Customer: Continental Automotive GmbH

Siemensstraße 12 93055 Regensburg Germany Tel.: +49 941 790-6699-0

Continental Automotive GmbH RF Transmitter FS14T

All test results apply to the tested sample only. Multiplication and publication is prohibited unless written consent has been provided beforehand by the EMV **TESTHAUS** GmbH

EMV TESTHAUS GmbH

Gustav-Hertz-Straße 35 94315 Straubing Germany Tel.: +49 9421 56868-0 Fax: +49 9421 56868-100 Email: info@emv-testhaus.com

Accreditation:

FCC test firm accreditation expiration date: 2021-05-30 MRA US-EU, FCC designation number: DE0010 BnetzA-CAB-02/21-02/5 Valid until 2023-11-26

Recognized on March 14th, 2019 by the Department of Innovation, Science and Economic Development (ISED) Canada as a wireless testing laboratory CAB identifier: DE0011

Location of Testing:

EMV TESTHAUS GmbH

Gustav-Hertz-Straße 35 94315 Straubing Germany

The technical accuracy is guaranteed through the quality management of EMV **TESTHAUS** GmbH.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

190654-AU01+W01_R2

Page 2 of 37

Table of contents

1	Su	mmary of test results	6
2	Re	ferenced publications	7
3	Eq	uipment under test (EUT)	8
4	Tes	st configuration and mode of operation	9
	4.1	Test configuration	9
	4.2	Mode of operation	9
5	Me	asurement Procedures	10
	5.1	20 dB bandwidth	10
	5.2	Occupied bandwidth (99%)	10
	5.3	Spurious radiated emissions 9 kHz to 10 th harmonic	11
	5.4	Radiated emissions	11
6	Tes	st results	15
	6.1	Field strength of fundamental wave	16
	6.2	Spurious radiated emissions 9 kHz to 10th harmonic	18
	6.3	Correction for pulse operation (duty cycle)	27
	6.4	20 dB bandwidth	31
	6.5	Signal deactivation	33
7	Eq	uipment calibration status	35
8	Me	asurement uncertainties	36
9	Re	vision history	37
1() Ado	ditional documents	37

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

List of figures

Figure 1: Setup for radiated emission test below 30 MHz	11
Figure 2: Setup for radiated emission test from 30 MHz to 1 GHz	12
Figure 3: Setup for radiated emission test above 1 GHz	13
Figure 4: Chart of spurious radiated emission test 9 kHz - 30 MHz of FS141, version FS141, in	00
position X and antenna parallel	20
Figure 5: Chart of spurious radiated emission test 9 kHz - 30 MHz of FS141, version FS141K, il	n
position Z and antenna in line	21
Figure 6: Chart of spurious radiated emission test 30 MHz - 1 GHz of FS14T, version FS14T in	
position Y	22
Figure 7: Chart of spurious radiated emission test 30 MHz - 1 GHz of FS14T, version FS14TK in	n
position Z	23
Figure 8: Chart of spurious radiated emission final test 1 GHz to 10 th harmonic of FS14T, versio	n
FS14T in position X	25
Figure 9: Chart of spurious radiated emission final test 1 GHz to 10 th harmonic of FS14T, versio	n
FS14TK in position Z	26
Figure 10: Test protocol correction for pulse operation (duty cycle) in 100 ms (Trigger-offset -0.7	1
ms)	28
Figure 11: Detailed view of signal in 10 ms (Trigger-offset -0.5 ms)	29
Figure 12: Detailed view of one burst and one break in 600 us	30
Figure 13: Chart of 20 dB bandwidth test of FS14T, version FS14T	32
Figure 14. Test protocol of signal deactivation	

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

List of tables

Table 1: Devices used for testing	9
Table 2: Test result of field strength of fundamental wave of FS14T, version FS14T1	7
Table 3: Test result of field strength of fundamental wave of FS14T, version FS14TK1	7
Table 4: Final result of spurious radiated emission test 30 MHz to 1 GHz of FS14T, version FS14T	
in position Y2	2
Table 5: Final result of spurious radiated emission test 30 MHz to 1 GHz of FS14T, version	
FS14TK in position Z2	3
Table 6: Final result of spurious radiated emission test 1 GHz to 10 th harmonic of FS14T, version	
FS14T in position X	5
Table 7: Final result of spurious radiated emission test 1 GHz to 10 th harmonic of FS14T, version	
FS14TK in position Z	6
Table 8: Final results of 20 dB bandwidth test of FS14T, version FS14T	2
Table 9: Equipment calibration status	5
Table 10: Measurement uncertainty	6

