

FCC ID: KR5TP-4 Report No.: T200415W01-RP Page: 1 / 31 Rev.: 00

FCC RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC Part 15.231
Trade name	Continental
Product name	Radio Frequency Transmitter (Honda MY21)
Model No.	TP_4
Operation Freq.	TX: 433.92MHz, RX: 125kHz
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of SGS Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Komil Ismi

Kevin Tsai Deputy Manager

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部分複製。

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan / 新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2298-1882 www.sgs.tw www.ccsrf.com

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 2 / 31 Rev.: 00

Revision History

Rev.	Issue Date	Revisions	Effect page	Revised By
00	May 7, 2020	Initial Issue	ALL	Allison Chen

Page: 3 / 31 Rev.: 00

Table of contents

1.	GENERAL INFORMATION
1.1	EUT INFORMATION
1.2	EUT CHANNEL INFORMATION
1.3	ANTENNA INFORMATION
1.4	MEASUREMENT UNCERTAINTY 6
1.5	FACILITIES AND TEST LOCATION
1.6	INSTRUMENT CALIBRATION7
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT8
1.8	TEST METHODOLOGY AND APPLIED STANDARDS
2.	TEST SUMMERY9
3.	DESCRIPTION OF TEST MODES 10
3.1	THE WORST MODE OF OPERATING CONDITION 10
3.2	THE WORST MODE OF MEASUREMENT10
3.3	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS 11
3.4	EUT DUTY CYCLE
4.	TEST RESULT
4.1	AC POWER LINE CONDUCTED EMISSION14
4.2	EMISSION BANDWIDTH 15
4.3	FIELD STRENGTH OF FUNDAMENTAL 17
4.4	RADIATION UNWANTED EMISSION
-	OPERATION RESTRICTION

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	Continental Automotive GmbH Siemensstrasse 12 SV C TS RBG EMC-Laboratory Regensburg, 93055 Germany
Manufacturer	Continental Automotive GmbH Siemensstrasse 12 SV C TS RBG EMC-Laboratory Regensburg, 93055 Germany
Factory	 Continental Automotive Changchun Co., Ltd. Jingyue Branch 5800 Shengtai Street 130000, Changchun, Jilin China CONTINENTAL AUTOMOTIVE GUADALAJARA MEXICO S DE RL DE CV Camino a la Tijera No. 3, K.m. 3.5 Carretera Guadalajara Morelia. Colonia la Tijera. 45640 Tlajomulco de Zúñiga, Jalisco, México
Equipment	Radio Frequency Transmitter (Honda MY21)
Model Name	TP_4
Model Discrepancy	N/A
Received Date	April 15, 2020
Date of Test	April 20 ~ 29, 2020
Periodic operation	 (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation (3) Periodic transmissions at regular predetermined intervals are not permitted. (4) Periodic transmissions (lower field strength): each transmission is not greater than 1 sec and the silent period between transmissions is at least 30 times the duration of the transmission but in no case less than 10 sec.
Power Operation	Power from Battery: CR2032 x1 (Lithium: 3V)
Operation Frequency	TX: 433.92MHz, RX: 125kHz
S/W Version	0400
H/W Version	C4

Page: 5 / 31 Rev.: 00

1.2 EUT CHANNEL INFORMATION

Frequency Range	TX: 433.92MHz, RX: 125kHz
Modulation Type	FSK

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested					
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation					
1 MHz or less	1	Middle			
1 MHz to 10 MHz	2	1 near top and 1 near bottom			
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

1.3 ANTENNA INFORMATION

Antenna Type	built-in loop antenna			
Antenna Gain	-22.12 dBi			
Antenna Connector	N/A			

Page: 6 / 31 Rev.: 00

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 0.0014
RF output power, conducted	+/- 1.14
Power density, conducted	+/- 1.40
3M Semi Anechoic Chamber / 30M~200M	+/- 4.12
3M Semi Anechoic Chamber / 200M~1000M	+/- 4.68
3M Semi Anechoic Chamber / 1G~8G	+/- 5.18
3M Semi Anechoic Chamber / 8G~18G	+/- 5.47
3M Semi Anechoic Chamber / 18G~26G	+/- 3.81
3M Semi Anechoic Chamber / 26G~40G	+/- 3.87

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of *k*=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 7 / 31 Rev.: 00

