Scope

Tests for radiated and conducted (at antenna terminal) emissions were performed. All measurements were performed in accordance with the 2014 version of ANSI C63.4 and EIA/TIA 603. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

1.3 Contract Information

	Customer:	Broadcast Sports International 7455 Race Road Hanover, MD, 21076
	Purchase Order Number:	24920
	Quotation Number:	68605C
1.4	Test Dates	
	Testing was performed on the following date(s):	11/11/2015-12/3/2015
1.5	Test and Support Personnel	
	Washington Laboratories, LTD	John P. Repella
	Customer Representative	Dave Starsoneck

1.6 Abbreviations

A	Ampere	
ac	alternating current	
AM	Amplitude Modulation	
Amps	Amperes	
b/s	bits per second	
BW	BandWidth	
CE	Conducted Emission	
cm	centimeter	
CW	Continuous Wave	
dB	deciBel	
dc	direct current	
EMI	Electromagnetic Interference	
EUT	Equipment Under Test	
FM	Frequency Modulation	
G	g iga - prefix for 10 ⁹ multiplier	
Hz	Hertz	
IF	Intermediate Frequency	
k	k ilo - prefix for 10 ³ multiplier	
LISN	Line Impedance Stabilization Network	
Μ	Mega - prefix for 10 ⁶ multiplier	
m	meter	
μ	m icro - prefix for 10 ⁻⁶ multiplier	
NB	Narrowband	
QP	Quasi-Peak	
RE	Radiated Emissions	
RF	Radio Frequency	
rms	root-mean-square	
SN	Serial Number	
S/A	Spectrum Analyzer	
V	Volt	

2 Equipment Under Test

2.1 EUT Identification & Description

The HD In-Car Transmitter (TX) is intended to transmit audio and video from remote locations, e.g. mounted in a race car. It can transmit 1 or 2 videos simultaneously.

The TX is designed to accept four pairs of audio and video inputs. The user selects up to 2 A/V inputs upon which the TX performs various processing and modulation functions, and outputs a DVB-T COFDM signal to an external antenna.

The unit's audio inputs are balanced mic-level connectors with T-power. The video inputs can be HD-SDI, SD-SDI, or NTSC, all of which the TX will auto-detect and pre-process appropriately. Once pre-processed, the audio and video are encoded (LPCM, MPEG-2 Layer I&II, or Dolby for audio and H.264 for the video) and mux'ed into a transport stream (TS). The resulting TS is modulated (QPSK, 16QAM, or 64QAM) and output to an attached antenna.

ITEM	DESCRIPTION		
Manufacturer:	Broadcast Sports International		
FCC ID:	KTB-13418-9-001		
Model:	HD Mini Transmitter		
FCC Rule Parts:	§74 Sub Part F		
Industry Canada:	N/A		
Frequency Range:	2033 – 2101.5MHz & 2458.5MHz		
Maximum Output Power:	(Calibrated & configured by Manufacturer for consumer to		
	be no greater than +25dBm)		
Modulation: QPSK,16QAM, 64QAM			
Occupied Bandwidth:	8 MHz		
Keying:	Automatic, Manual		
Type of Information:	Audio/Video		
Number of Channels:	16		
Power Output Level	248mW(23.95dBm)		
Antenna Connector	SMA		
Antenna Type	Multiple up to, Max 5.1 dBi		
Frequency Tolerance 2033 - 2067.5MHz >0.005 & 2101.5-2458.5MHz >0.0			
Interface Cables:	See Interface Cables		
Power Source & Voltage:	12Vdc Nominal		

Table 1: Device Summary

Table 2: Equipment Configuration

Name / Description	Model Number	Part Number	Serial Number	Rev. #
HD In-Car Transmitter	-	13418-9-001	12530	N/A

2.2 Port and Cabling

The following port and cabling were identified on the EUT

Ref. ID	EUT Port	Cable Description or reason for no cable		Length (m)	Shielded?
1	V1	7-pin LEMO to BNC	1		Y
2	V2	7-pin LEMO to BNC	1		Y
3	V3	None – 2 video output max	-		N/A
4	V4	None – 2 video output max	None – 2 video output max –		N/A
5	A1	None – audio not needed -		N/A	
6	A2	None – audio not needed	ot needed -		N/A
7	A3	None – audio not needed -		N/A	
8	A4	None – audio not needed	- N/A		N/A
9	RF	SMA-M to SMA-M	SMA-M 1		Y
10	DATA	Configuration Only -		N/A	
11	UHF	5-pin LEMO to DB-9 1		Y	
12	PWR	2-pin LEMO to 4-pin XLR 1		Y	

 Table 3: Ports & Cabling

2.3 Support Equipment

The following support equipment was used during testing:

 Table 4: Support Equipment

Name / Description	Manufacturer	Model Number	*Customer Supplied Calibration Data
Video Generator	Leader	LT 443D	N/A
Down Converter	BSI	-	N/A
Receiver/Decoder	BSI	-	N/A
SDI Monitor	Marshall	V-R10420P-TE4U	N/A
RS232-RS485 Converter	B&B	485SD9R	N/A
Laptop	Dell	E4310	N/A
USB-RS232 Converter	Assmann	Digitus	N/A

2.4 Test Configuration

With all equipment connected as shown in Figure 1 and the HD In-Car TX transmitting. With all equipment connected as shown in the block diagram and the TX transmitting, the decoder status "GOOD" LED should be green and the monitor should display the test pattern being fed to the TX.

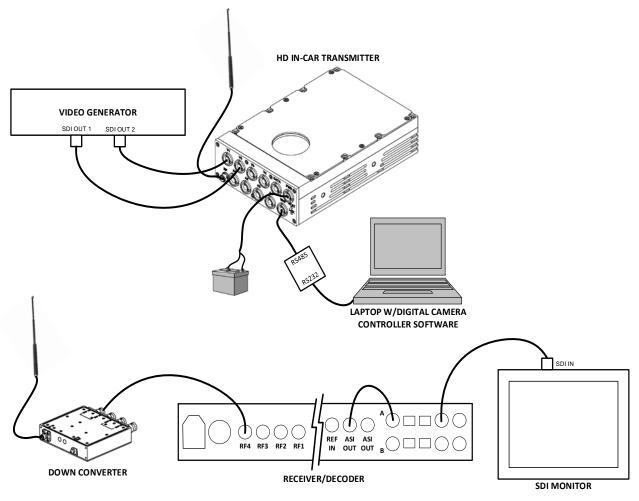


Figure 1: Test Configuration

2.5 Testing Algorithm

The HD In-Car TX will auto-detect input video the following formats – HD-SDI, SD-SDI, and NTSC. The carrier is selectable in 250 kHz increments, from 1435MHz to 2600MHz. The frequency range is restricted to the applicable requirements for the region that it is distributed. The FEC rate is selectable (1/2, 2/3, 3/4, 5/6, 7/8) as is the modulation scheme (QPSK or QAM16). In dual stream mode, the two videos are modulated onto two adjacent COFDM pedestals.

2.6 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by ANAB under Certificate AT-1448 as an independent FCC test laboratory.

2.7 Measurements

2.7.1 References

ANSI/TIA/EIA-603 Land Mobile FM or PM Communications Equipment Measurement and Performance Standards

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

2.8 Measurement Uncertainty

All results reported herein relate only to the equipment tested. The basis for uncertainty calculation uses ANSI/NCSL Z540-2-1997 (2002) with a type B evaluation of the standard uncertainty. Elements contributing to the standard uncertainty are combined using the method described in Equation 1 to arrive at the total standard uncertainty. The standard uncertainty is multiplied by the coverage factor to determine the expanded uncertainty which is generally accepted for use in commercial, industrial, and regulatory applications and when health and safety are concerned (see Equation1 and Equation 2). A coverage factor was selected to yield a 95% confidence in the uncertainty estimation.

Equation 1: Standard Uncertainty

$$u_{c} = \pm \sqrt{\frac{a^{2}}{div_{a}^{2}} + \frac{b^{2}}{div_{b}^{2}} + \frac{c^{2}}{div_{c}^{2}} + \dots}$$

Where uc	= standard uncertainty
a, b, c,	= individual uncertainty elements
diva, b, c	= the individual uncertainty element divisor based on the probability distribution
	Divisor = 1.732 for rectangular distribution
	Divisor = 2 for normal distribution
	Divisor $= 1.414$ for trapezoid distribution

Equation 2: Expanded Uncertainty

$$U = ku_c$$

Where

U

= expanded uncertainty

The measurement uncertainty complies with the maximum allowed uncertainty from CISPR 16-4-2. Measurement uncertainty is not used to adjust the measurements to determine compliance. The expanded uncertainty values for the various scopes in the WLL accreditation are provided in Table 5.

Table 5: Expanded Uncertainty List

Scope	Standard(s)	Expanded Uncertainty
Bench Conducted Emissions	ANSI/NCSL Z540-2/CISPR 16-4-2	<u>+</u> 2.30 dB
Radiated Emissions	ANSI/NCSL Z540-2/CISPR 16-4-2	+4.55 dB

3 Test Equipment

The test equipment used for test measurements along with the calibration information is shown in Table 6 below.

Test Name:	Radiated Emissions	Test Date: 11/15/20	
Asset #	Manufacturer/Model	Description	Cal. Due
382	SUNOL SCIENCES CORPORATION - JB1	ANTENNA BICONLOG	8/31/2017
644	SUNOL SCIENCES CORPORATION - JB1 925- 833-9936	BICONALOG ANTENNA	8/14/2017
849	AH SYSTEMS - SAC-18G-16	16 METER CABLE	8/22/2016
528	AGILENT - E4446A	3HZ - 44GHZ ANALYZER SPECTRUM	7/15/2016
522	HP - 8449B	PRE-AMPLIFIER 1-26.5GHZ	12/24/2015
4	ARA - DRG-118/A	ANTENNA DRG 1-18GHZ	10/8/2016
425	ARA - DRG-118/A	ANTENNA DRG 1-18GHZ	11/23/2017
803	R&S - SMR 40	SIGNAL GENERATOR 1 - 40GHZ	7/15/2017
558	HP - 8447D	AMPLIFIER	2/20/2016
558	HP - 8447D	AMPLIFIER	2/20/2016

Table 6: Test Equipment List

4 Test Results

4.1 RF Power Output (FCC Part §2.1046 & §74.636)

The output from the transmitter was connected to a broadband power meter and the output power was measured.

The output power shall be measured when the transmitter is operating at the manufacturer's rated power and modulated with signals representative (i.e. typical) of those encountered in a real system operation.

Channel/TX Frequency (MHz)	Measured Level (dBm)	Measured Level (Watts)	Limit (Watts)
2033.0	23.20	0.209	12
2067.5	23.05	0.202	12
2101.5	23.81	0.240	12
2458.5	23.06	0.202	12

Table 7: RF Power Output (QPSK Modulation)

Table 8: RF Power Output (16QAM Modulation)

Channel/TX Frequency (MHz)	Measured Level (dBm)	Measured Level (Watts)	Limit (Watts)
2033.0	23.25	0.211	12
2067.5	23.05	0.202	12
2101.5	23.87	0.244	12
2458.5	23.10	0.204	12

Table 9: RF Power Output (64QAM Modulation)

Channel/TX Frequency (MHz)	Measured Level (dBm)	Measured Level (Watts)	Limit (Watts)
2033.0	23.23	0.210	12
2067.5	23.04	0.201	12
2101.5	23.95	0.248	12
2458.5	23.06	0.202	12

4.2 Occupied Bandwidth: (FCC Part §2.1049 & §74.637)

Occupied bandwidth was performed by coupling the output of the EUT via cable to the input of a spectrum analyzer.

At full modulation, the occupied bandwidth was measured as shown:

Frequency(MHz)	Bandwidth(MHz)	Limit	Pass/Fail
2033.0	8.053	18 MHz	Pass
2067.5	8.003	18 MHz	Pass
2101.5	8.034	18 MHz	Pass
2458.5	8.142	18 MHz	Pass

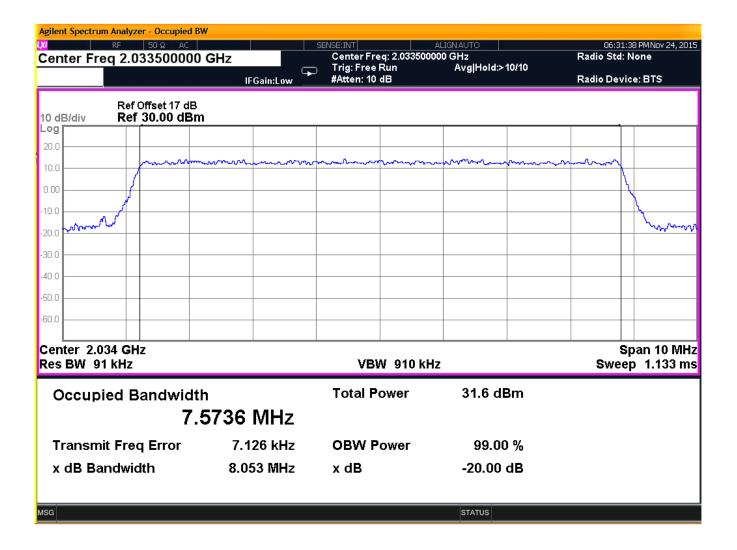

Table 10: Occupied Bandwidth Results (QPSK)

Table 11: Occupied Bandwidth Results (16QAM)

Frequency(MHz)	Bandwidth(MHz)	Limit	Pass/Fail
2033.0	8.062	18 MHz	Pass
2067.5	8.038	18 MHz	Pass
2101.5	8.021	18 MHz	Pass
2458.5	8.101	18 MHz	Pass

Table 12: Occupied Bandwidth Results (64QAM)

Frequency(MHz)	Bandwidth(MHz)	Limit	Pass/Fail
2033.0	8.069	18 MHz	Pass
2067.5	8.134	18 MHz	Pass
2101.5	8.123	18 MHz	Pass
2458.5	8.089	18 MHz	Pass