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

1 Summary of test results

47 CFR part and section	Test	Page	Result	Note(s)
15.207(a)	AC power line conducted emissions 150 kHz to 30 MHz		Not applicable	
15.231(b)	Field strength of the fundamental wave	16	Passed	
15.231(b)	Spurious emissions (magnetic field) 9 kHz – 30 MHz	18	Passed	
15.231(b)	Spurious emissions radiated (electrical field) 30 MHz – 10 th harmonic	18	Passed	
15.231(b)2	Correction for pulse operation (duty cycle)	27	Passed	
15.231(a)	Signal deactivation	33	Passed	
15.231(c)	20 dB bandwidth	31	Passed	

Straubing, September 12, 2019

Riedel 07

Jennifer Riedel Test engineer EMV **TESTHAUS** GmbH

Lanad Ingle

Konrad Graßl Head of radio department EMV **TESTHAUS** GmbH

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

190654-AU01+W01_R2

Page 6 of 37

2 Referenced publications

The tests were performed according to following standards:

ECC Rules and Regulations Part 15 Subpart A - Gen	eral (November 2017)
	(110000111001, 2011)

8	
Part 15, Subpart A, Section 15.31	Measurement Standards
Part 15, Subpart A, Section 15.33	Frequency range of radiated measurements
Part 15, Subpart A, Section 15.35	Measurement detector functions and bandwidths
FCC Rules and Regulations Part	15, Subpart C – Intentional Radiators (November, 2017)
Part 15, Subpart C, Section 15.203	Antenna Requirement
Part 15, Subpart C, Section 15.204	External radio frequency power amplifiers and antenna modifications
Part 15, Subpart C, Section 15.205	Restricted bands of operation
Part 15, Subpart C, Section 15.207	Conducted limits
Part 15, Subpart C, Section 15.209	Radiated emission limits, general requirements
Part 15, Subpart C, Section 15.231	Periodic operation in the band 40.66 MHz - 40.7 MHz and above 70 MHz
ANSI C63.10: 2013	Procedures for Compliance Testing of Unlicensed Wireless Devices

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

3 Equipment under test (EUT)

Product type:	RF Transmitter			
Model name:	FS14T			
Variants:	The EUT is available in tw (FS14T) (see Annex B)	vo variants: p	plastic caps (FS	S14TK) and chrome caps
Serial number(s):	Prototype			
Applicant:	Continental Automotive G	mbH		
Manufacturer:	Continental Automotive G	mbH		
Version:	Hardware: Software:		n/a n/a	
Additional modifications:	None			
Short description:	The EUTs are transmitter entry, passive engine star	designed to t and immot	provide remote pilization function	e keyless entry, passive onality.
FCC ID:	KR5VWFS14T			
Frequency range:	Above 70 MHz			
Operating frequencies:	434.42 MHz			
Channel spacing:	not specified			
Number of RF channels:	1			
System type:	Remote control			
Modulation type(s):	ASK			
Antenna type(s):	PCB antenna			
Antenna gain(s):	-23 dBi			
Power supply:	Leclanché or lithium batte	ry supply		
	Nominal voltage: Minimum voltage: Maximum voltage:		3.0 V 2.2 V 3.3 V	
Device type:	⊠ Portable	□ Mobile		□ Fixed

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

4 Test configuration and mode of operation

4.1 Test configuration

Device	Type designation	Serial or inventory no.	Manufacturer					
	EUT							
RF Transmitter with test mode with chrome caps	FS14T, version FS14T	Prototype	Continental Automotive GmbH					
RF Transmitter with application mode with chrome caps	FS14T, version FS14T	Prototype	Continental Automotive GmbH					
RF Transmitter with test mode with plastic caps	FS14T, version FS14TK	Prototype	Continental Automotive GmbH					
RF Transmitter with application mode with plastic caps	FS14T, version FS14TK	Prototype	Continental Automotive GmbH					

Table 1: Devices used for testing

4.2 Mode of operation

EUT was tested in following mode(s) of operation:

Test mode/ EUT	Behavior
Prototype sample,	Modulated carrier wave on 434.42 MHz
FS14T, version FS14T with test	
mode	
Prototype sample,	Modulated carrier wave on 434.42 MHz
FS14T, version FS14T with	
application mode	
Prototype sample,	Modulated carrier wave on 434.42 MHz
FS14T, version FS14TK with test	
mode	
Prototype sample,	Modulated carrier wave on 434.42 MHz
FS14T, version FS14TK with	
application mode	

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

5 Measurement Procedures

5.1 20 dB bandwidth

The 20 dB bandwidth test method refers to section 6.9.2 of ANSI C63.10 and shall be as follows:

Spectrum analyzer settings: Spectrum analyzer center frequency = nominal EUT channel center frequency Span = between two times and five times the OBW IF filter bandwidth (3 dB RBW) = between 1 % to 5 % of the OBW VBW \ge 3 x RBW Detector function = peak Trace mode = max hold Reference level: more than 10·log(OBW/RBW) dB above peak of spectral envelope

Measure the maximum width of the emission that is constrained by the frequencies associated with the two markers (upper and lower frequencies) that are at or slightly below the 20 dB down amplitude relative to the maximum level measured in the fundamental emission. If possible, use the automatic bandwidth measurement capability of the spectrum analyzer using the X dB bandwidth mode with X set to 20 dB. Submit this plot(s). The 20 dB bandwidth is the frequency difference between the two markers.

