

The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 764-0500

Measured Radio Frequency Emissions From

Raven Industries Transmitter Model(s): KSMBR20543T

Report No. 415031-297 May 6, 2006

Copyright © 2006

For:

Raven Industries, Inc. Electronic Systems Division, 4372 Green Ash Drive Earth City, MO 63045

Contact: Tim Diehl tim.diehl@ravenind.com Tel: 314-291-2712 ext 3102 Fax: 314-291-0773 PO: Verbal

Measurements made by:

Kej

Valdis V. Liepa

Tests supervised by: Report approved by:

Valdis V. Liepa Research Scientist

Summary

Tests for compliance with FCC Regulations Part 15, Subpart C, and Industry Canada RSS-210, were performed on Raven Industries Inc. model(s) KSMBR20543T. This device is subject to the Rules and Regulations as a Transmitter.

In testing completed on May 5, 2006, the device tested in the worst case met the allowed FCC specifications for radiated emissions by 0.8 dB (see p. 6). Besides harmonics, there were no other significant spurious emissions found; emissions from digital circuitry were negligible. The conducted emission tests do not apply, since the device is powered from four 1.5 V batteries.

1. Introduction

Raven Industries Inc. model KSMBR20543T was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989 as subsequently amended, and with Industry Canada RSS-210/Gen, Issue 6, September 2005. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-2003 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057).

2. Test Procedure and Equipment Used

The pertinent test equipment commonly used in our facility for measurements is listed in Table 2.1 below. The middle column identifies the specific equipment used in these tests.

Table 2.1 Test Equipment.

Test Instrument	Eqpt. Used	Manufacturer/Model
Spectrum Analyzer (0.1-1500 MHz)		Hewlett-Packard, 182T/8558B
Spectrum Analyzer (9kHz-22GHz)	X	Hewlett-Packard 8593A SN: 3107A01358
Spectrum Analyzer (9kHz-26GHz)	X	Hewlett-Packard 8593E, SN: 3412A01131
Spectrum Analyzer (9kHz-26GHz)		Hewlett-Packard 8563E, SN: 3310A01174
Spectrum Analyzer (9kHz-40GHz)		Hewlett-Packard 8564E, SN: 3745A01031
Power Meter		Hewlett-Packard, 432A
Power Meter		Anritsu, ML4803A/MP
Harmonic Mixer (26-40 GHz)		Hewlett-Packard 11970A, SN: 3003A08327
Harmonic Mixer (40-60 GHz)		Hewlett-Packard 11970U, SN: 2332A00500
Harmonic Mixer (75-110 GHz)		Hewlett-Packard 11970W, SN: 2521A00179
Harmonic Mixer (140-220 GHz)		Pacific Millimeter Prod., GMA, SN: 26
S-Band Std. Gain Horn		S/A, Model SGH-2.6
C-Band Std. Gain Horn		University of Michigan, NRL design
XN-Band Std. Gain Horn		University of Michigan, NRL design
X-Band Std. Gain Horn		S/A, Model 12-8.2
X-band horn (8.2- 12.4 GHz)		Narda 640
X-band horn (8.2- 12.4 GHz)		Scientific Atlanta, 12-8.2, SN: 730
K-band horn (18-26.5 GHz)		FXR, Inc., K638KF
Ka-band horn (26.5-40 GHz)		FXR, Inc., U638A
U-band horn (40-60 GHz)		Custom Microwave, HO19
W-band horn(75-110 GHz)		Custom Microwave, HO10
G-band horn (140-220 GHz)		Custom Microwave, HO5R
Bicone Antenna (30-250 MHz)	X	University of Michigan, RLBC-1
Bicone Antenna (200-1000 MHz)	X	University of Michigan, RLBC-2
Dipole Antenna Set (30-1000 MHz)	X	University of Michigan, RLDP-1,-2,-3
Dipole Antenna Set (30-1000 MHz)		EMCO 2131C, SN: 992
Active Rod Antenna (30 Hz-50 MHz)		EMCO 3301B, SN: 3223
Active Loop Antenna (30 Hz-50 MHz)		EMCO 6502, SN:2855
Ridge-horn Antenna (300-5000 MHz)	X	University of Michigan
Amplifier (5-1000 MHz)	X	Avantak, A11-1, A25-1S
Amplifier (5-4500 MHz)	X	Avantak
Amplifier (4.5-13 GHz)		Avantek, AFT-12665
Amplifier (6-16 GHz)		Trek
Amplifier (16-26 GHz)		Avantek
LISN Box		University of Michigan
Signal Generator		Hewlett-Packard 8657B

3. Configuration and Identification of Device Under Test

The DUT is a 310 MHz transmitter, approximately 2 x 9 x 0.5 inches in size. It is designed for use in the remote control system of power adjustable beds. It is actuated by pushing a button, and transmits a PPM signal so long as the button is depressed. The coding is performed by a microprocessor, timed by a 12.3 MHz oscillator.