Figure 1: Occupied Bandwidth, QPSK Modulation, TX @ 2033MHz

~

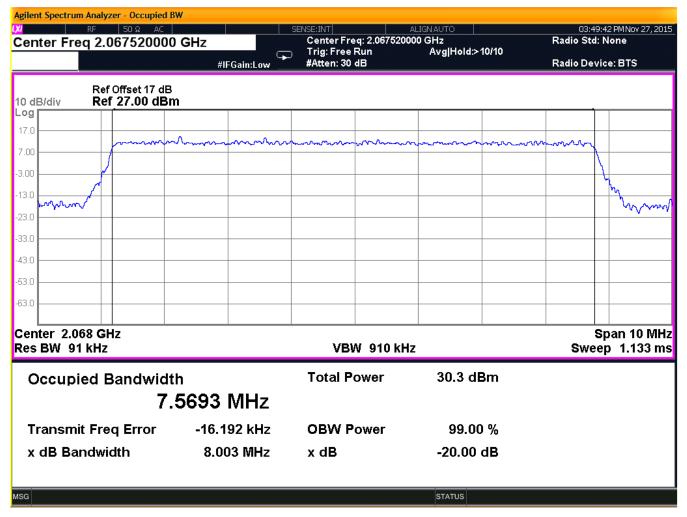


Figure 2: Occupied Bandwidth, QPSK Modulation, TX @ 2067.5MHz

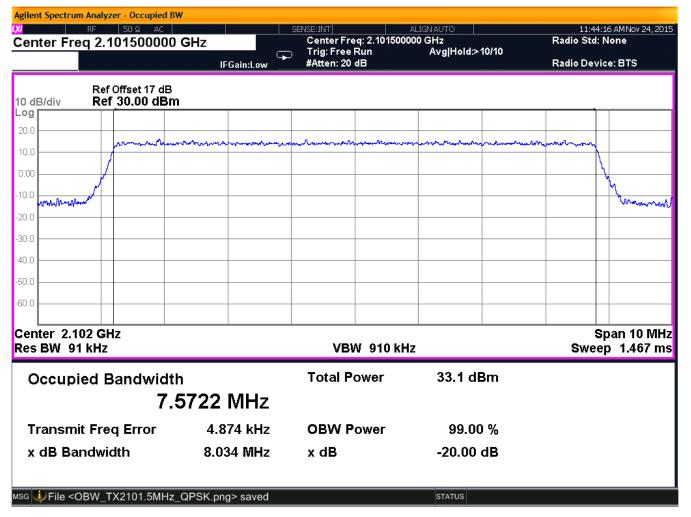
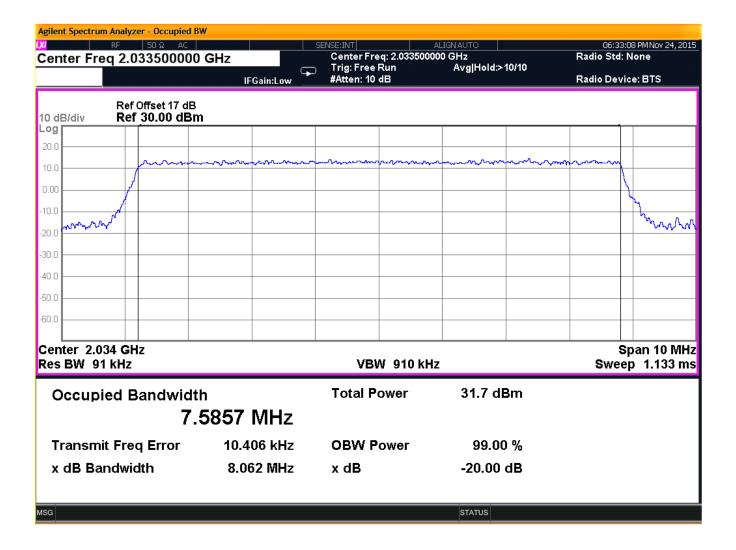



Figure 3: Occupied Bandwidth, QPSK Modulation, TX @ 2101.5MHz

gilent Spectrum Analyzer - Oo				
RF 50 Stef Value 30.00 dB		Center Freq: 2.45850		12:19:33 PMNov 24, 201 Radio Std: None
	IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Hold:>10/10	Radio Device: BTS
Ref Offse 0 dB/div Ref 30.0				_
20.0				
0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	warden	man	mmmm
.00				
0.0				manne
0.0				
).0				
).0				
enter 2.459 GHz es BW 91 kHz		VBW 910 k	Hz	Span 10 MH Sweep 1.133 m
Occupied Band	dwidth	Total Power	32.8 dBm	
	7.5832 MHz	2		
Transmit Freq Er	ror 2.946 kH;	z OBW Power	99.00 %	
x dB Bandwidth	8.142 MH	z xdB	-20.00 dB	
···· ····· ···· ···· ·····				
g 🕕 File <obw td="" tx245<=""><td>8.5MHz_QPSK.png> saved</td><td>d</td><td>STATUS</td><td></td></obw>	8.5MHz_QPSK.png> saved	d	STATUS	

Figure 4: Occupied Bandwidth, QPSK Modulation, TX @ 2458.5MHz

Figure 5: Occupied Bandwidth, 16QAM Modulation, TX @ 2033MHz

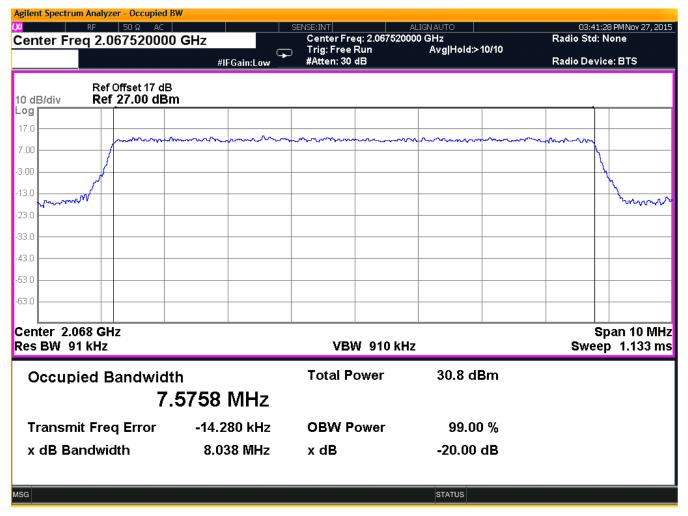


Figure 6: Occupied Bandwidth, 16QAM Modulation, TX @ 2067.5MHz

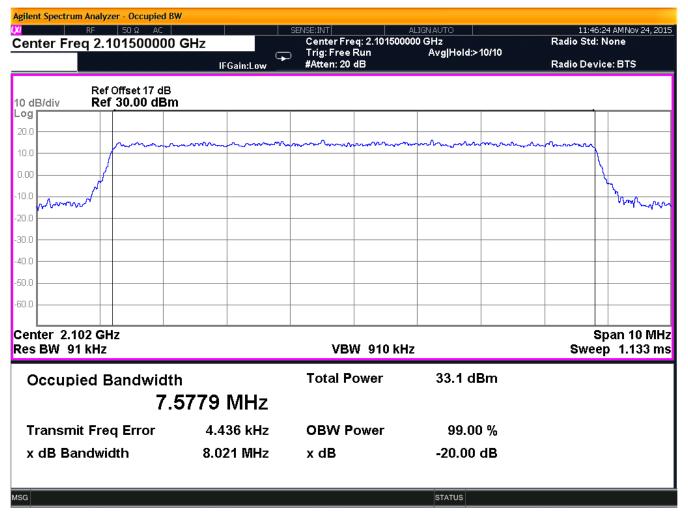


Figure 7: Occupied Bandwidth, 16QAM Modulation, TX @ 2101.5MHz

lent Spectrum Analyzer - Occup RF 50 Ω		SENSE:INT	ALIGNAUTO	12:23:33 PM Nov 24, 2
f Value 30.00 dBm		Center Freq: 2.458500	000 GHz	Radio Std: None
	G	🗇 Trig: Free Run	Avg Hold:>10/10	
	IFGain:Low	#Atten: 20 dB		Radio Device: BTS
Ref Offset 17				
dB/div Ref 30.00 (
0				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······································	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mann
0 /				\\
ا ممر				
manna				
0				
0				
0				
nter 2.459 GHz				Span 10 M
s BW 91 kHz		VBW 910 kH	lz	Sweep 1.133
Occupied Bandw	idth	Total Power	32.6 dBm	
		rotari onor	02.0 0811	
	7.5834 MHz			
Transmit Freq Erroi	7.561 kHz	OBW Power	99.00 %	
x dB Bandwidth	8.101 MHz	v dD	20 00 dB	
COB Bandwidth	8.101 WHZ	x dB	-20.00 dB	
			STATUS	

Figure 8: Occupied Bandwidth, 16QAM Modulation, TX @ 2458.5MHz

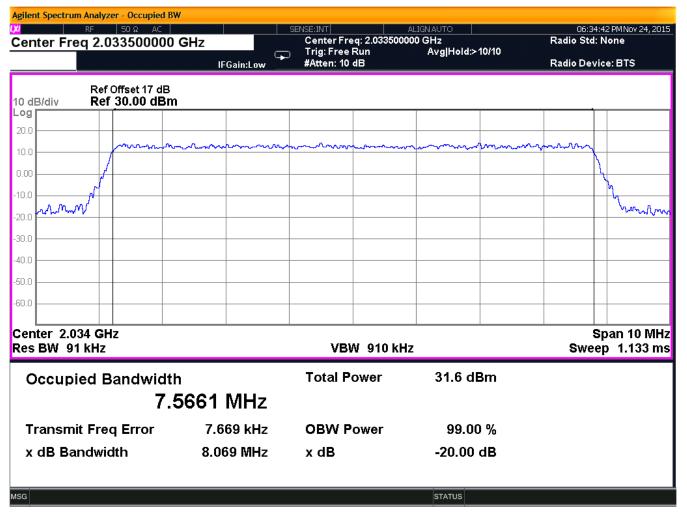



Figure 9: Occupied Bandwidth, 64QAM Modulation, TX @ 2033MHz

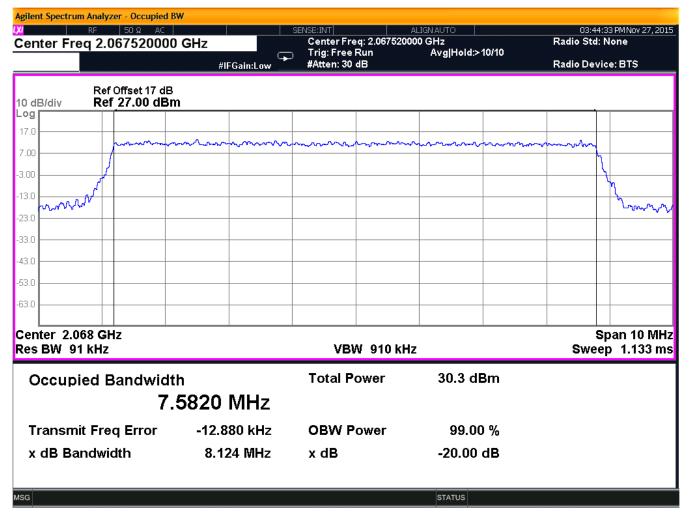



Figure 10: Occupied Bandwidth, 64QAM Modulation, TX @ 2067.5MHz

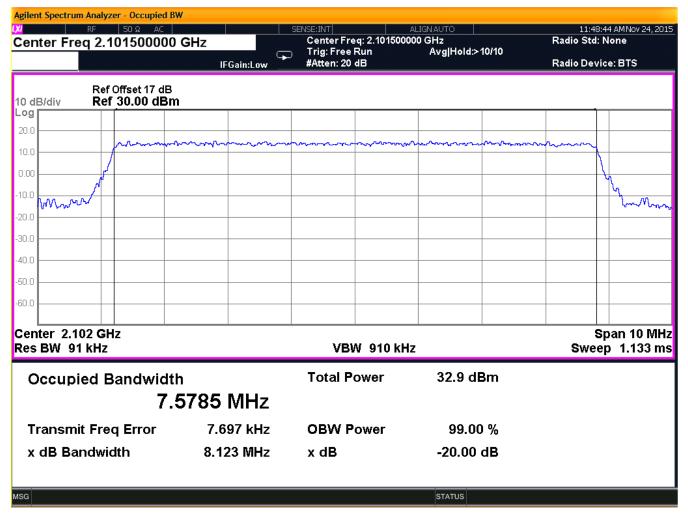
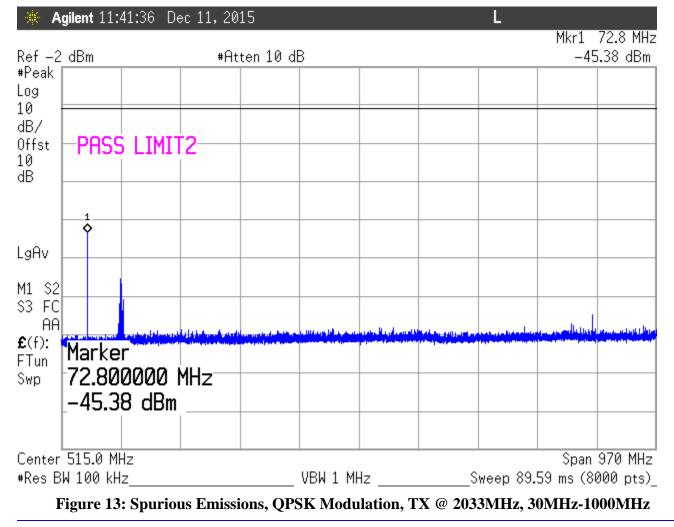



Figure 11: Occupied Bandwidth, 64QAM Modulation, TX @ 2101.5MHz

ilent Spectru	<mark>m Analyzer - Occupie</mark> RF 50Ω AC		SENSE:INT	ALIGN AUTO	12:25:42 PM Nov 24, 2
enter Fre	eq 2.4585000		Center Freq: 2.4585000	000 GHz Avg Hold:>10/10	Radio Std: None
		IFGain:Low	#Atten: 20 dB		Radio Device: BTS
dB/div	Ref Offset 17 c Ref <u>30.00 d</u>				
<b>g</b> .0					
.0	man	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man man	man
0					N N
					Maria
	~~				
0					
0					
0					
0					
enter 2.4 s BW 97			VBW 910 kH	lz	Span 10 M Sweep 1.133 r
Occupi	ied Bandwid	dth	Total Power	32.3 dBm	
	7	7.5905 MHz			
Transm	it Freq Error	4.172 kHz	OBW Power	99.00 %	
	ndwidth	8.089 MHz	x dB	-20.00 dB	
				STATUS	

Figure 12: Occupied Bandwidth, 64QAM Modulation, TX @ 2458.5MHz

#### 4.3 Emission Limitations per FCC Part § 74.637 (Emission Masks & Spurious Emissions)


Emissions limitations are specified in §74.637 (a) 2 (i) for digitally modulated transmissions.

#### 4.3.1 Test Procedure

The emissions from 30 MHz to the tenth harmonic of the operating frequency were measured. The EUT antenna was removed and the cable was connected directly into a spectrum analyzer through a 10 dB attenuator. An offset was programmed into the spectrum analyzer to compensate for the loss of the external attenuator. The spectrum analyzer resolution bandwidth was set to 100 kHz and the video bandwidth was set to 3MHz. The amplitude of the EUT carrier frequency was measured to determine the emissions limit (20 dB below the carrier frequency amplitude). The emissions outside of the allocated frequency band were then scanned from 30 MHz up to the tenth harmonic of the carrier. Each of the available modulation schemes was tested.

#### 4.3.2 Test Results

The following plots detail the emissions measured.