For test setup see clause 5.4.

5.2 Occupied bandwidth (99%)

The occupied bandwidth test method refers to section 6.9.3 of ANSI C63.10 and shall be as follows.

Spectrum analyzer settings: Span = between 1.5 times and 5.0 times of the OBW, centered on a channel RBW ≥ in the range of 1% to 5% of the OBW VBW ≥ approximately three times the RBW Sweep time = auto coupled Detector function = peak Trace mode = max hold Reference level: more than 10·log(OBW/RBW) dB above peak of spectral envelope

Use the 99% power bandwidth function of the spectrum analyzer and report the measured bandwidth.

For test setup see clause 5.4.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

190654-AU01+W01_R2

Page 10 of 37

5.3 Spurious radiated emissions 9 kHz to 10th harmonic

For test setup and test method see clause 5.4.

5.4 Radiated emissions

5.4.1 Radiated emissions below 30 MHz

Figure 1: Setup for radiated emission test below 30 MHz

Sample calculation:

Frequency Reading value		Antenna	Cable attenuation	Correction factor	Level
		correction		(Corr.)	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB/m)	(dBµV/m)
10	20.00	19.59	0.33	19.92	39.92

Correction factor = Antenna correction + Cable attenuation

Level = Reading value + Correction factor = 20 dB μ V + 19.92 dB/m = 39.92 dB μ V/m

The test method for radiated emissions below 30 MHz refers to section 6.4 of ANSI C63.10 and shall be as follows:

- 1. EUT is configured according to ANSI C63.10. It is placed on the turntable 0.8 meter above ground. The receiving antenna is located 3 meters from the EUT. The test setup is placed inside a compact diagnostic chamber.
- 2. EUT and all peripherals are powered on.
- 3. The loop antenna is set in parallel with the antenna of the EUT.
- 4. The EMI receiver performs a scan from 9 kHz to 30 MHz with peak detector and measurement bandwidth set to 200 Hz for frequencies up to 150 kHz and 9 or 10 kHz for frequencies above.
- 5. The turn table is rotated to 8 different positions (360° / 8).
- 6. The antenna is set in line with the antenna of the EUT and steps 4 and 5 are repeated.

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany	Continental Automotive GmbH RF transmitter FS14T		
	190654-AU01+W01_R2	Page 11 of 37	

- 7. Then the test setup is placed in an OATS with 3 m distance and all peak values over the limit or with less margin than 10 dB are marked and re-measured with a quasi-peak detector except for the frequency bands 9 to 90 kHz and 110 to 490 k Hz, where average detector applies.
- 8. The turntable is rotated by 360 degrees to determine the position of the highest radiation.
- 9. The highest value for each frequency is recorded.

5.4.2 Radiated emissions from 30 MHz to 1 GHz

Sample calculation:

Frequency	Reading value	Antenna	Cable attenuation	Correction factor	Level
		correction		(Corr.)	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB/m)	(dBµV/m)
100	30.00	11.71	1.06	12.77	42.77

Correction factor = Antenna correction + Cable attenuation

Level = Reading value + Correction factor = 30 dB μ V + 12.77 dB/m = 42.77 dB μ V/m

The test method for radiated emissions from 30 MHz to 1 GHz refers to section 6.5 of ANSI C63.10 and shall be as follows:

- 1. EUT is configured according to ANSI C63.10. It is placed on the turntable 0.8 meter above ground. The receiving antenna is located 3 meters from the EUT. The test setup is placed inside a compact diagnostic chamber.
- 2. EUT and all peripherals are powered on.
- 3. The broadband antenna is set to vertical polarization.
- 4. The EMI receiver performs a scan from 30 MHz to 1000 MHz with peak detector and measurement bandwidth set to 120 kHz.
- 5. The turn table is rotated to 6 different positions $(360^{\circ} / 6)$.

EMV	EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany	Continental Au RF trar FS	tomotive GmbH nsmitter 14T
	Germany	190654-AU01+W01_R2	Page 12 of 37

- 6. The antenna polarization is changed to horizontal and steps 4 and 5 are repeated.
- 7. Then the test setup is placed in an OATS at 3 m distance and all peak values over the limit or with less margin than 10 dB are marked and re-measured with a quasi-peak detector.
- 8. The turntable is rotated by 360 degrees to determine the position of the highest radiation.
- 9. The height of the broadband receiving antenna is varied between 1 meter and 4 meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 10. The highest value for each frequency is recorded.