The DUT was designed and manufactured by Raven, Electronic Systems Division, 4372 Green Ash Drive, Earth City, MO 63045. It is identified as:

Raven Transmitter Model: KSMBR20543T FCC ID: KSMBR20543T

IC: 2004 102 224

Since the transmitter transmits continuous as long as the button is depressed, only one transmitter was used in all of the measurements. Note: The DUT is manually activated and ceases to transmit within 5 seconds of deactivation. See Figure 6.4.

3.1 Modifications Made

There were no modifications made to the DUT by this laboratory.

4. Emission Limits

The DUT tested falls under the category of an Intentional Radiators and the Digital Devices. For FCC, it is subject to Part 15, Subpart C, (Section 15.231), Subpart B, (Section 15.109), and Subpart A, (Section 15.33). For Industry Canada it is subject to RSS-210, (Section 2.6 and 2.7). The applicable testing frequencies with corresponding emission limits are given in Tables 4.1 and 4.2 below. As a digital device, the DUT is considered as a Class B device.

4.1 Radiated Emission Limits

Table 4.1. Radiated Emission Limits (FCC: 15.33, 15.35, 15.109; IC: RSS-210, 2.7 Table 2). (Digital Class B)

Freq. (MHz)	E_{lim} (3m) μ V/m	$E_{lim} dB(\mu V/m)$
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-2000	500	54.0

Note: Average readings apply above 1000 MHz (1 MHz BW) Quasi-Peak readings apply to 1000 MHz (120 kHz BW)

Table 4.2. Radiated Emission Limits (FCC: 15.231(b), 15.205(a); IC: RSS-210; 2.7 Table 4). (Transmitter)

	Fundar	nental	Spurio	ous**	
Frequency	Ave. E _{li}	$_{\rm m}$ (3m)	Ave. E_{lim} (3m)		
(MHz)	(µV/m)	dB (μV/m)	(µV/m)	dB (μV/m)	
260.0-470.0	3750-12500*		375-1250		
322-335.4	Restricted			46.0	
399.9-410	Bands		200		
608-614	Danus				
960-1240/1427(IC)					
1300-1427					
1435-1626.5	Restricted				
1645.5-1646.5 (IC)	Bands		500	54.0	
1660-1710	Danus				
1718.9-1722.2					
2200-2300					

^{*} Linear interpolation, formula: E = -7083 + 41.67*f (MHz)

4.3 Conducted Emissions Limits

The conductive emission limits and tests do not apply here, since the DUT is powered by a battery.

4.4 Supply Voltage Variation (FCC 15.31(e))

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

5. Radiated Emission Tests and Results

5.1 Semi-Anechoic Chamber Measurements

To familiarize with the radiated emission behavior of the DUT, the DUT was first studied and measured in a shielded anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with a turntable, an antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

In testing for radiated emissions, the transmitter was activated using the lock/unlock button with a special wooden clamp for repeated pulse emissions. It was placed on the test table flat, on its side, or on its end.

In the chamber we studied and recorded all the emissions using a Bicone antenna up to 300 MHz and a ridged horn antenna above 200 MHz. The measurements made in the chamber below 1 GHz are used for pre-test evaluation only. The measurements made above 1 GHz are used in pre-test evaluation and in the final compliance assessment. We note that for the horn antenna, the antenna pattern is more directive and hence the measurement is essentially that of free space (no ground reflection). Consequently it is not essential to measure the DUT for both antenna polarizations, as long as the DUT is measured on all three of its major axis. In the chamber we also recorded the spectrum and modulation characteristics of the carrier. These data are presented in subsequent sections. We also note that in scanning from 30 MHz to 4.5 GHz using Bicone and the ridge horn antennas, there were no other significant spurious emissions observed.