L

#### 🔆 Agilent 09:05:52 Dec 11, 2015

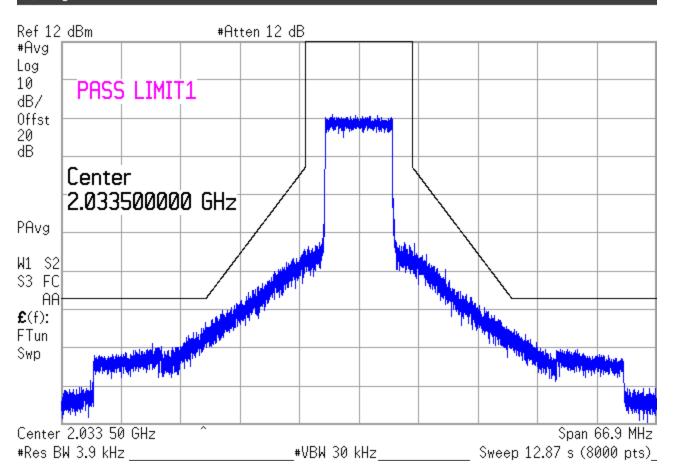



Figure 14: Spurious Emissions, QPSK Modulation, TX @ 2033MHz, Emission Mask

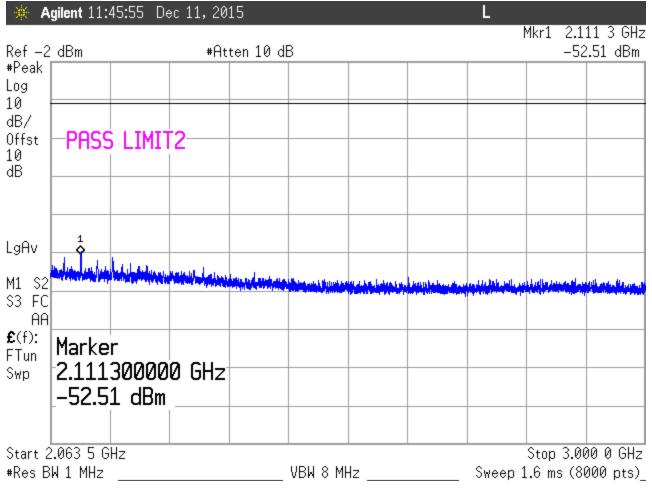



Figure 15: Spurious Emissions, QPSK Modulation, TX @ 2033MHz, 2063MHz-3000MHz

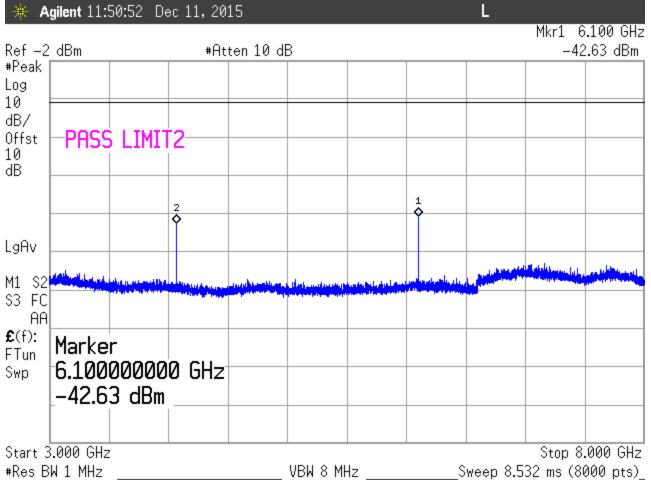



Figure 16: Spurious Emissions, QPSK Modulation, TX @ 2033MHz, 3GHz-8GHz

L

#### 🔆 Agilent 11:55:45 Dec 11, 2015

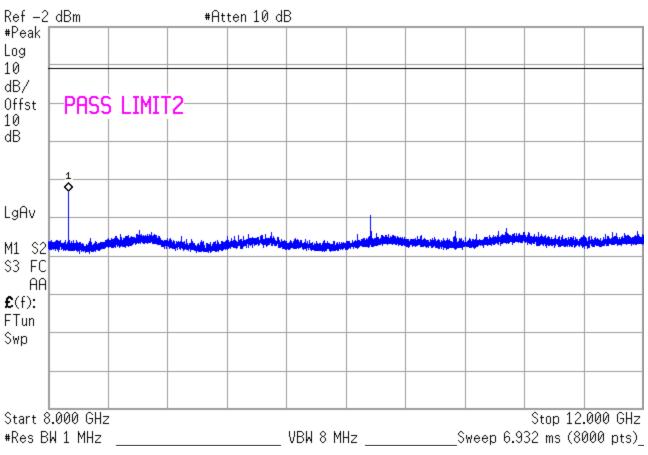



Figure 17: Spurious Emissions, QPSK Modulation, TX @ 2033MHz, 8GHz-12GHz

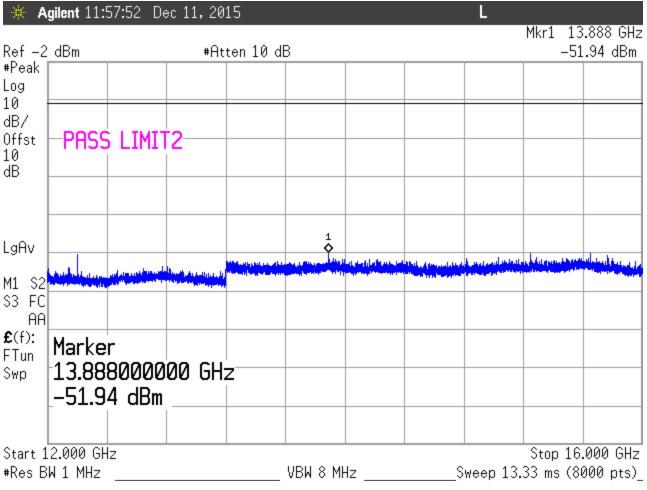



Figure 18: Spurious Emissions, QPSK Modulation, TX @ 2033MHz, 12GHz-16GHz

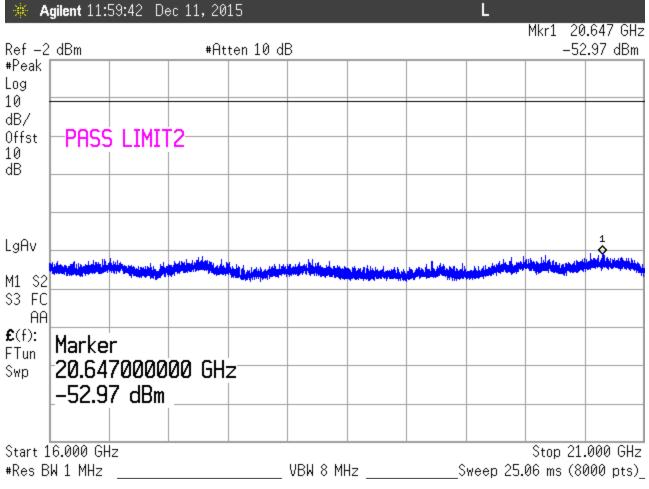



Figure 19: Spurious Emissions, QPSK Modulation, TX @ 2033MHz, 16GHz-21GHz

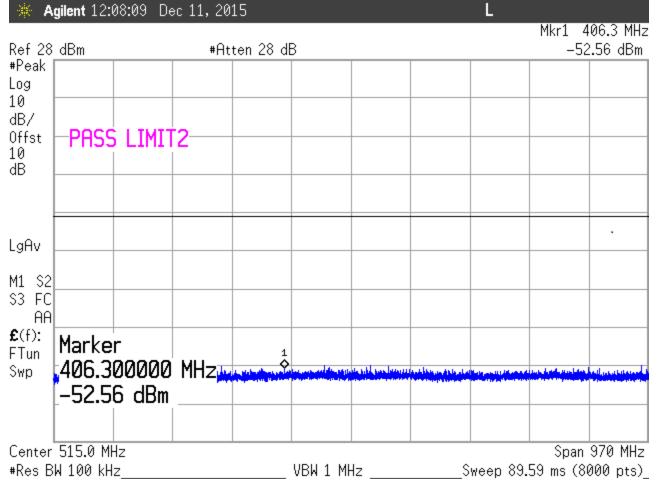



Figure 20: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, 30MHz-1000MHz

🔆 Agilent 12:11:16 Dec	11,2015		L	Mlw1 - 2 992 CU-
Ref 28 dBm	#Atten 28 dB	}		Mkr1 2.003 GHz -40.37 dBm
#Peak Log				
10				
dB/ Offst PASS LIMIT2	2			
10 dB				
LgAv				
M1 S2				
S3 FC				
£(f): FTun Marker	a hu hu dhidi sala pina nya pina			
Swp 2.00300000				
_40.37 dBm _				
Start 1.000 GHz			0 01	Stop 2.004 GHz
#Res BW 1 MHz		VBW 8 MHz	Sweep 2.1	33 ms (8000 pts)_