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	-	Not applicable, because EUT doesn't connect to AC Main Source direct.
Radiation	Jerry Chang	-
RF Conducted	Dally Hong	-

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site						
Equipment	Manufacturer Model S/N Cal Date Cal Due					
Coaxial Cable	Woken	WC12	CC003	06/28/2019	06/27/2020	
Signal Analyzer	R&S	FSV 40	101073	09/25/2019	09/24/2020	
Software	N/A					

Fully Chamber Test Site					
Equipment	Manufacturer Model		S/N	Cal Date	Cal Due
Bilog Antenna	Sunol Sciences	JB3	A030105	07/26/2019	07/25/2020
Coaxial Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	02/25/2020	02/24/2021
Coaxial Cable	EMCI	EMC105	190914+25111	09/20/2019	09/19/2020
Digital Thermo-Hygro Meter	WISEWIND	1206	D07	01/15/2020	01/14/2021
double Ridged Guide Horn Antenna	ETC	MCTD 1209	DRH13M02003	10/04/2019	10/03/2020
High Pass Filter	SOLVANG TECHNOLOGY INC.	STI15	9923	02/25/2020	02/24/2021
Loop Ant	COM-POWER	AL-130	121051	03/27/2020	03/26/2021
Pre-Amplifier	EMEC	EM330	060609	02/25/2020	02/24/2021
Pre-Amplifier	HP	8449B	3008A00965	02/25/2020	02/24/2021
PSA Series Spectrum Analyzer	Agilent	E4446A	MY46180323	05/29/2019	05/28/2020
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R
Software	Software e3 6.11-20180413				

Remark:

1. Each piece of equipment is scheduled for calibration once a year.

2. N.C.R. = No Calibration Required.

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 8 / 31 Rev.: 00

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

There are no accessories and support equipment be used during the test.

EUT Accessories Equipment						
No. Equipment Brand Model Series No. FCC ID						
	N/A					

Support Equipment								
No.	Equipment Brand Model Series No. FCC ID							
	N/A							

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC 15.231.

Page: 9 / 31 Rev.: 00

2. TEST SUMMERY

Standard Sec.	Chapter	Test Item	Result
15.203	1.3	Antenna Requirement	Pass
15.207	4.1	AC Power-line Conducted Emission	Not applicable
15.231(c)	4.2	Emission Bandwidth	Pass
15.231(b)	4.3	Fundamental Emission	Pass
15.209(b)	4.4	Transmitter Radiated Emission	Pass
15.231(a)(1)	4.5	Operation Restriction	Pass

Page: 10 / 31 Rev.: 00

2.1 DESCRIPTION OF TEST MODES

2.2 THE WORST MODE OF OPERATING CONDITION

Operation mode	TX: 433.92MHz, RX: 125kHz
RF Field strength	<u>Peak: 84.64 dBuv/m</u> <u>Average : 72.45 dBuv/m</u>

Remark: Field strength performed Average level at 3m.

2.3 THE WORST MODE OF MEASUREMENT

Radiated Emission Measurement Above 1G							
Test Condition	Band edge, Emission for Unwanted and Fundamental						
Power supply Mode	Mode 1: EUT power by Battery						
Worst Mode	🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4						
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 						

Radiated Emission Measurement Below 1G					
Test Condition	Radiated Emission Below 1G				
Power supply Mode Mode 1: EUT power by Battery					
Worst Mode	🖾 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4				

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(Y-Plane) were recorded in this report

Page: 11 / 31 Rev.: 00

2.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

According to FCC 15.231(b), 15.231(e),

(b) In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹Linear interpolations.

(1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

(2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

Page: 12 / 31 Rev.: 00

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

¹Linear interpolations.