^{**} Measure up to tenth harmonic; 120 kHz BW up to 1 GHz, 1 MHz BW above 1 GHz

5.2 Open Site Radiated Emission Tests

After the chamber measurements, the emissions were re-measured on the outdoor 3-meter site at fundamental and harmonics up to 1 GHz using tuned dipoles and/or the high frequency Bicone. Photographs included show the DUT on the Open Area Test Site (OATS).

5.3 Computations and Results for Radiated Emissions

To convert the dBm's measured on the spectrum analyzer to $dB(\mu V/m)$, we use expression

$$E_3(dB\mu V/m) = 107 + P_R + K_A - K_G$$

P_R = power recorded on spectrum analyzer, dB, measured at 3m

 $K_A = antenna factor, dB/m$

 K_G = pre-amplifier gain, including cable loss, dB

When presenting the data, at each frequency the highest measured emission under all of the possible orientations is given. Computations and results are given in Table 5.1. There we see that the DUT meets the limit by 0.8 dB.

5.4 Conducted Emission Tests

These tests do not apply, since the DUT is powered from four 1.5 VDC batteries.

6. Other Measurements

where

6.1 Correction For Pulse Operation

When the transmitter is activated by push action, it transmits a PPM modulated 310 MHz carrier as long as the button is depressed. There are at most 14 pulses in any 100 ms window. The first pulse is 1.05 ms in duration; all remaining pulses are 0.575 ms in duration. Total on time in the window 8.5 ms, thus a duty of 20 dB is applied. See Figure 6.1. The duty factor is calculated as:

$$K_E = (1.05 \text{ ms} + 13 \text{ x} \ 0.575 \text{ ms}) / 100 \text{ ms} = 0.085 < -20.0 \text{ dB}.$$

6.2 Emission Spectrum

Using the ridge-horn antenna and DUT placed in its aperture, emission spectrum was recorded and is shown in Figure 6.2.

6.3 Bandwidth of the Emission Spectrum

The measured spectrum of the signal is shown in Figure 6.3. The allowed (-20 dB) bandwidth is 0.25% of 310 MHz, or 775.0 kHz. From the plot we see that the -20 dB bandwidth is 60.0 kHz, and the center frequency is 310.0 MHz.

6.4 Effect of Supply Voltage Variation

The DUT has been designed to be powered by four 1.5 VDC batteries. For this test, the battery was replaced by a laboratory variable power supply. Relative power radiated was measured at the fundamental as the voltage was varied from 4 to 8 volts. The emission variation is shown in Figure 6.4.

6.5 Input Voltage at Battery Terminals

Batteries: before testing $V_{oc} = 6.04 \text{ V}$

after testing $V_{oc} = 5.88 \text{ V}$

Ave. current from batteries I = 36 mA (pulsed tx)

Table 5.1 Highest Emissions Measured

Radiated Emission - RF Raven RF Wand; FO									Raven RF Wand; FCC/IC		
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3*	E3lim	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	$dB\muV/m$	$dB\mu V/m$	dB	Comments
1	310.0	Dip	Н	- 7.8	Pk	18.4	23.1	74.6	75.3	0.8	flat
2	310.0	Dip	V	-17.4	Pk	18.4	23.1	64.9	75.3	10.4	end
3	620.0	Dip	Н	-43.9	Pk	24.2	20.1	47.3	55.3	8.1	flat
4	620.0	Dip	V	-45.9	Pk	24.2	20.1	45.3	55.3	10.1	end
5	930.0	Dip	Н	-55.3	Pk	28.7	18.2	42.2	55.3	13.1	flat
6	930.0	Dip	V	-56.2	Pk	28.7	18.2	41.3	55.3	14.0	end
7	1240.0	Horn	Н	-35.4	Pk	20.5	28.0	44.1	54.0	9.9	flat
8	1550.0	Horn	Н	-31.7	Pk	21.4	28.0	48.7	54.0	5.3	flat
9	1860.0	Horn	Н	-37.2	Pk	22.2	28.0	44.0	55.3	11.4	flat
10	2170.0	Horn	Н	-30.7	Pk	22.9	28.1	51.1	55.3	4.2	flat
11	2480.0	Horn	Н	-50.9	Pk	23.8	28.3	31.6	55.3	23.8	end
12	2790.0	Horn	Н	-46.5	Pk	24.7	28.2	37.0	54.0	17.0	flat
13	3100.0	Horn	Н	-38.8	Pk	25.7	27.9	46.0	55.3	9.4	flat
14											
15											
16											
17											
18		1			Ī	* Inc	ludes 20	dB duty fa	ctor		
19											
20											
21											
22	Digital emissions more than 20 dB below FCC/IC Class B Limit.								nit.		
23											
24											
25											
26											
27											

	Conducted Emissions									
	Freq.	Line	Det.	Vtest	Vlim	Pass				
#	MHz	Side	Used	dΒμV	dΒμV	dB	Comments			
	Not applicable									

Meas.02/01/06; U of Mich.