Figure 21: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, 1000MHz-2004MHz

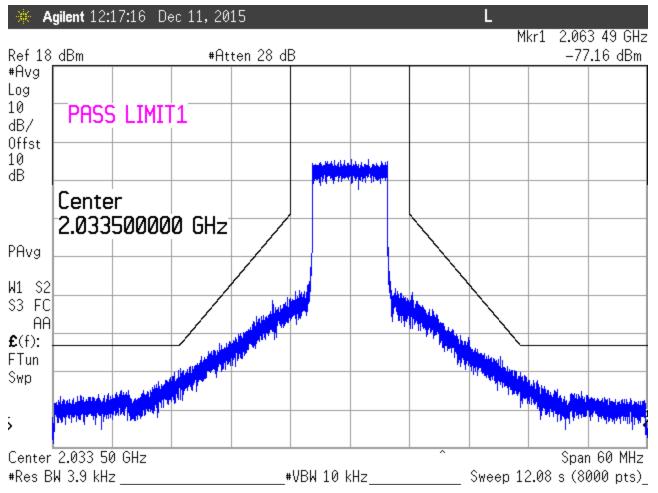



Figure 22: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, Emission Mask

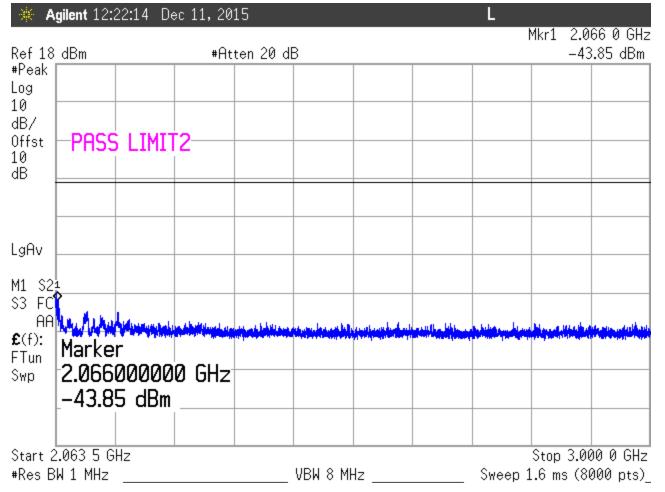



Figure 23: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, 2063.5MHz-3GHz

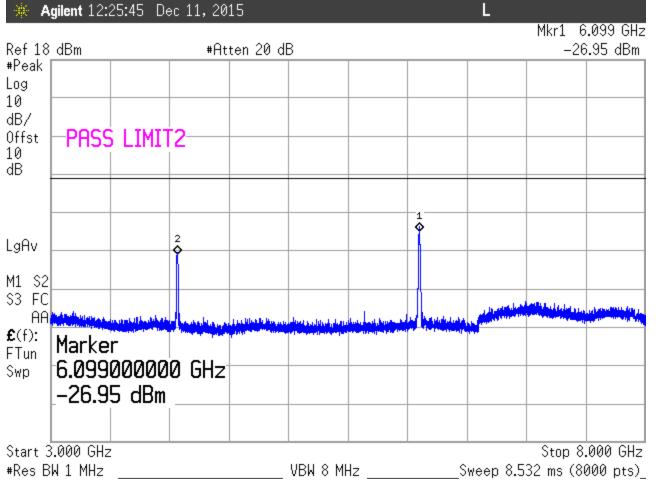



Figure 24: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, 3GHz-8GHz

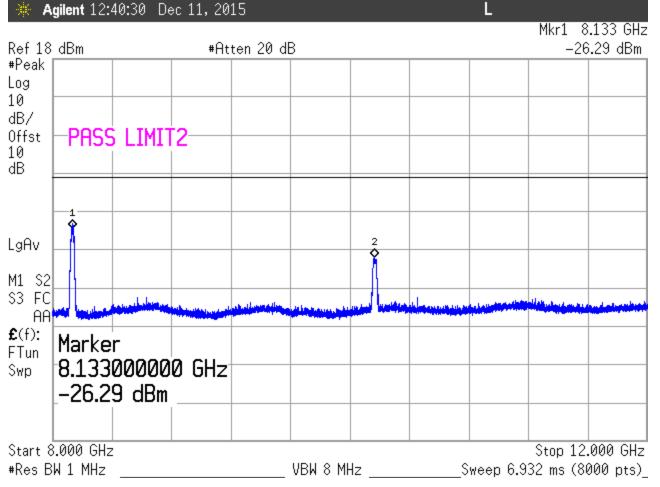



Figure 25: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, 8GHz-12GHz

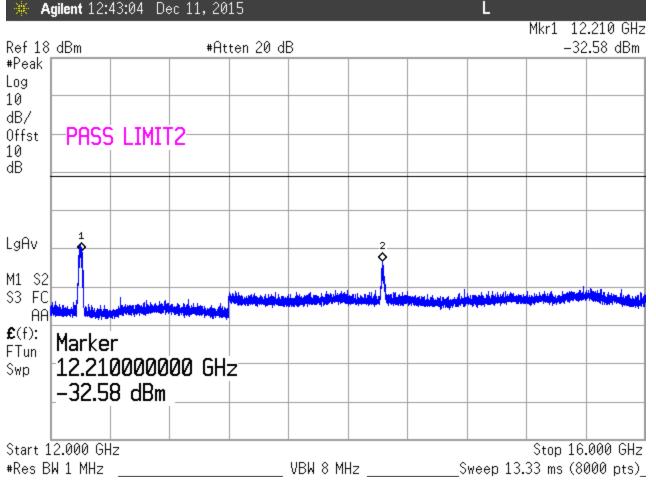



Figure 26: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, 12GHz-16GHz

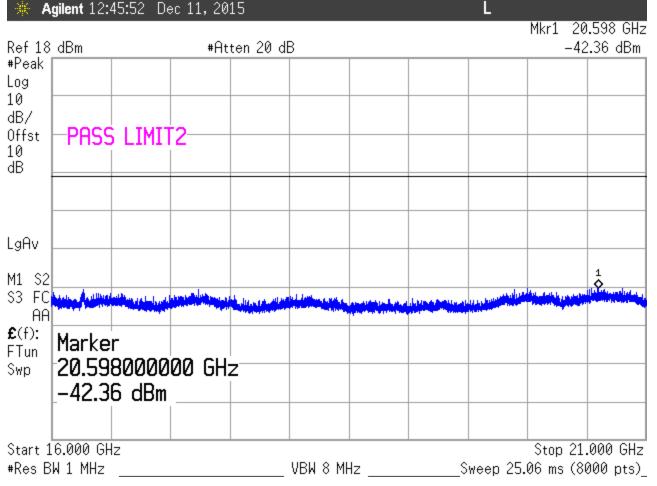



Figure 27: Spurious Emissions, 16QAM Modulation, TX @ 2033MHz, 16GHz-21GHz

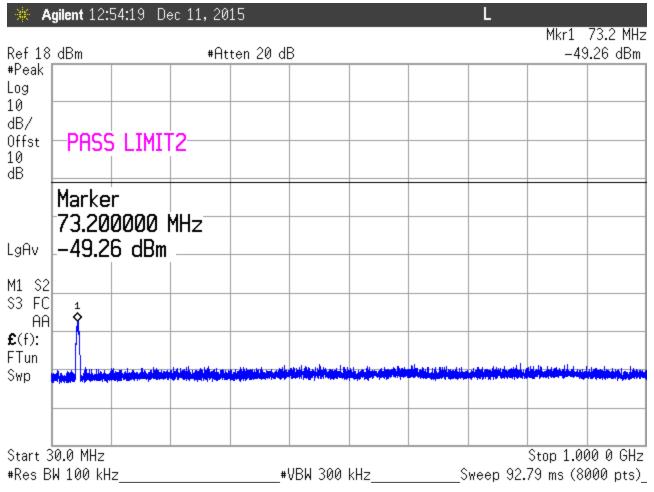



Figure 28: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, 30MHz-1000MHz

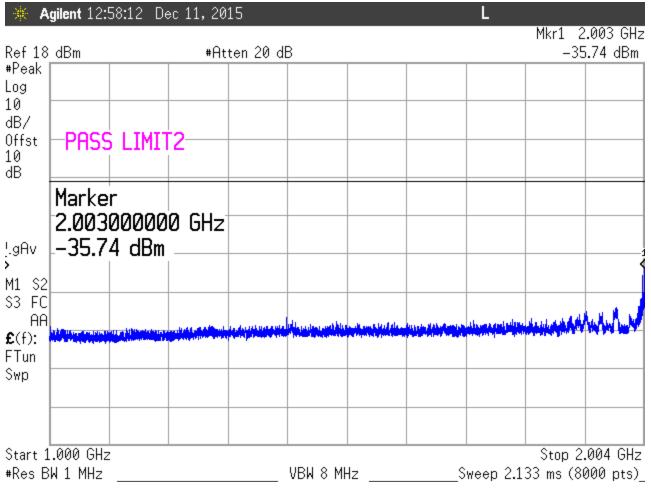



Figure 29: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, 1000MHz-2004MHz

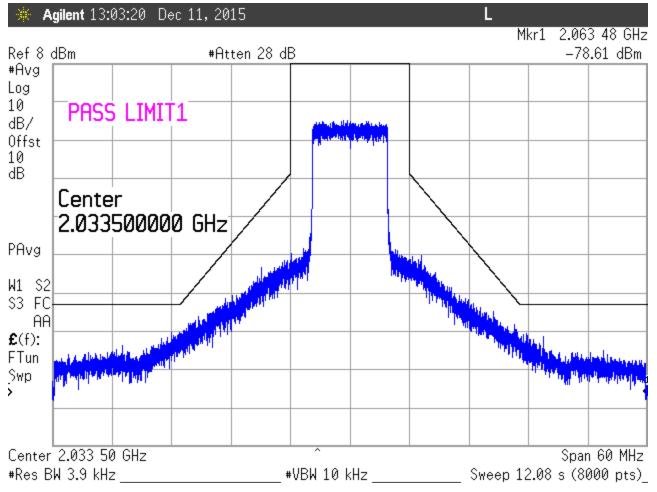



Figure 30: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, Emission Mask

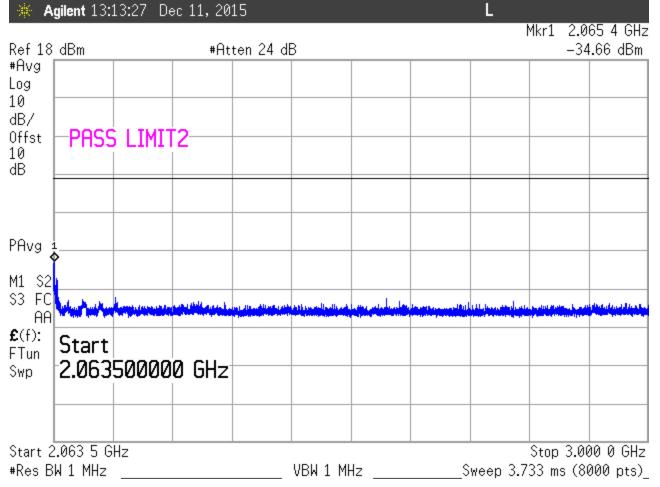



Figure 31: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, 2063.5MHz-3GHz

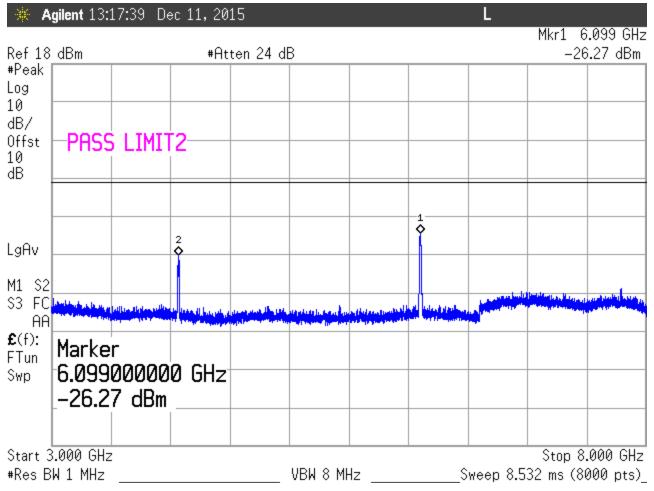



Figure 32: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, 3GHz-8GHz

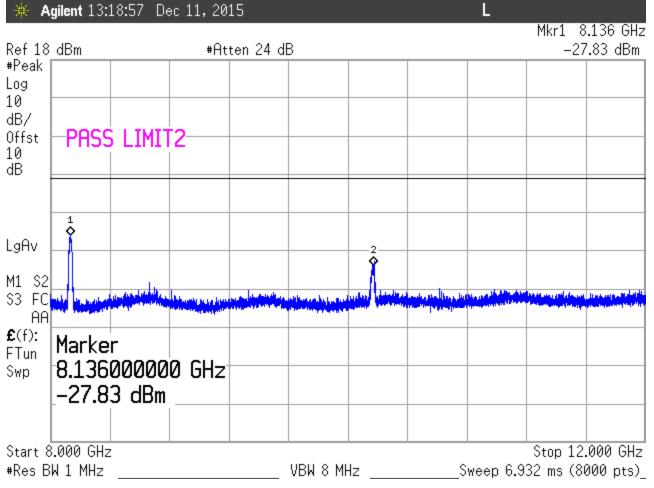



Figure 33: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, 8GHz-12GHz

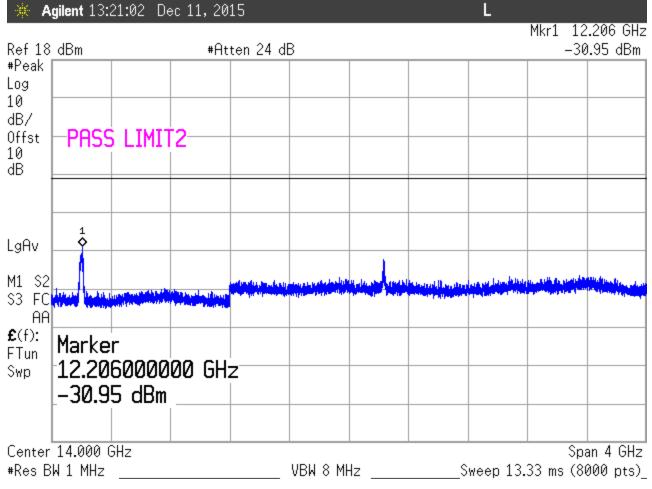



Figure 34: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, 12GHz-16GHz

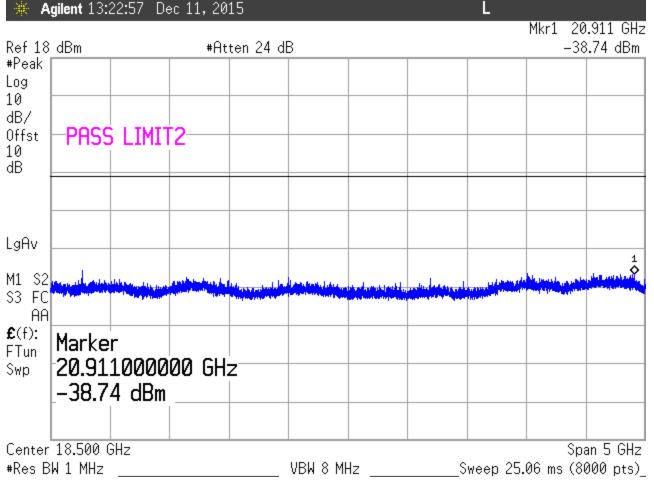



Figure 35: Spurious Emissions, 64QAM Modulation, TX @ 2033MHz, 16GHz-21GHz

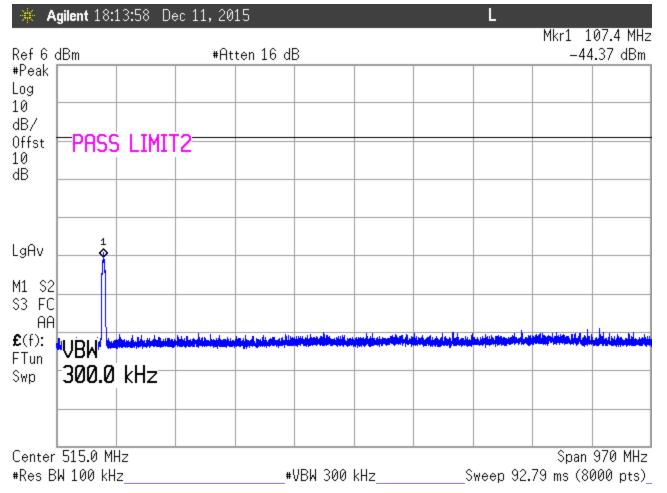



Figure 36: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, 30MHz-1000MHz

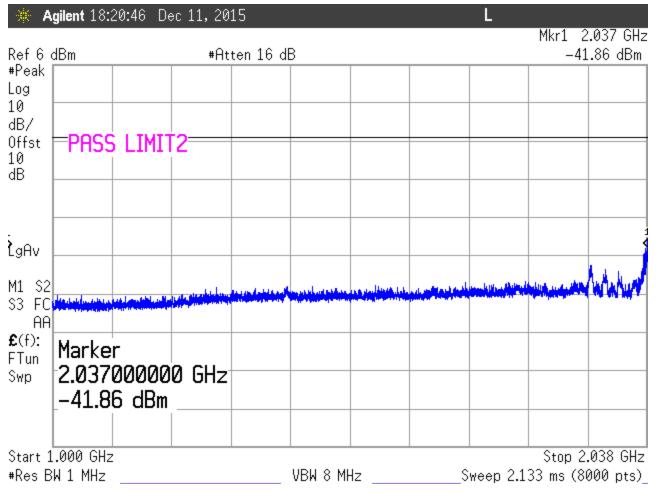



Figure 37: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, 1000MHz -2038MHz