Frequency	Reading value	Antenna	Correction	Cable	Correction	Level
		correction	pre-	attenuation	factor (Corr.)	
			amplifier			
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB/m)	(dBµV/m)
2400	50.00	27.76	-47.91	5.24	-14.92	35.08

Correction factor = Antenna correction + Correction pre-amplifier + Cable attenuation

Level = Reading value + Correction factor = 50.00 dBµV - 14.92 dB/m = 35.08 dBµV/m

The test method for radiated emissions above 1 GHz refers to section 6.6 of ANSI C63.10 and shall be as follows:

- 1. EUT is configured according to ANSI C63.10. It is placed on the turntable 1.5 meter above ground. The test setup is placed inside a semi-anechoic chamber with RF absorbers on the floor.
- 2. EUT and all peripherals are powered on.
- 3. To identify the critical frequencies, extrapolatory radiated emission tests are performed at a closer distance than 3 meters (e.g. 1 meter). The critical frequencies found are noted.
- 4. For pre-scan the receiving antenna is located 3 meters from the EUT.
- 5. The broadband horn antenna is set to vertical polarization.
- 6. The EMI receiver performs a scan from 1 GHz to the 10th harmonic of the fundamental frequency with peak and average detector activated simultaneously and measurement bandwidth set to 1 MHz. The trace data is recorded using the max hold function.
- 7. The turntable is rotated in steps of 15°.
- 8. After a full turn by 360° the antenna polarization is changed to horizontal and steps 4 and 5 are repeated.
- 9. After the scan all peak values over the limit or with less margin than 10 dB are marked. If critical frequencies recorded during extrapolatory radiated emission tests are not contained, they are added to this list.
- 10. Emission levels at listed frequencies are maximized by moving the turntable and varying the antenna height until maximum of emission is found.
- 11. The turntable is rotated by 360 degrees to determine the position of the highest radiation.
- 12. The height of the broadband receiving antenna is varied between 1 meter and the upper height above ground to find the maximum emission field strength of both horizontal and vertical polarization. For equipment that is tested in multiple orientations, the upper height is limited to 2.5 meters or 0.5 meters above the top of the EUT, whichever is higher. For all other equipment the upper height is 4 meters.
- 13. The highest value for each frequency is recorded.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

6 Test results

This clause gives details about the test results as collected in the summary of test results on page 6.

The climatic conditions are recorded during the tests. It is ensured that the climatic conditions are within the following ranges:

Ambient temperature	Ambient humidity	Ambient pressure
15°C to 35°C	30 % to 75 %	86 kPa to 106 kPa

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

6.1 Field strength of fundamental wave

47 CFR part and section:	15.231(b)
Equivalent to IC radio standard(s)	RSS-210, A1.2 a
Measurement procedure:	See 5.3

Performed by:	Jennifer Riedel	Date of test:	August 14, 2019
Result	⊠ Test passed	□ Test not passed	

6.1.1 Test equipment

Туре	Designation	Manufacturer	Inventory no.
Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
Open Area Test Site (OATS)		EMV TESTHAUS	E00354
Semi Anechoic Chamber (SAC)		Albatross Projects	E00716
□ Anechoic Chamber (AC)		EMV TESTHAUS	E00100
EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00001
EMI test receiver	ESU 26	Rohde & Schwarz	W00002
EMI test receiver (SAC)	ESR 7	Rohde & Schwarz	E00739
EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00552
EMI test receiver	ESW 44	Rohde & Schwarz	E00895
Preamplifier	AMF-5D-00501800	Miteq	W00089
Preamplifier	AMF-6F-16002650	Miteq	W00090
Preamplifier	ALS05749	MIWEKO	W01007
Loop antenna	HFH2-Z2	Rohde & Schwarz	E00060
□ TRILOG broadband antenna (CDC)	VULB 9163	Schwarzbeck	E00012
□ TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
☑ TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
□ Horn antenna	BBHA 9120D	Schwarzbeck	W00052
Horn antenna	BBHA 9120D	Schwarzbeck	W00053
□ Horn antenna	BBHA 9170	Schwarzbeck	W00054
Measurement software	E10	ib comPLAN	E00443
☑ Measurement software	EMC 32	Rohde & Schwarz	E00777