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

Page: 13 / 31 Rev.: 00

2.5 EUT DUTY CYCLE

<u> 433MHz - 434MHz</u>

Duty Cycle								
TX ON (ms)	TX All(ms)	Duty Cycle (%)	Duty Factor(dB)					
24.35	99.13	24.56%	<u>-12.19</u>					

Marker Type Ref Trc X-value Y-value Function Function Result M1 1 0.0 s -16.11 dBm	Spect	rum											
TRG: VID 03[1] -34.98 or 99.130 n 10 dBm 99.130 n 99.130 n 10 dBm 0 M1[1] -16.11 dB 0 dBm 0 0.000000 0.000000 r10 dBm 0 M1[1] -16.11 dB 0 dBm 0 0.000000 0.000000 r10 dBm 0 0 0.000000 r20 dBm 0 0 0 0 -20 dBm 0 0 0 0 -30 dBm 0 0 0 0 0 -30 dBm 0 0 0 0 0 0 -40 dBm 0 0 0 0 0 0 0 -50 dBm 0 0 0 0 0 0 0 0 -70 dBm 0 0 0 0 0 0 0 0 0 -70 dBm 0 0 0 0 0 0 0 0 0 0 Marker 1 0.0 s -16.11 dBm </th <th></th> <th>evel</th> <th></th> <th></th> <th>_</th> <th></th> <th>=</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		evel			_		=						
1Pk View D3[1] -34.980 10 dBm 99.130 n 0 dBm M1[1] -16.11 dB 0 dBm 0.000000 10 dBm 0.000000 -20 dBm 0.000000 -30 dBm 0.000000 -30 dBm 0.000000 -40 dBm 0.000000 -50 dBm 0.000000 -60 dBm 0.000000 -70 dBm 0.000000 CF 433.92 MHz 691 pts CF 433.92 MHz 691 pts 20.0 ms, 0.000000 Marker 1 Type Ref Trc X-value Y-value Function M1 1 0.01 dB D3 M1 1 99.13 ms -34.98 dB 0.01 dB			31) dB 👄 SWT 2	200 ms 🧉	VBW 1	MHz						
10 dBm 03[1] -34.98 d 10 dBm 99.130 n 0 dBm M1[1] 0 dBm 0.000000 r10 dBm D2 -20 dBm D2 -20 dBm 0 -30 dBm 0													
10 dBm 99.130 m 0 dBm -16.11 dB 0 dBm 0.000000 r10 dBm 02 -20 dBm 02 -20 dBm 0 -30 dBm 0 -40 dBm 0 -50 dBm 0 -70 dBm 0 -70 dBm 0 -70 dBm 0 -70 dBm 0.00 s -70 dBm 0.00 s <t< td=""><td>∎1Pk Vi</td><td>ew</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	∎1Pk Vi	ew											
10 dBm M1[1] -16.11 dB 0 dBm D2 0.000000 -20 dBm D2 0.000000 -20 dBm TRG -25.000 dBm 0.000000 -30 dBm -0.000000 0.000000 -40 dBm -0.000000 0.000000 -50 dBm 0.000000 0.000000 -60 dBm 0.000000 0.000000 -70 dBm 0.000000 0.000000 -70 dBm 0.000000 0.000000 -70 dBm 0.0000000 0.0000000 -70 dBm 0.0000000 0.0000000 -70 dBm 0.0000000 0.0000000 -70 dBm 0.0000000000 0.00000000 -70 dBm 0.00000000000000000000000 0.00000000000000000000000000000000000								Da	3[1]				
0 dBm 0.000000 10 dBm 02 -20 dBm 02 -20 dBm 0 -30 dBm 0 -40 dBm 0 -50 dBm 0 -50 dBm 0 -70 dBm 0.0 s -16.11 dBm 0.0 s 0.2 M1 1 24.348 ms 0.3 M1 1 99.13 ms -34.98 dB 0.01 dB	10 dBm-							M	1111				
10 dBm D2 10 dBm D2 -20 dBm D2 10 dBm -30 dBm TRG -25.000 dBm 10 dBm -30 dBm 10 dBm 10 dBm -50 dBm 10 dBm 10 dBm -60 dBm 10 dBm 10 dBm -70 dBm 10 dBm 10 dBm								171.					
D2 D2 D2 D2 D2 D2 D3 D4 D4 D4 D4 D4 D4 D4 D4 D5 D6 D5 D6 D7 D7 <th< td=""><td>0 dBm—</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	0 dBm—												
-20 dBm	10 40												
-20 dBm TRG -25.000 dBm TRG -25.000 dBm Image: Constraint of the constraint of t	r to ubin		02										
-30 dBm	-20 dBm		4						Π_				
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70			RG -25	.000 dBm								_	
-50 dBm	-30 dBm											_	
-50 dBm													
-50 dBm50 dBm50 dBm50 dBm50 dBm50 dBm70 dB	-40 dBm											-	
-60 dBm -60 dBm -60 dBm -70 dBm 20.0 ms, -70 dBm -70	FO 10						Da						
-70 dBm	-50 dBm		there	munuture	Junda monda	hand have	mante		Lih.	mon	working	Monuna	manuther
-70 dBm	-60 dBm												
CF 433.92 MHz 691 pts 20.0 ms, Marker 7yae Ref Trc X-value Function Function Result M1 1 0.0 s -16.11 dBm 1	00 0011	·											
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 0.0 s -16.11 dBm	-70 dBm											_	
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 0.0 s -16.11 dBm													
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 0.0 s -16.11 dBm	CF 433	.92 M	1Hz				691 pt	5					
Type Ref Trc X-value Y-value Function Function Result M1 1 0.0 s -16.11 dBm	larker						· · ·						· · ·
M1 1 0.0 s -16.11 dBm D2 M1 1 24.348 ms 0.01 dB D3 M1 1 99.13 ms -34.98 dB		Ref	Trc	X-valu	e	Y-va	alue	Funct	tion	1	Fu	nction Re	esult
D3 M1 1 99.13 ms -34.98 dB						-16	.11 dBm						
	D3	M1	1	9	9.13 ms	-3	34.98 dB						
Wait for Trigger 20.04.2020 10:04:17								Wait fo	r Tri	gger			20.04.2020