L

## 🔆 Agilent 18:04:17 Dec 11, 2015

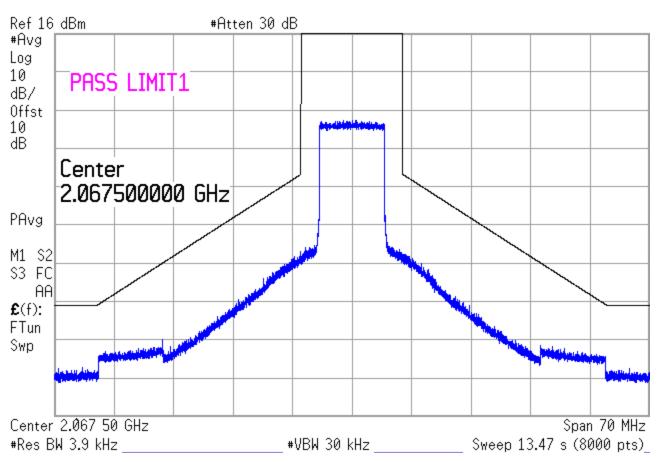



Figure 38: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, Emission Mask

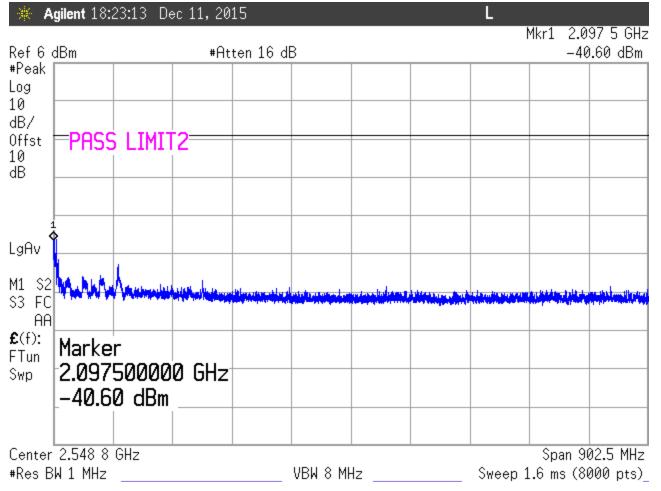



Figure 39: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, 2140MHz-10GHz

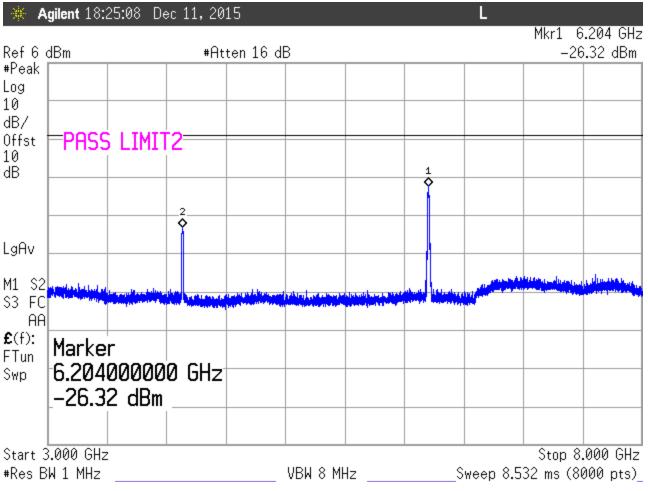



Figure 40: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, 3GHz-8GHz

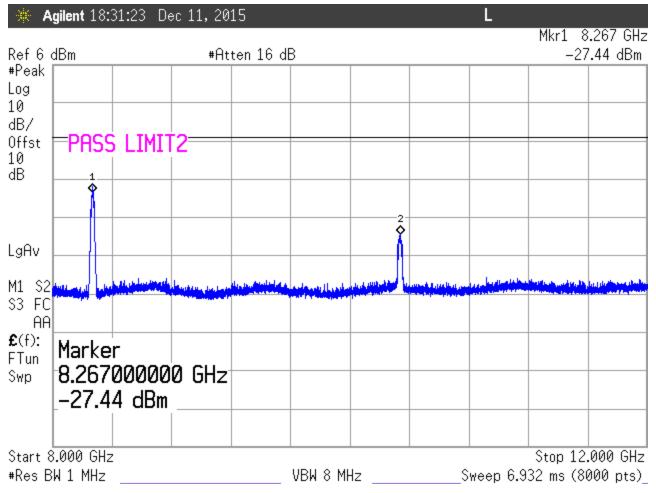



Figure 41: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, 8GHz-12GHz

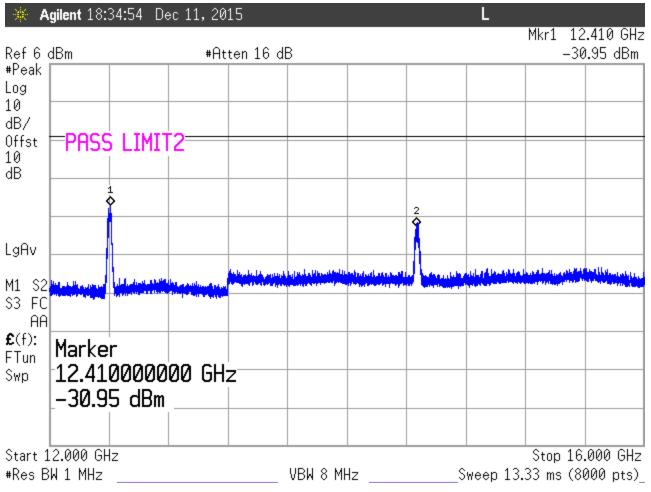



Figure 42: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, 12GHz-16GHz

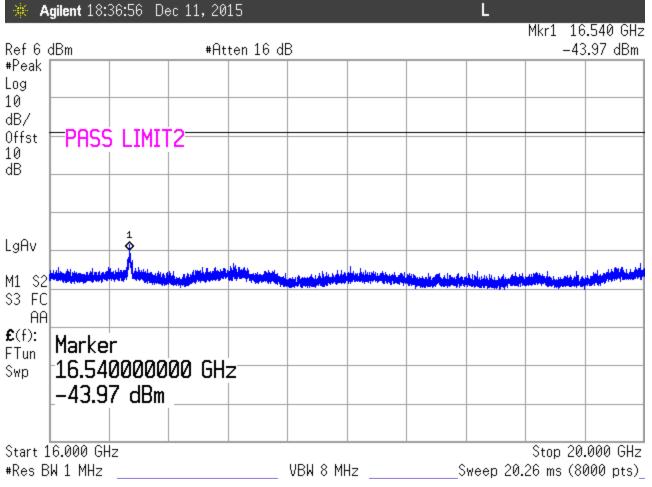



Figure 43: Spurious Emissions, QPSK Modulation, TX @ 2067.5MHz, 16GHz-20GHz

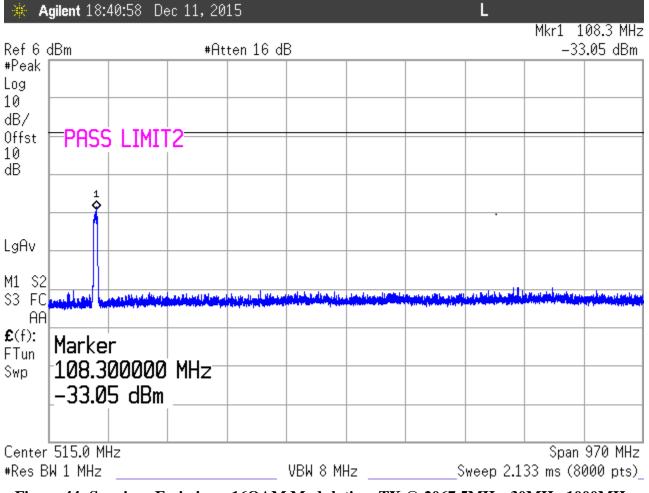



Figure 44: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, 30MHz-1000MHz

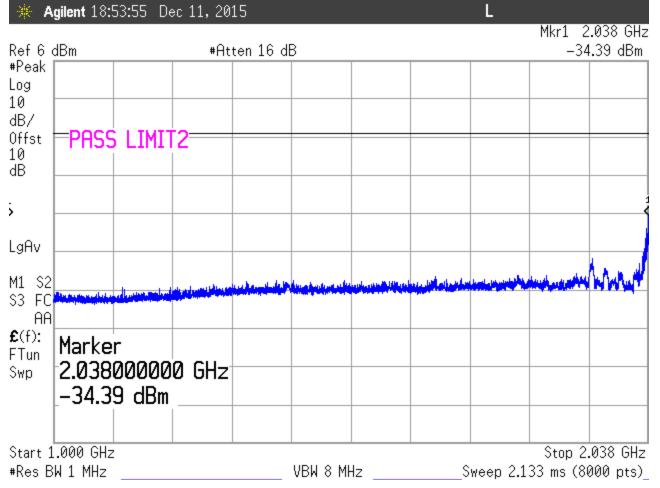



Figure 45: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, 1000MHz-2038MHz

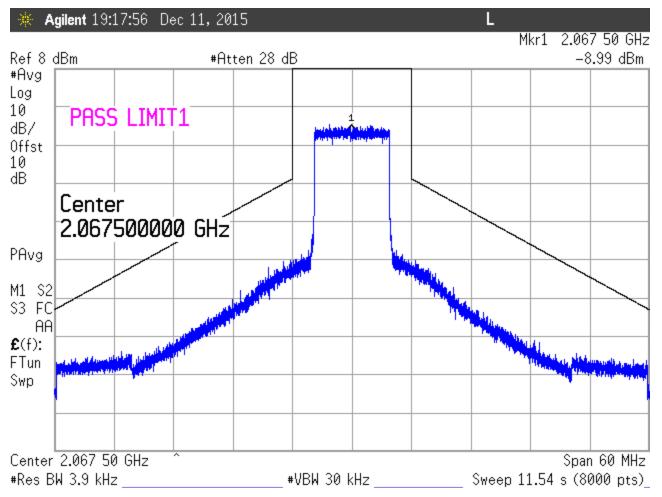



Figure 46: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, Emission Mask

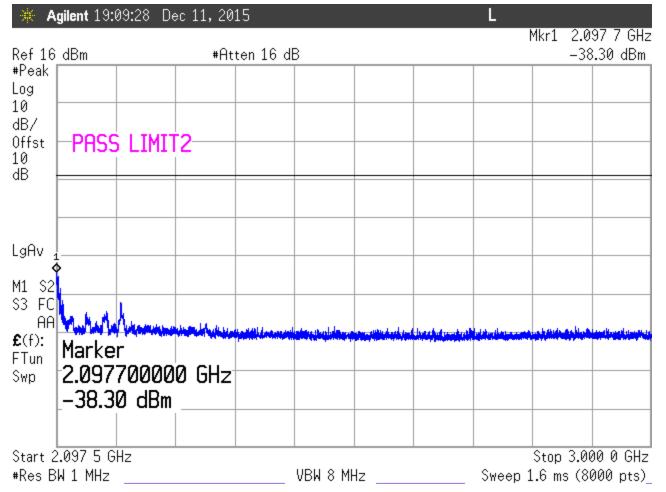



Figure 47: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, 2097.5MHz-3GHz

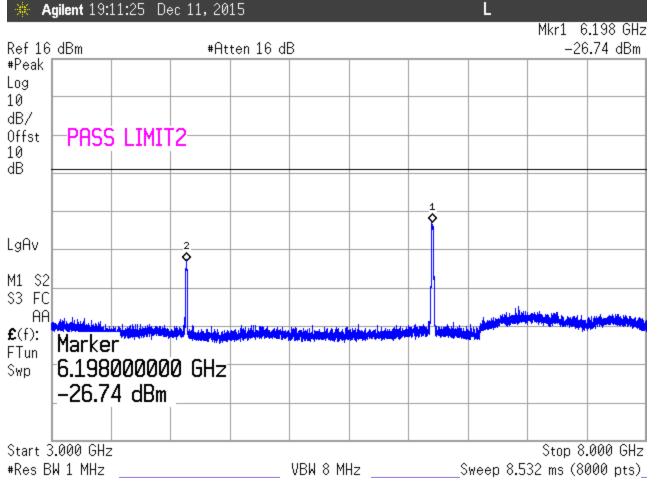



Figure 48: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, 3GHz-8GHz

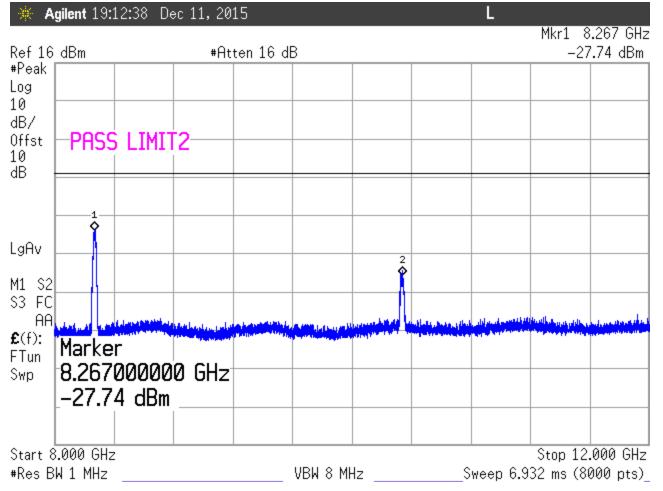



Figure 49: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, 8GHz-12GHz

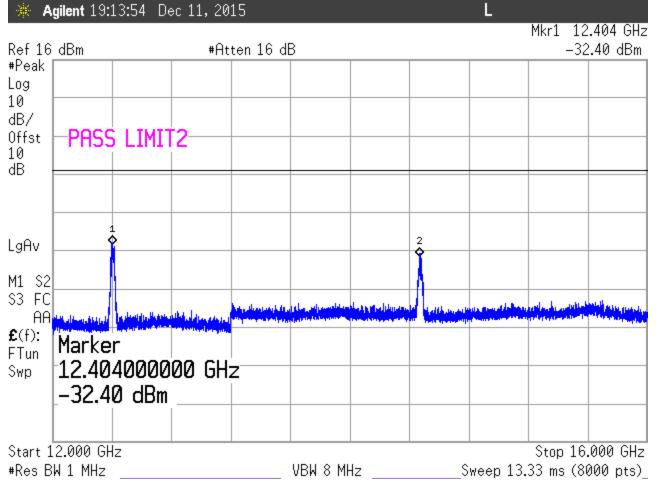



Figure 50: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, 12GHz-16GHz

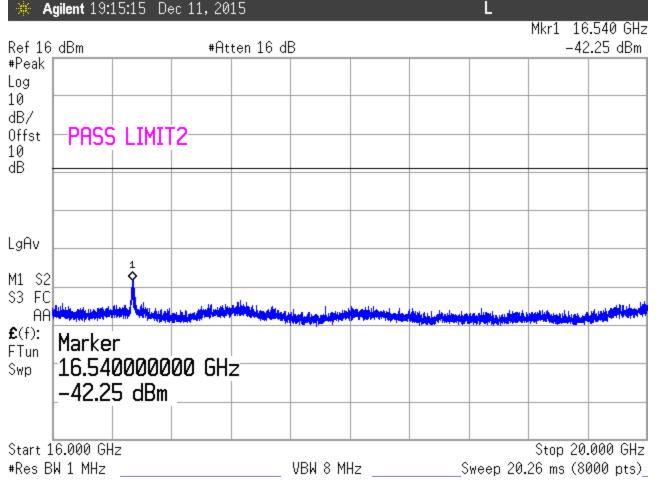



Figure 51: Spurious Emissions, 16QAM Modulation, TX @ 2067.5MHz, 16GHz-20GHz

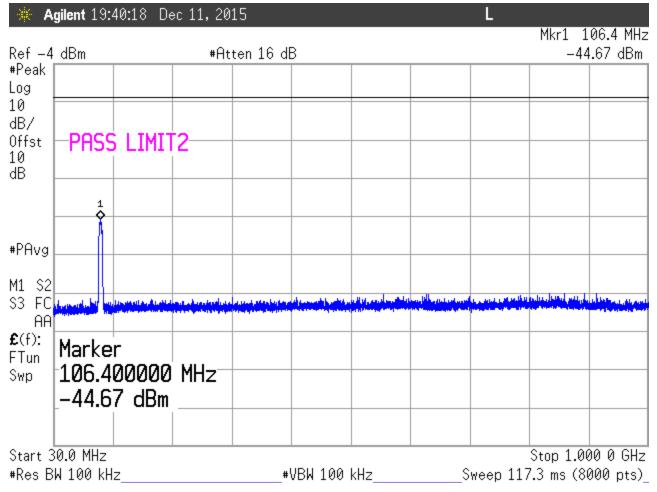



Figure 52: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, 30MHz-1000MHz

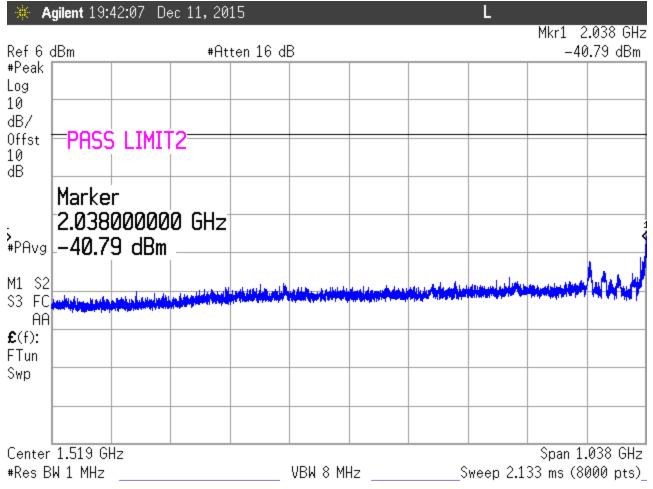



Figure 53: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, 1000MHz-2038MHz

L

## 🔆 Agilent 19:55:42 Dec 11, 2015

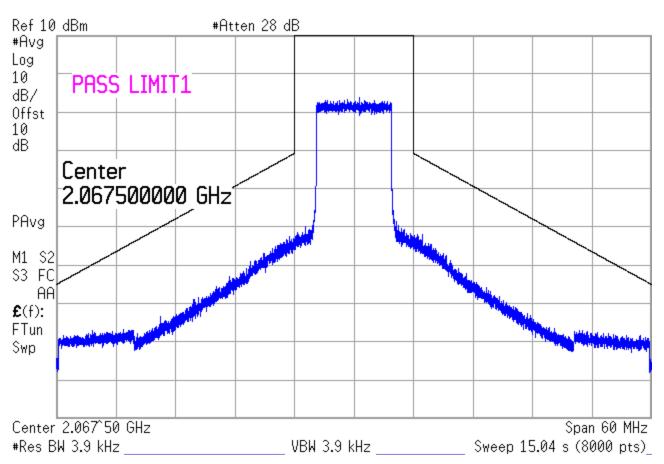



Figure 54: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, Emission Mask

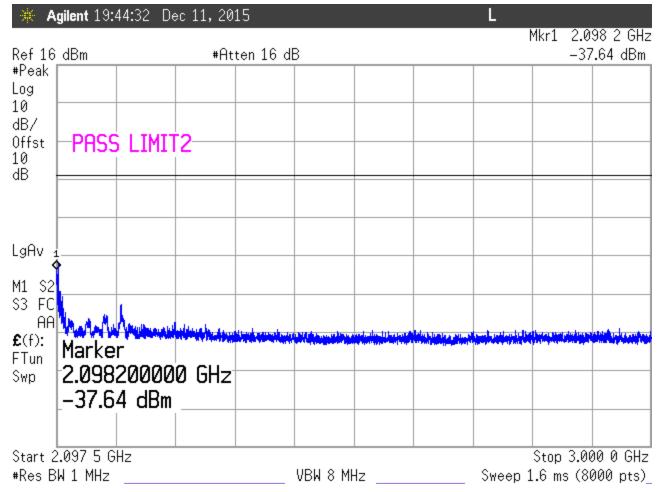



Figure 55: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, 2097.5MHz-3GHz

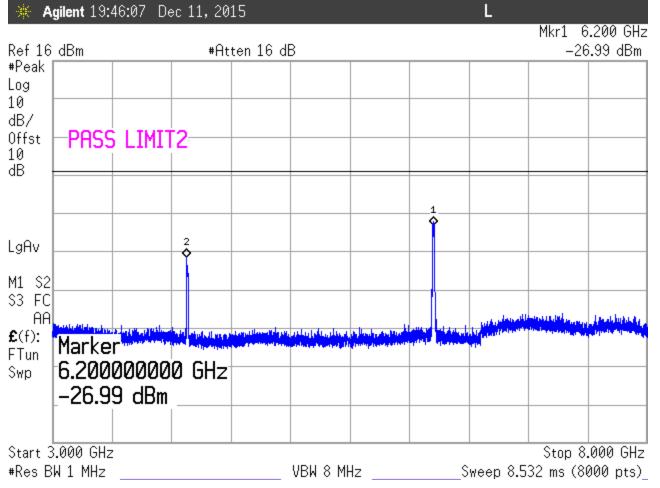



Figure 56: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, 3GHz-8GHz

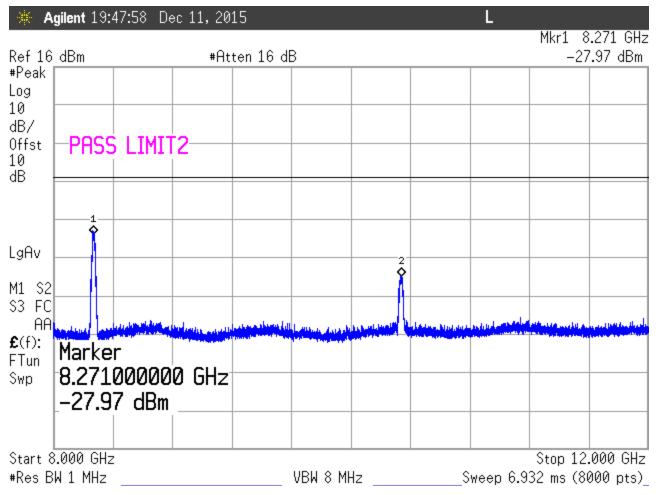



Figure 57: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, 8GHz-12GHz

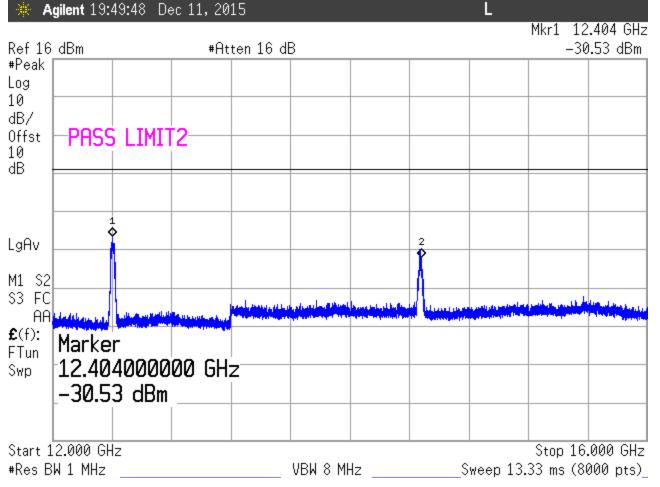



Figure 58: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, 12GHz-16GHz

🔆 Agilent 19:51:21 Dec 11, 2015		L
	4.6. 15	Mkr1 16.533 GHz
Ref 16 dBm #Atten #Peak	n 16 dB	-42.85 dBm
Log		
10		
dB/ Offst PASS   IMIT2		