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

6.1.2 Limit according to 15.231(b)

Frequency [MHz]	Field strength Fs [µV/m]	Field strength [dBµV/m]	Measurement distance d [m]
40.66 - 40.70	2250	67	3
70 – 130	1250	62	3
130 – 174	1250 to 3750*	62 to 71.4*	3
174 – 260	3750	71.4	3
260 – 470	3750 to 12500*	71.4 to 81.9*	3
Above 470 *Linear interpolation	12500	81.9	3

6.1.3 Test Result

f [MHz]	Level PK [dBµV/m]	Limit PK [dBµV/m]	Margin PK [dB]	Duty cycle factor [dB]	Level AV [dBµV/m]	Limit AV [dBµV/m]	Margin AV [dB]
434.400	81.97	95.6	13.63	-7.60	74.37	75.6	1.23

Table 2: Test result of field strength of fundamental wave of FS14T, version FS14T

f [MHz]	Level PK [dBµV/m]	Limit PK [dBµV/m]	Margin PK [dB]	Duty cycle factor [dB]	Level AV [dBµV/m]	Limit AV [dBµV/m]	Margin AV [dB]
434.399	82.78	95.6	12.82	-7.60	75.18	75.6	0.42

Table 3: Test result of field strength of fundamental wave of FS14T, version FS14TK

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

6.2 Spurious radiated emissions 9 kHz to 10th harmonic

47 CFR part and section:	15.231(b)
Equivalent to IC radio standard(s)	RSS-210, A1.2 b
Measurement procedure:	See 5.3

Performed by:	Jennifer Riedel	Date of test:	August 26, 2019
Result	⊠ Test passed	□ Test not passed	

6.2.1 Test equipment

Туре	Designation	Manufacturer	Inventory no.
☑ Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
Open Area Test Site (OATS)		EMV TESTHAUS	E00354
Semi Anechoic Chamber (SAC)		Albatross Projects	E00716
□ Anechoic Chamber (AC)		EMV TESTHAUS	E00100
EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00001
EMI test receiver	ESU 26	Rohde & Schwarz	W00002
EMI test receiver (SAC)	ESR 7	Rohde & Schwarz	E00739
EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00552
EMI test receiver	ESW 44	Rohde & Schwarz	E00895
Preamplifier	AMF-5D-00501800	Miteq	W00089
Preamplifier	AMF-6F-16002650	Miteq	W00090
Preamplifier	ALS05749	MIWEKO	W01007
☑ Loop antenna	HFH2-Z2	Rohde & Schwarz	E00060
□ TRILOG broadband antenna (CDC)	VULB 9163	Schwarzbeck	E00012
□ TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
☑ TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
⊠ Horn antenna	BBHA 9120D	Schwarzbeck	W00052
□ Horn antenna	BBHA 9120D	Schwarzbeck	W00053
□ Horn antenna	BBHA 9170	Schwarzbeck	W00054
Measurement software	E10	ib comPLAN	E00443
Measurement software	EMC 32	Rohde & Schwarz	E00777

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

6.2	.2 Limits < 1 GHz			
	Frequency [MHz]	Field strength Fs [µV/m]	Field strength [dBµV/m]	Measurement distance d [m]
	0.009 - 0.490	266.6 - 4.9	48.5 – 13.8	300
	0.490 – 1.705	48.98 – 14.08	33.8 – 22.97	30
	1.705 – 30.0	30	29.54	30
	30 - 88	100	40	3
	88 – 216	150	43.5	3
	216 - 960	200	46	3

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

54

3

500

 $d_{\text{near field}} = 47.77 / f_{\text{MHz}}, \text{ or}$

Above 960

 $f_{MHz} = 47.77 / d_{near field}$

The frequency f_{MHz} at which the near field distance is equal to the limit and/or test distance is important for selection of the right formula for determining the recalculation factor:

f _{MHz} (300 m)	≈ 0.159 MHz
f _{MHz} (30 m)	≈ 1.592 MHz
f _{MHz} (3 m)	≈ 15.923 MHz

For 9 kHz \leq f \leq 159 kHz and 490 kHz < f \leq 1.592 MHz: Recalculation factor = -40 log(d_{limit} / d_{measure}) For 159 kHz < f \leq 490 kHz and 1.592 MHz < f \leq 15.923 MHz: Recalculation factor = -40 log(d_{near field} / d_{measure}) - 20 log(d_{limit} / d_{near field}) For f > 15.923 MHz: Recalculation factor = -20 log(d_{limit} / d_{measure})

The limits in the graphics and value lists are derived from the general radiated emission limits as specified in 15.209 using the recalculation factor as described above.