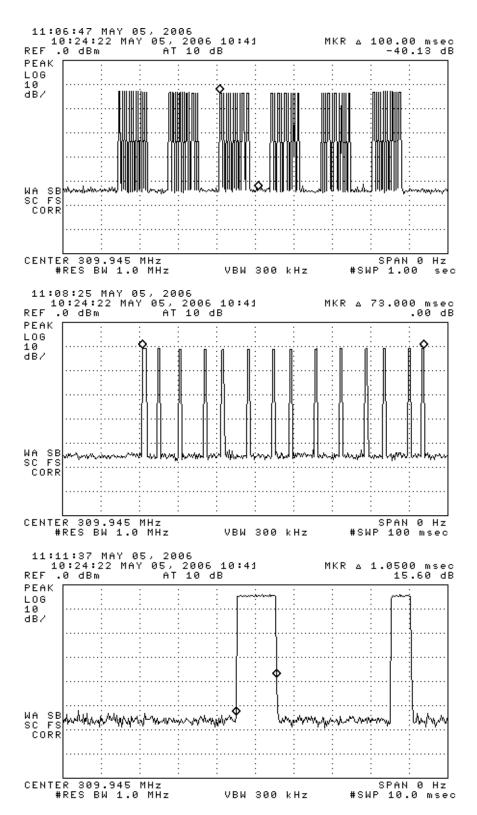


Figure 6.1. Transmissions modulation characteristics: (top) complete transmission, (center) expanded bit, (bottom) expanded period.

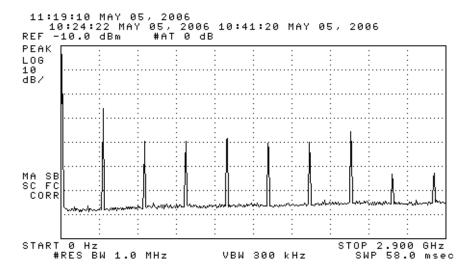


Figure 6.2. Emission spectrum of the DUT (pulsed emission). The amplitudes are only indicative (not calibrated).

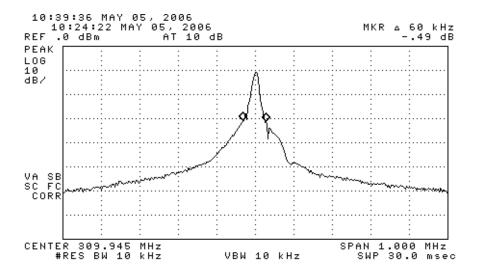


Figure 6.3. Measured bandwidth of the DUT (pulsed emission).

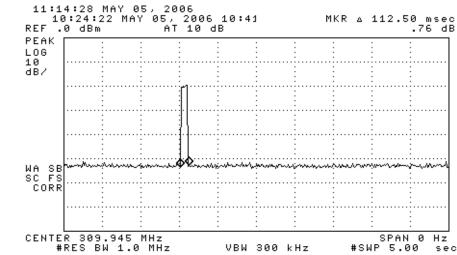


Figure 6.4. Transmitter 5 sec. transmission limit verification

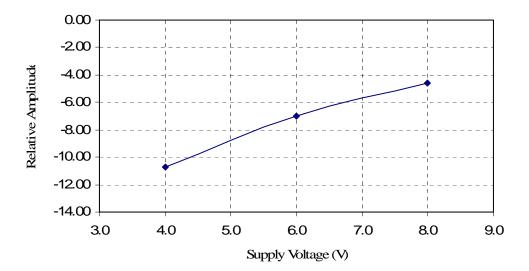


Figure 6.5. Relative emission at 315.0 MHz vs. supply voltage (pulsed emission).

DUT on OATS

DUT on OATS (close-up)