Offst PASS LIMIT2		
dB		
LgAv		
M1 S2 🔶		
	a second state of the second second state of the second	
£(f): Marker		
FTun 16.533000000 GHz		
-42.85 dBm		
-42.05 UDIII		
Start 16.000 GHz		Stop 21.000 GHz
#Res BW 1 MHz	VBW 8 MHz	Sweep 25.06 ms (8000 pts)_

Figure 59: Spurious Emissions, 64QAM Modulation, TX @ 2067.5MHz, 16GHz-21GHz

🔆 A	<b>gilent</b> 14:08:04 De	ec 11, 2015 #Atten	20. dB			L		97.2 MHz .42 dBm
#Peak Log 10 dB/ 0ffst 10								.42 gbm
dB LgAv M1 S2	Marker 497.200000 -51.42 dBm							
S3 FC					Halu tanaharaha		<u> </u>	
	30.0 MHz W 100 kHz		VBW 1 M	Hz	\$			)0 0 GHz )00 pts)_

Figure 60: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 30MHz-1000MHz

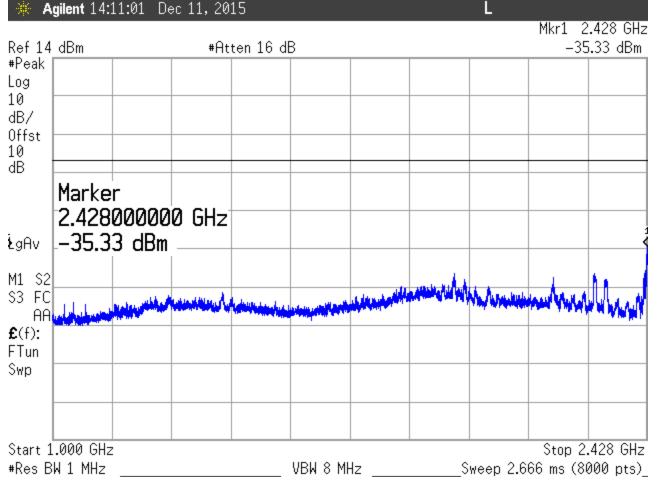



Figure 61: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 1000MHz-2428MHz

L

### 🔆 Agilent 14:05:10 Dec 11, 2015

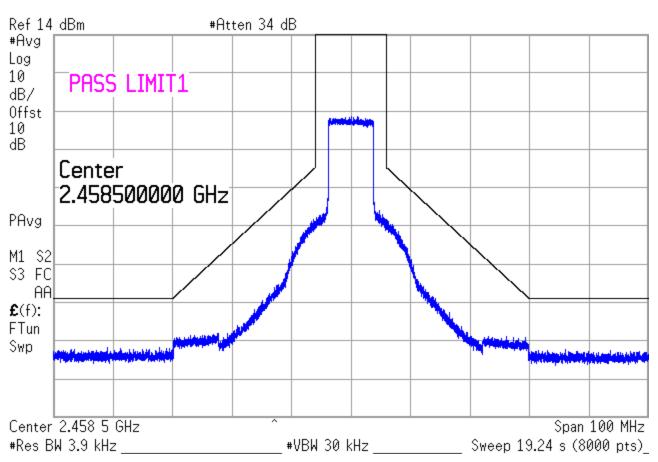



Figure 62: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, Emission Mask

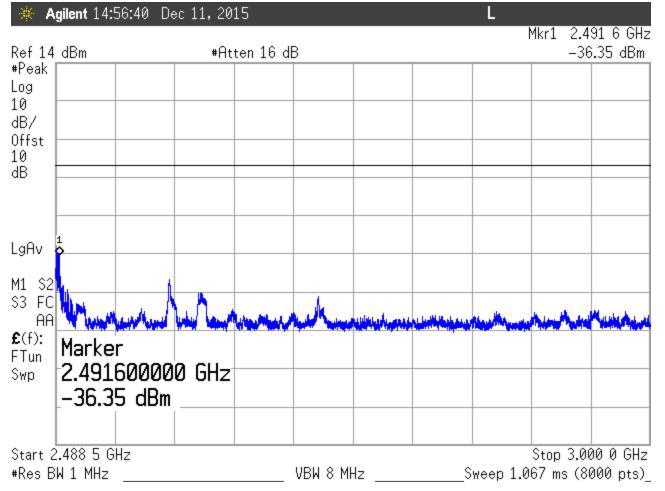



Figure 63: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 2488.5MHz-3GHz

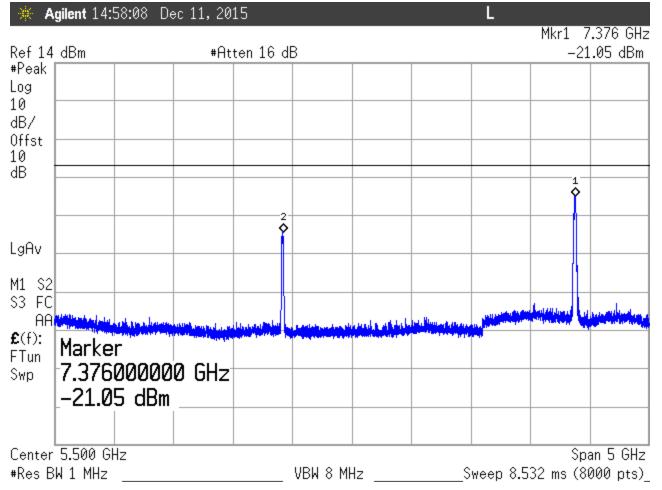



Figure 64: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 3GHz-8GHz

🔆 🔺	gilent 14:	59:49 <u>D</u> e	ec 11, 20	15					L		
Ref 14	dBm		#At	ten 16 di	3						0.832 GHz 0.70 dBm
#Peak Log											
10 dB/											
Offst											
10 dB											
					<	>					
LgAv											
M1 S2 S3 FC						-					
ÂĂ			in the second								
<b>£</b> (f): FTun	Marke										
Swp		00000	0 GHz								
	-30.7	0 dBm									
Start 8	3.000 GHz				1					Stop 12	.000 GHz
#Res B	W 1 MHz				VBW (	8 MH	lz	S	weep 6.9	32 ms (8	000 pts)_

Figure 65: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 8GHz-12GHz

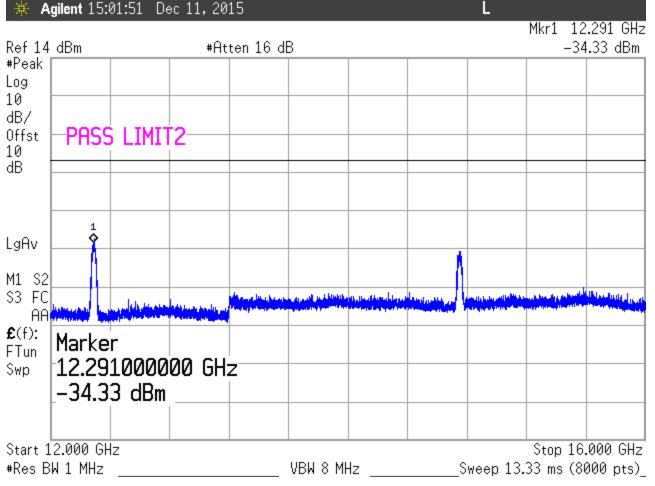



Figure 66: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 12GHz-16GHz

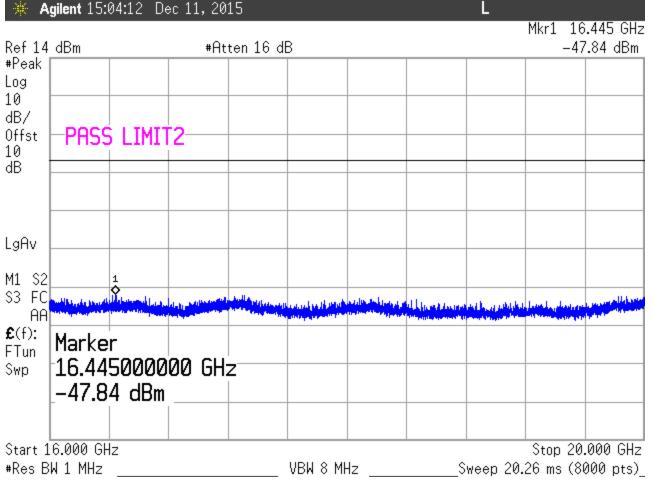



Figure 67: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 16GHz-20GHz

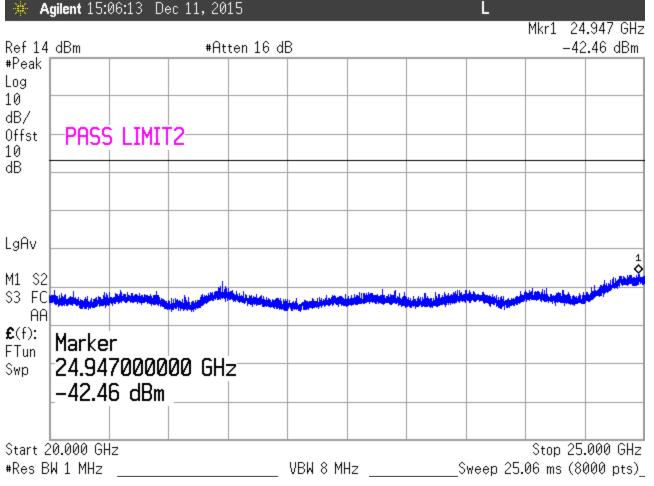



Figure 68: Spurious Emissions, QPSK Modulation, TX @ 2458.5MHz, 20GHz-25GHz

₩ А	gilent 15:	32 <b>:</b> 41 De	ec 11, 20	15				L		
	15		<u>^</u>		_					198.8 MHz
Ref 16 #Peak	dBm		#Ht	ten 18 di	3				-51	L.32 dBm
Log										
10										·
dB/ Offst			·							
10	гпээ		2							
dB										
	Marke	r								
	498.8	00000	$MHz^{-}$							
LgAv	-51.3	2 dBm								
M1 00										
M1 S2 S3 FC					1					·
ÂĂ					Ŷ					
<b>£</b> (f):										
FTun Swp		alti ti tetela arati ar	जनसंख्यात्वर्धः स्टब्स्	und the state of the state	di litta di	والملحاتين وال	S. ast. relad	بالعابة فالأدا فأل	a La salan La	and the second lines
μŲ	and a surface of the data of the		terrando a serie de comp		a de la company de la					
	0.0 MHz									00 0 GHz
#Res B	W 100 kH	Z			VBW 1 MH	łz	S	weep 89.	59 ms (8	000 pts)_