6.2.3 Limits > 1 GHz

 $< 54 \text{ dB}\mu\text{V/m}$ (average detector) inside restricted bands

< 74 dB μ V/m (peak detector) inside restricted bands

6.2.4 Test results from 9 kHz to 30 MHz

Test distance:	Prescan: Final scan:	⊠ 3 m ⊠ 3 m	□ 10 m	□ m
Polarization:	⊠ parallel	oxtimes in line	□ angle:°	
EUT Position:	Position X	Position Y	\boxtimes Position Z	

Frequency range	Step IF		Detector		Measurer	Preamplifier	
	size	Bandwidth	Prescan	Final scan	Prescan	Final scan	
9 kHz – 90 kHz	100 Hz	200 Hz	PK	AV	100 ms	2 s	20 dB
90 kHz – 110 kHz	100 Hz	200 Hz	PK	QPK	100 ms	2 s	20 dB
110 kHz – 150 kHz	100 Hz	200 Hz	PK	AV	100 ms	2 s	20 dB
150 kHz – 490 kHz	4.5 kHz	9 kHz	PK	AV	100 ms	2 s	20 dB
490 kHz – 30 MHz	4.5 kHz	9 kHz	PK	QPK	100 ms	2 s	20 dB

Note: In this test report only the charts of the worst case positions are shown. These are found through premeasurements.

6.2.5 Test results from 30 MHz to 1 GHz

Test distance:	Prescan: Final scan:	⊠ 3 m ⊠ 3 m	□ 10 m	□ m
Polarisation:	⊠ horizontal	⊠ vertical		
EUT Position:	☑ Position X	\boxtimes Position Y	\boxtimes Position Z	

Frequency range	Step	IF Band-	Detector		Measurer	nent Time	Preamplifier
	size	width	Prescan	Final scan	Prescan	Final scan	
30 MHz – 1 GHz	50 kHz	120 kHz	PK	PK	Coupled	1 s	20 dB

Note: In this test report only the charts of the worst case positions and antenna polarization are shown. These are found through premeasurements

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
868.800	40.54	46.00	5.46	1000.0	120.000	102.0	V	112.0

Table 4: Final result of spurious radiated emission test 30 MHz to 1 GHz of FS14T, version FS14T in position Y

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

Continental Automotive GmbH
RF transmitter
FS14T

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

6.2.7 Test results from 1 GHz to 10th harmonic

Test distance:	Prescan: Final scan:	□ 1 m □ 3 m	□ 3 m □ 10 m	⊠ 1.5. m ⊠ 1.5 m
Polarisation:	⊠ horizontal	⊠ vertical		
EUT Position:	Position X	\boxtimes Position Y	\boxtimes Position Z	

Frequency range	Step size	IF Band-	Detector		Measurement Time		Preamplifier
		width	Prescan	Final scan	Prescan	Final scan	
1 GHz – 5 GHz	250 kHz	1 MHz	PK	PK	50 ms	1000 ms	30 dB
1 GHz – 5 GHz	250 kHz	1 MHz	AV	AV	50 ms	1000 ms	30 dB

Note 1: In this test report only the charts of the worst case positions and antenna polarization are shown. These are found through premeasurements. The table results are the final measurements of the emissions detected in the premeasurements which are shown in this test report.

Note 2: The measurements from 1 GHz to 5 GHz are made at a measurement distance of 1.5 m. The limit lines for these tests are converted and calculated from the limit lines at a measurement distance of 3 m.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Pol
1334.000	36.59		80.00	43.41	35.0	1000.000	V
4344.500	40.49		80.00	39.51	35.0	1000.000	V
4778.000	41.07		80.00	38.93	35.0	1000.000	V

Table 7: Final result of spurious radiated emission test 1 GHz to 10th harmonic of FS14T, version FS14TK in position Z

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

190654-AU01+W01_R2

Page 26 of 37

6.3 Correction for pulse operation (duty cycle)

47 CFR part and section:	15.231(b)2
Equivalent to IC radio standard(s)	RSS-Gen 8.2
Measurement procedure:	See 5.2

Performed by:	Jennifer Riedel	Date of test:	August 12, 2019
Result	⊠ Test passed	□ Test not passed	

6.3.1 Test equipment

Туре	Designation	Manufacturer	Inventory no.
Laboratory environment			
☑ Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
EMI test receiver	ESCI 3	Rohde & Schwarz	E00001
EMI test receiver	ESU 26	Rohde & Schwarz	W00002
☑ EMI test receiver	ESR 7	Rohde & Schwarz	E00739
EMI test receiver	ESW 44	Rohde & Schwarz	E00895
Measuring antenna set			A00088

6.3.2 Applicable standard

According to FCC Part 15C, Section 15.35(c): The emissions from intentional radiators shall not exceed the effective field strength limits.