Figure 69: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 30MHz-1000MHz

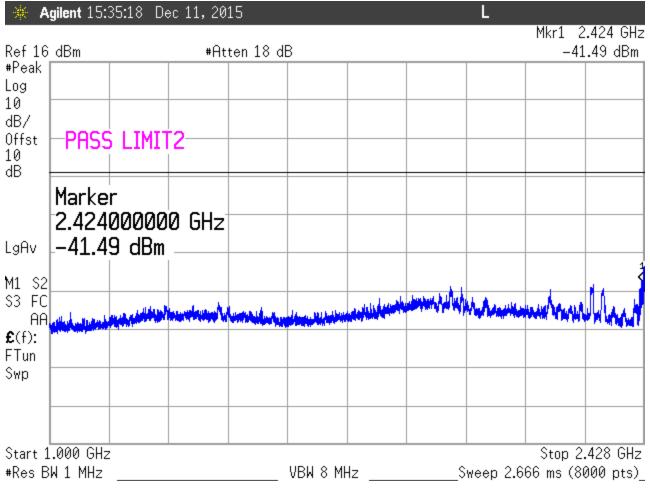



Figure 70: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 1000MHz-2428MHz

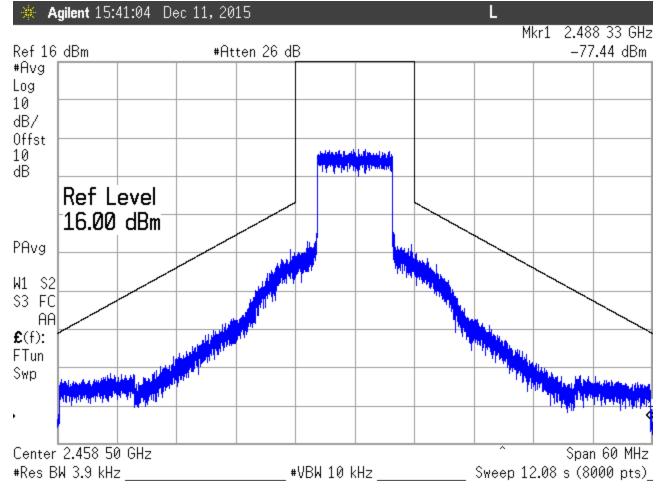



Figure 71: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, Emission Mask

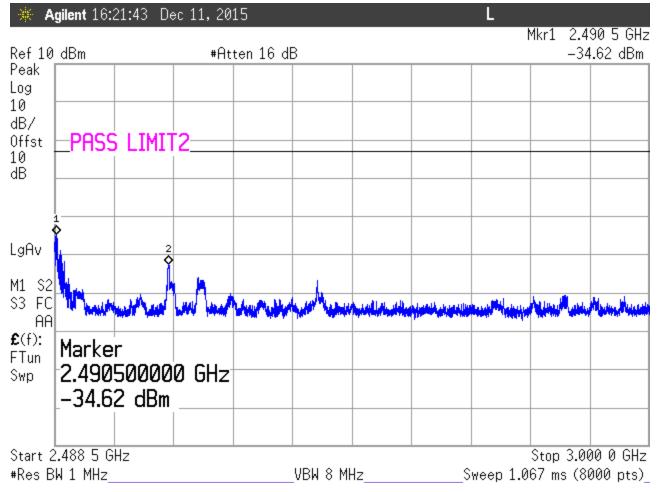



Figure 72: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 2438MHz-3GHz

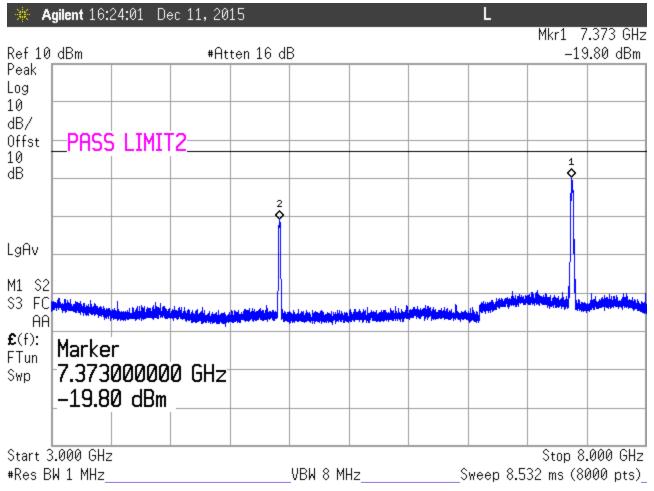



Figure 73: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 3GHz-8GHz

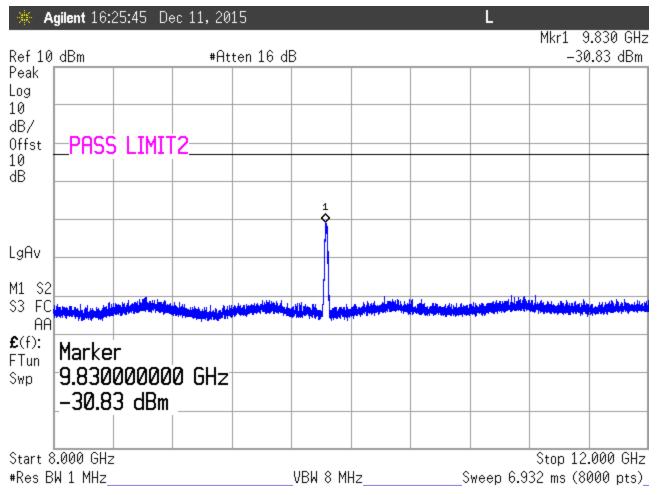



Figure 74: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 8GHz-12GHz

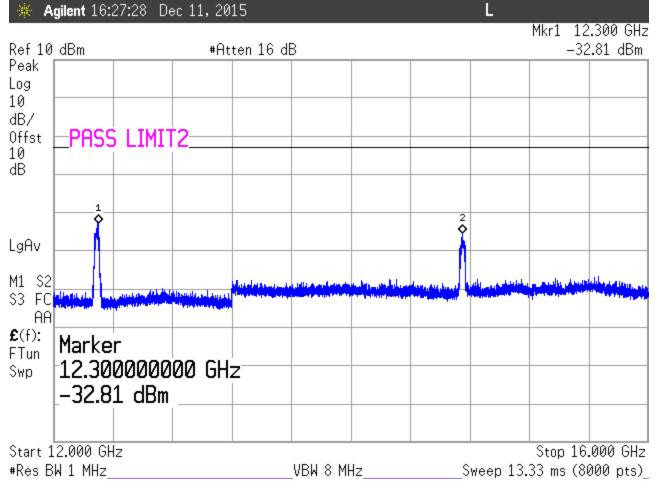



Figure 75: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 12GHz-16GHz

L

#### 🔆 Agilent 16:28:50 Dec 11, 2015

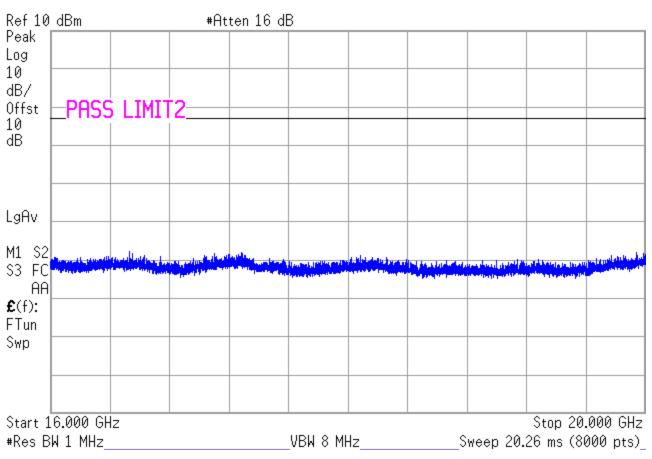



Figure 76: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 16GHz-20GHz

L

# ₭ Agilent 16:31:49 Dec 11, 2015

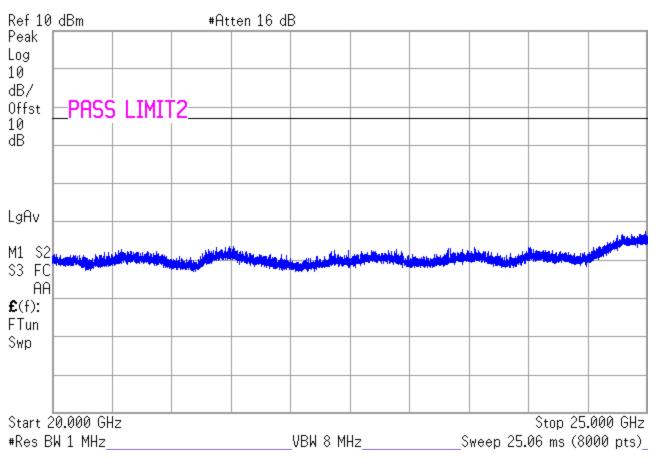



Figure 77: Spurious Emissions, 16QAM Modulation, TX @ 2458.5MHz, 20GHz-25GHz

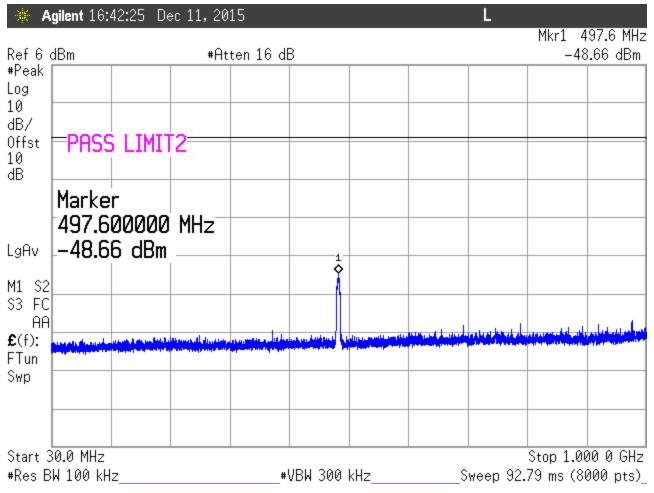



Figure 78: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 30MHz-1000MHz

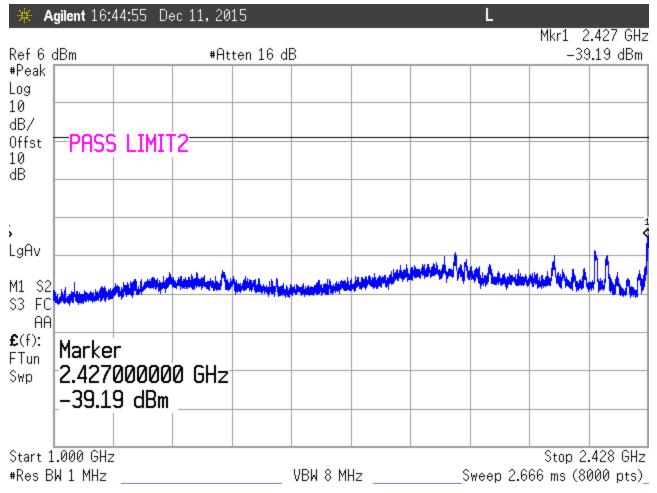



Figure 79: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 1000MHz-2428MHz

L

### 🔆 Agilent 16:39:06 Dec 11, 2015

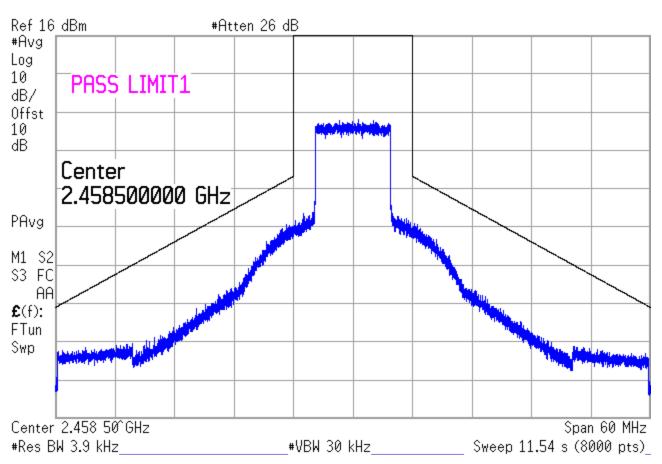



Figure 80: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, Emission Mask




Figure 81: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 2488MHz-3GHz

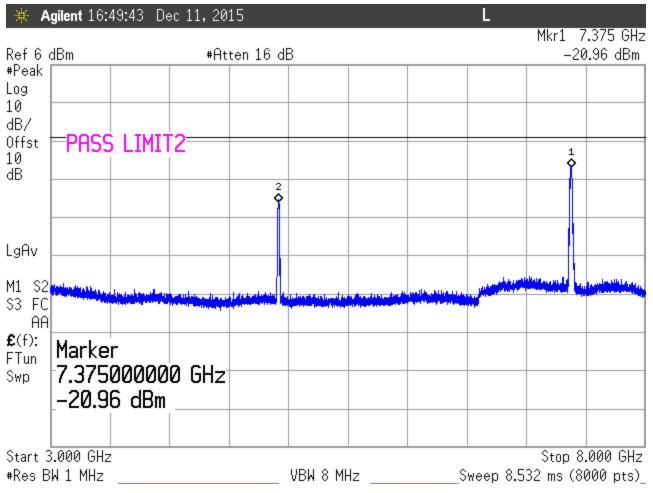



Figure 82: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 3GHz-8GHz

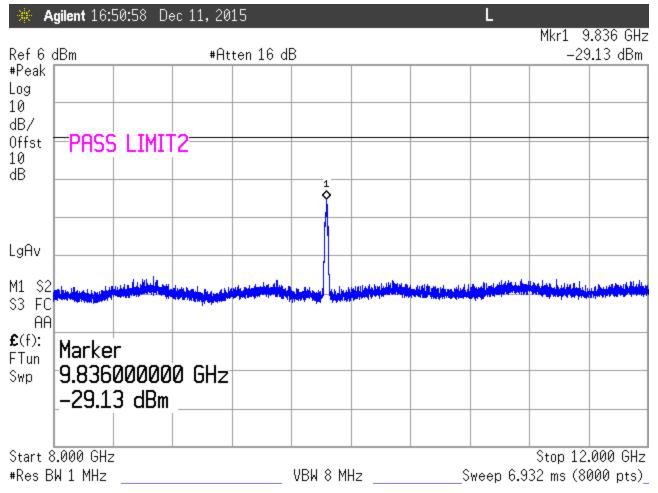



Figure 83: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 8GHz-12GHz

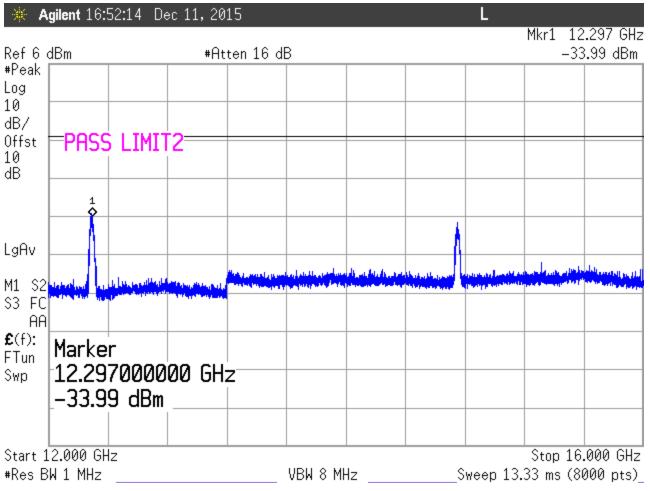



Figure 84: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 12GHz-16GHz

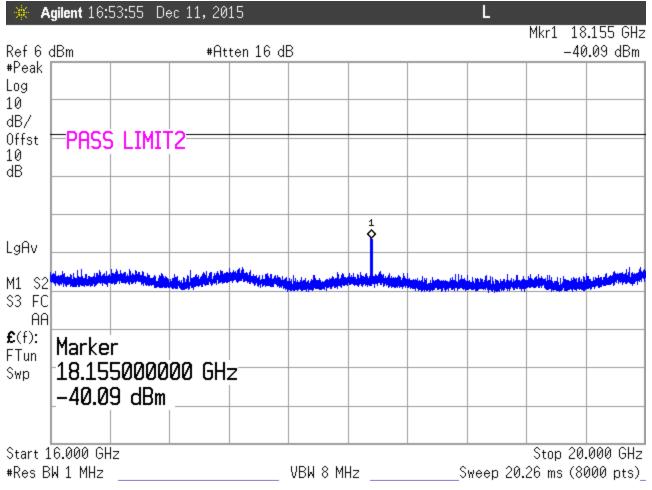



Figure 85: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 16GHz-20GHz

L

#### 🔆 Agilent 16:55:27 Dec 11, 2015

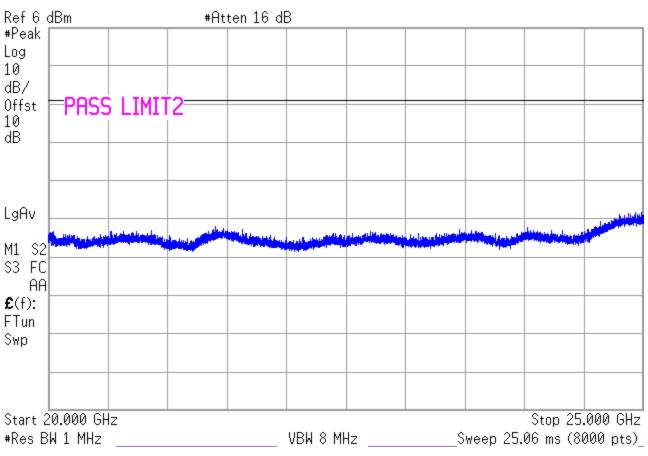



Figure 86: Spurious Emissions, 64QAM Modulation, TX @ 2458.5MHz, 20GHz-25GHz

#### 4.4 Radiated Spurious Emissions (EIRP): (FCC Part §2.1053)

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.4-2014. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

The Effective Isotropic Radiated Power (EIRP) levels were measured and were compared with the limit of -13dBm per FCC Part 74. The limit of -13dB is derived from the formula of  $43+10 \log$  (P) dB per §74.637(a)(3).

Emissions were measured for a Low Channel 2033MHz, a middle channel 2067.5MHz and a high channel 2458.5MHz representing channels across the operating band and falling within the specific frequency range of Part 74F. Emissions were scanned up to the 10th harmonic of the fundamental. Worst case measurements are reported. The signal substitution method was used to obtain EIRP levels.

#### 4.4.1 Test Procedure

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.4-2014. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

Where emissions were detected, the EIRP levels were determined using the method of signal substitution. The measurement bandwidth used was set to 4 kHz. The actual EIRP level was calculated as follows.

EIRP (dBm) = Signal generator substitution level (dBm) + Antenna Gain (dBi)

### 4.4.2 Test Results

Frequency (MHz)	Polarity (H/V)	Azimuth (Degree)	Ant. Height (m)	SA Level (dBuV)	Corr Factors (dB)	Corr. Level (dBuV/m)	EIRP Calc (dBm)	Limit (dBm)	Margin (dB)	Peak or Average	Comments
38.18	V	90.00	1.00	32.91	-8.7	24.2	-71.0	-13.0	-58.0	Peak	
43.08	V	0.0	1.00	33.5	-12.3	21.2	-74.1	-13.0	-61.1	Peak	
47.66	V	180.0	1.10	34.2	-15.1	19.2	-76.1	-13.0	-63.1	Peak	
73.25	V	0.00	1.20	31.20	-15.5	15.7	-79.5	-13.0	-66.5	Peak	
112.95	V	165.00	1.20	27.77	-9.9	17.9	-77.4	-13.0	-64.4	Peak	
133.50	V	10.00	1.20	32.17	-9.4	22.8	-72.5	-13.0	-59.5	Peak	
255.56	V	270.00	2.73	37.91	-11.4	26.5	-68.7	-13.0	-55.7	Peak	
38.18	Н	90.0	3.9	29.1	-8.7	20.4	-74.8	-13.0	-61.8	Peak	
47.66	Н	270.0	3.9	34.0	-15.1	19.0	-76.3	-13.0	-63.3	Peak	
48.48	Н	90.0	3.9	33.6	-15.4	18.2	-77.1	-13.0	-64.1	Peak	
73.25	Н	0.0	3.8	33.7	-15.5	18.3	-77.0	-13.0	-64.0	Peak	
112.95	Н	10.0	3.8	32.3	-9.9	22.4	-72.9	-13.0	-59.9	Peak	
133.50	Н	190.0	3.5	30.1	-9.4	20.7	-74.6	-13.0	-61.6	Peak	
255.56	Н	170.0	2.3	30.3	-11.4	18.9	-76.3	-13.0	-63.3	Peak	

 Table 13: Radiated Emission Test Data

Table 14: Radiated Emission Test Data, TX @ 2.033GHz

Frequency (MHz)	Polarity	Azimuth	Ant. Height (m)	Spurious Level (dBuV)	Sub. Sig. Gen. Level (dBm)	Sub. Power Level (dBm)	Sub. Ant. Factor (dB)	Sub. Ant. Gain (dB)	EIRP Level (dBm)	Limit (dBm)	Margin (dB)
2033.50											
4067.00	V	45.0	2.2	63.50	-39.2	-41.8	36.8	5.5	-36.2	-13	-23.2
6100.50	V	45.0	2.2	59.67	-43.2	-46.7	39.1	6.8	-39.9	-13	-26.9
8134.00	V	45.0	2.2	52.00	-48.8	-54.0	42.5	5.8	-48.1	-13	-35.1
10167.50	V	45.0	2.2	47.50	-44.5	-51.0	45.8	4.6	-46.4	-13	-33.4
2033.50											
4067.00	Н	0.0	2.6	62	-41.3	-43.9	36.8	5.5	-38.3	-13	-25.3
6100.50	Н	0.0	2.6	58.2	-43.5	-47.0	39.1	6.8	-40.2	-13	-27.2
8134.00	Н	0.0	2.6	50.5	-46.3	-51.5	42.5	5.8	-45.6	-13	-32.6
10167.50	Н	0.0	2.6	44.7	-47.8	-54.3	45.8	4.6	-49.7	-13	-36.7

Frequency (MHz)	Polarity	Azimuth	Ant. Height (m)	Spurious Level (dBuV)	Sub. Sig. Gen. Level (dBm)	Sub. Power Level (dBm)	Sub. Ant. Factor (dB)	Sub. Ant. Gain (dB)	EIRP Level (dBm)	Limit (dBm)	Margin (dB)
					•••						
4135.00	V	45.0	2.2	64.88	-38.2	-40.8	36.6	5.7	-35.1	-13	-22.1
6202.50	V	45.0	2.2	59.91	-43.2	-46.6	39.5	6.3	-40.3	-13	-27.3
8270.00	V	45.0	2.2	51.81	-49.5	-54.6	42.4	5.8	-48.7	-13	-35.7
10337.50	V	45.0	2.2	47.50	-44.5	-50.9	44.5	5.7	-45.2	-13	-32.2
2067.50											
4135.00	Н	0.0	2.6	60.3	-42.1	-44.7	36.6	5.7	-39.0	-13	-26.0
6202.50	Н	0.0	2.6	55.2	-45.4	-48.8	39.5	6.3	-42.5	-13	-29.5
8270.00	Н	0.0	2.6	45.6	-51.2	-56.3	42.4	5.8	-50.4	-13	-37.4
10337.50	Н	0.0	2.6	44.7	-47.8	-54.2	44.5	5.7	-48.5	-13	-35.5

Table 15: Radiated Emission Test Data, TX @ 2.0675GHz

 Table 16: Radiated Emission Test Data, TX @ 2.1015GHz

Frequency (MHz)	Polarity	Azimuth	Ant. Height (m)	Spurious Level (dBuV)	Sub. Sig. Gen. Level (dBm)	Sub. Power Level (dBm)	Sub. Ant. Factor (dB)	Sub. Ant. Gain (dB)	EIRP Level (dBm)	Limit (dBm)	Margin (dB)
2101.50 4203.00 6304.50 8406.00 10507.50	V V V V	45.0 45.0 45.0 45.0	2.1 2.1 2.1 2.1	47.3 49.8 53.2 48.4	-48.5 -44.6 -36.4 -38.2	-51.1 -48.3 -41.8 -44.9	36.5 39.3 43.6 45.3	6.3 7.0 5.1 5.4	-44.8 -41.3 -36.7 -39.5	-13 -13 -13 -13	-31.8 -28.3 -23.7 -26.5
2101.50 4203.00 6304.50 8406.00 10507.50	Н Н Н Н	0.0 0.0 0.0 0.0	2.6 2.6 2.6 2.6	45.3 47.2 50.8 44.2	-49.5 -41.3 -31.6 -41.4	-52.1 -45.0 -37.0 -48.1	36.5 39.3 43.7 45.3	6.3 7.0 5.1 5.4	-45.8 -38.0 -31.9 -42.7	-13 -13 -13 -13	-32.8 -25.0 -18.9 -29.7

Frequency (MHz)	Polarity	Azimuth	Ant. Height (m)	Spurious Level (dBuV)	Sub. Sig. Gen. Level (dBm)	Sub. Power Level (dBm)	Sub. Ant. Factor (dB)	Sub. Ant. Gain (dB)	EIRP Level (dBm)	Limit (dBm)	Margin (dB)
2458.50 4917.00 7375.50 9834.00 12292.50	V V V V	45.0 45.0 45.0 45.0	2.2 2.2 2.2 2.2 2.2	62.83 56.7 54.67 61.83	-35 -35.4 -38.15 -27.15	-37.8 -40.1 -44.5 -34.8	37.2 41.0 45.0 47.5	6.9 6.6 5.1 4.6	-30.9 -33.5 -39.4 -30.2	-13 -13 -13 -13	-17.9 -20.5 -26.4 -17.2
2458.50 4917.00 7375.50 9834.00 12292.50	Н Н Н Н	0.0 0.0 0.0 0.0	2.6 2.6 2.6 2.6	60.33 51.8 50.67 56.33	-36.5 -42.5 -42.5 -28.4	-39.3 -47.2 -48.9 -36.1	37.2 41.0 45.0 47.5	6.9 6.6 5.1 4.6	-32.4 -40.6 -43.7 -31.5	-13 -13 -13 -13	-19.4 -27.6 -30.7 -18.5

Table 17: Radiated Emission Test Data, TX @ 2.4585GHz

## 4.5 Frequency Stability: (FCC Part §2.1055 & FCC Part §74.661)

Frequency as a function of temperature and voltage variation shall be maintained within the FCC-prescribed tolerances.

The temperature stability was measured with the unit in an environmental chamber used to vary the temperature of the sample. The sample was held at each temperature step to allow the temperature of the sample to stabilize.

The EUT is powered by DC voltage supplied externally. The manufacturer's power requirements for the EUT include the following:

Low DC Voltage of 10 VDC (manufacturer's specification)

High DC Voltage of 13.8VDC (manufacturer's specifications)

The frequency stability of the transmitter was examined at the voltage extremes and for the temperature range of  $-30^{\circ}$ C to  $+50^{\circ}$ C. The carrier frequency was measured while the EUT was in the temperature chamber. The reference frequency of the EUT was measured at the ambient room temperature with the frequency counter.

Two limits were evaluated which are dependent on the frequency band of operation. In the frequency range 2.025-2.11GHz a frequency tolerance of 0.005% must be maintained. In the frequency range 2.45-2.4835GHz a frequency tolerance of 0.001% must be maintained.

#### 4.5.1 Test Procedure

The temperature stability was measured with the unit in an environmental chamber used to vary the temperature of the sample. The sample was held at each temperature step to allow the temperature of the sample to stabilize.

The frequency stability of the transmitter was examined at the voltage extremes and for the temperature range of  $-30^{\circ}$ C to  $+50^{\circ}$ C. The carrier frequency was measured while the EUT was in the temperature chamber. The reference frequency of the EUT was measured at the ambient room temperature with the frequency counter.

#### 4.5.2 Test Results

The EUT complies with the temperature stability requirements of FCC Part §2.1055 & Part §74.661. Test results are given in Tables 12-15.

Temperature (Centigrade)	Frequency (MHz)	Difference (Hz)	Deviation (%)
Ambient	2101.499791	0.0	0
-30	2101.500711	920.0	0.000044
-20	2101.500660	869.0	0.000041
-10	2101.500555	764.0	0.000036
0	2101.499917	126.0	0.000006
10	2101.499916	125.0	0.000006
20	2101.499851	60.0	0.000003
30	2101.499624	-167.0	0.000008
40	2101.499441	-350.0	0.000017
50	2101.499840	49.0	0.000002

 Table 18: Frequency Stability Test Data TX @ 2101.5MHz

Table 19: Frequency Stability Test Data TX @ 2458.5MHz

Temperature (Centigrade)	Frequency (MHz)	Difference (Hz)	Deviation (%)
Ambient	2458.499435	0.0	0
-30	2458.500665	1230.0	0.000050
-20	2458.500695	1260.0	0.000051
-10	2458.500554	1119.0	0.000046
0	2458.499857	422.0	0.000017
10	2458.499777	342.0	0.000014
20	2458.499672	237.0	0.000010
30	2458.499364	-71.0	0.000003
40	2458.499242	-193.0	0.000008
50	2458.499844	409.0	0.000017

# Table 20: Frequency Stability Test Data (Voltage Variation) TX @2101.5MHz

Voltage (Volts)	Frequency (MHz)	Difference (Hz)	Deviation (%)	Voltage (Volts)
At rated	2101.499791	0	0.0	12VDC
At 85%	2101.499651	140	0.000007	10.9VDC
At 115%	2101.500562	-771	0.000037	13.8VDC

## Table 21: Frequency Stability Test Data (Voltage Variation) TX @2458.5MHz

Voltage (Volts)	Frequency (MHz)	Difference (Hz)	Deviation (%)	Voltage (Volts)
At rated	2458.499435	0	0.0	12VDC
At 85%	2458.499132	303	0.000012	10.9VDC
At 115%	2458.500265	-830	0.000034	13.8VDC