6.3.3 Description of measurement

The duty cycle is measured using stimulus signal from a car key as used in real application. The duty cycle factor (dB) is calculated applying the following formula:

$$KE = 20 \lg \frac{tiB * p}{Tw}$$

K _E	pulse operation correction factor	(dB)
tiur	pulse duration for one complete pulse track	(ms)
t _{ib}	pulse duration for one pulse	(ms)
T _w	a period of the pulse track	(ms)
P	number of pulses in one train	(ms)

R						RBW 30 VBW 100	kHz Delta kHz	a 2 [T1] 0.80	dB
	Ref 0	dBm		*Att 1	0 dB	SWT 1 m	s Marke	278.375000 er 1 [T1]	'μs
	10							-21 22	dBm ka
1 PK *						1		2	TRG
CHRWR	20								
	30								
	40	-TRG -35	dBm						
	50								30.8
	60			~- ~	 -J				AC
	70								
	80								
	90								
	-100								
The c	Figure 12: Detailed view of one burst and one break in 600 µs The duration of one burst is 278 µs. Duty Cycle correction factor = $20 \cdot \log \frac{((amount of bursts) \cdot (duration of one burst))}{10 ms}$ = $20 \cdot \log \frac{(15 \cdot 0.278 ms)}{10 ms} = -7.60 \Rightarrow$ Duty Cycle correction factor: 7.60 dB								
E	EMV	μαιις	E (MV TES Gustav-He 94315	FHAUS G ertz-Straß Straubing	mbH e 35 g	(Continental Au RF tra FS	utomotive GmbH ansmitter S14T
	1021	HAUS		Ge	many		190654-Al	J01+W01_R2	Page 30 of 37

6.4 20 dB bandwidth

47 CFR part and section:	15.231(c)
Equivalent to IC radio standard(s)	RSS-Gen, 6.7
Measurement procedure (DTS):	See 5.1

Performed by:	Jennifer Riedel	Date of test:	August 12, 2019
Result	⊠ Test passed	□ Test not passed	

6.4.1 Test equipment

Туре	Designation	Manufacturer	Inventory no.
Laboratory environment			
☑ Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
EMI test receiver	ESCI 3	Rohde & Schwarz	E00001
EMI test receiver	ESU 26	Rohde & Schwarz	W00002
EMI test receiver	ESW 44	Rohde & Schwarz	E00895
Measuring antenna set			A00088

6.4.2 Limits according to FCC Part 15C Section 15.231(c):

Frequency [MHz]	20 dB BW limit dependent of the carrier [%]
70 – 900	0.25
Above 900	0.50

EMV TESTHAUS	EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany	Continental Automotive GmbH RF transmitter FS14T		
		190654-AU01+W01_R2	Page 31 of 37	

6.5 Signal deactivation

47 CFR part and section:	15.231(a)
Equivalent to IC radio standard(s)	RSS-210, A1.1.(a)
Measurement procedure:	See 5.2

Performed by:	Jennifer Riedel	Date of test:	August 29, 2019
Result	⊠ Test passed	□ Test not passed	

6.5.1 Test equipment

Туре	Designation	Manufacturer	Inventory no.
Laboratory environment			
☑ Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
EMI test receiver	ESCI 3	Rohde & Schwarz	E00001
EMI test receiver	ESU 26	Rohde & Schwarz	W00002
☑ EMI test receiver	ESR 7	Rohde & Schwarz	E00739
EMI test receiver	ESW 44	Rohde & Schwarz	E00895
Measurement antenna 410 MHz	CV-400HW	Create Japan	A00088

6.5.2 Applicable standard

According to FCC Part 15C, Section 15.231(a)(2): A transmitter activated automatically shall cease transmission within 5 seconds after activation.

6.5.3 Description of measurement

The duration of transmission is measured with the spectrum analyzer. The sweep points were set to maximum for higher time resolution. The signal is modulated; the marker of the analyzer is set to maximum amplitude at normal temperature and zero span. The analyzer is set to single sweep and video triggered, the marker is set to the edges in order to measure the duration time and then recorded.

6.5.4 Test results

TESTHAUS

Limit according to FCC Part 15C, Section 12.231(a):

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released and a transmitter activated automatically shall cease transmission within 5 seconds after activation.

Receiver	Spectrum 🗷				
Ref Level 112. Att	00 dBµV	V 50 kHz V 50 kHz I	nput 1 AC		
TRG:EXT PS			•		
UPK VIEW			-M2[1]		21.83 dBµV 5.000000 s
100 dBµV			_M1[1]	I	68.24 dBµV 261.250 ms
90 dBµV					
80 dBµV					
50 dBµV					
50 dBµV					
40 dBµ∨					
130 <mark>,</mark> dBµ∨— <mark>renkspedau d1ndad</mark>	anna an tha tha tha tha tha that the state of the state o	ali ng sati dalar a Manana sa sh	ound and take produced	an de faile de la state	ophanta and a second share a second
20 <mark>patroni di diperandari</mark> 1997 - Andrea	n an	inineseinin T1 T1	files while the profession of the profession of the physical sector	الدريم أوراد فارتي والمتراور المتحفظ والم	terses and the buy has a date
CF 434.4 MHz		32001 pts			1.0 s/
		Wa	ait for Trigger		09:46:02
Date: 30.AUG.20	19 09:46:03				
	Figure 14: Te	st protocol of sig	gnal deactivatior	ı	
Note: The analy	yzer was triggered extern	al by pressing t	he button.		
Explanation: M1: Releasing of button and end of transmission (261.250 ms) M2: Limit line (5 seconds)					
			Contine	ental Automotive	e GmbH

94315 Straubing 190654-AU01+W01_R2

Germany

7 Equipment calibration status

Description	Modell number	Serial number	Inventory number(s)	Last calibration	Next calibration
EMI test receiver	ESW44	101538	E00895	2019-07	2020-07
EMI test receiver	ESR7	101059	E00739	2019-08	2020-08
EMI test receiver	ESCI 3	100013	E00001	2018-05	2020-05
EMI test receiver	ESU26	100026	W00002	2018-06	2020-06
Preamplifier (1 GHz - 18 GHz)	BBV 9718 B	00032	W01325	2018-09	2019-09
Loop antenna	HFH2-Z2	871398/0050	E00060	2018-10	2020-10
TRILOG broadband antenna (SAC3)	VULB 9162	9162-041	E00643	2018-03	2021-03
Horn antenna	BBHA 9120D	9120D-592	W00052	2017-04	2020-04
Horn antenna	BBHA 9170	9170-332	W00054	2017-04	2020-04
Measuring antenna set			A00088	N	/A ¹
Shielded room	P92007	B 83117 C 1109 T 211	E00107	N	/Α
Compact diagnostic chamber (CDC)	VK041.0174	D62128-A502- A69-2-0006	E00026	N/A	
Semi-anechoic chamber (SAC) with floor absorbers	FS-SAC		E00100	2018-03	2021-03
Semi-anechoic chamber (SAC)	SAC3	C62128-A520- A643-x-0006	E00716	2018-03	2021-03
Cable set CDC	RG214/U		E00446	2019-04	2020-04
	LCF12-50J		E01215	2019-04	2020-04
	LMR400	1718020006	E00920	2019-01	2020-01
	RG214 Hiflex	171802007	E00921	2019-01	2020-01
Cable set anechoic chamber	262-0942-1500	005	E00435	2018-10	2019-10
	SF104EA/2x11PC 35-42/5m	11144/4EA	E00307	2018-12	2019-12
	262-0942-1500	003	E00433	2018-10	2019-10
Cable set of semi-anechoic chamber SAC3	SF104EA/11PC35 /11PC35/10000M M	501347/4EA	E00755	2018-12	2019-12
	SF104E/11PC35/1 1PC35/2000MM	507410/4E	E01033	2018-12	2019-12
	SF104E/11PC35/1 1PC35/2000MM	507411/4E	E01034	2018-09	2019-09

Table 9: Equipment calibration status

Note 1: Only used for relative measurements.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

8 Measurement uncertainties

Description	Max. deviation	k=
Conducted emission AMN (9kHz to 30 MHz)	± 4.1 dB	2
Carrier frequency separation Number of hopping frequencies Time of occupancy (dwell time)	± 5.0 %	2
Bandwidth tests	± 2.0 %	2
Maximum conducted output power	± 1.5 dB	2
Power spectral density	± 3.0 dB	2
Spurious RF conducted emissions	± 3.0 dB	2
Radiated emission open field or semi-anechoic chamber 9 kHz to 30 MHz 30 MHz to 300 MHz 300MHz to 1 GHz	± 4.8 dB ± 5.4 dB ± 5.9 dB	2
Radiated emission anechoic chamber (> 1000 MHz)	± 4.5 dB	2

Table 10: Measurement uncertainty

The uncertainty stated is the expanded uncertainty obtained by multiplying the standard uncertainty by the coverage factor k. For a confidence level of 95 % the coverage factor k is 2.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

9 Revision history

Revision	Date	Issued by	Description of modifications
0	2019-09-12	Jennifer Riedel	First edition
1	2019-11-18	Jennifer Riedel	Correction of carrier frequency in clause 3 and 4
2	2020-02-18	Jennifer Riedel	Antenna gain changed from dBd to dBi, BW limit corrected

10 Additional documents

- Annex A: Pictures of test setup and EUT-positions
- Annex B: Pictures of EUT (external)
- Annex C: Pictures of EUT (internal)

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Continental Automotive GmbH RF transmitter FS14T

190654-AU01+W01_R2

Page 37 of 37