Date: 20.APR.2020 10:04:16

Notes:

- The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by 20 log (Time_(on) / [Period or 100 ms whichever is the lesser])
- 2. The EUT transmits for a Time(on) of 9.565 milliseconds.

20 log (Time_(on) / [Period or 100 ms whichever is the lesser]).

20 log (24.35 / 99.13) = -12.19 dB

Page: 14 / 31 Rev.: 00

3. TEST RESULT

3.1 AC POWER LINE CONDUCTED EMISSION

3.1.1 Test Limit

According to §15.207(a),

Frequency Range	Limits(dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56*	56 to 46*		
0.50 to 5	56	46		
5 to 30	60	50		


* Decreases with the logarithm of the frequency.

3.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete

3.1.3 Test Setup

3.1.4 Test Result

Not applicable, because EUT doesn't connect to AC Main Source direct.

Page: 15 / 31 Rev.: 00

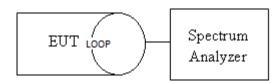
3.2 EMISSION BANDWIDTH

3.2.1 Test Limit

According to §15.231(c),

Limit

☑ 70 MHz – 900 MHz : Fc * 0.25 %
 ☑ Above 900 MHz : Fc * 0. 5 %


3.2.2 Test Procedure

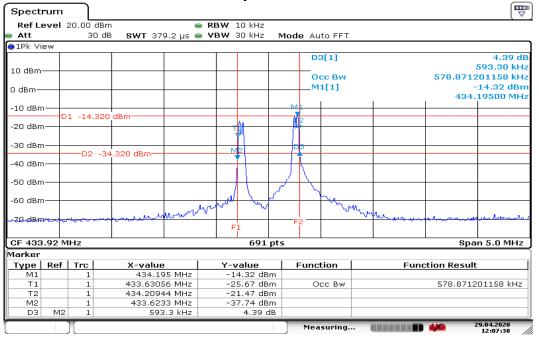
Test method Refer as ANSI 63.10:2013 clause 6.9.2,

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=20KHz, VBW=30KHz, Detector = Peak, Trace mode = Max hold, Sweep = Auto. Measure the maximum width of the emission that is constrained by the frequencies associated with the 20dB Bandwidth.

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. SA set RBW = $1\% \sim 5\%$ OBW, VBW = three times the RBW and Detector = Peak, Trace mode = Max hold, Sweep = Auto. Measure the maximum width of the emission that is constrained by the frequencies associated with the Occupied Bandwidth (99%).

3.2.3 Test Setup

3.2.4 Test Result


Spectrum Bandwidth								
Frequency (MHz)	20dB Bandwidth (KHz)	20dB Bandwidth Limits (MHz)	99% Occupied BW (KHz)	99% Bandwidth Limits (MHz)				
433.92	593.3	1.0848	578.8712	1.0848				

Page: 16 / 31 Rev.: 00

Test Data

20dB Bandwidth and 99% Occupied BW

Date: 29.APR.2020 12:07:38

Page: 17 / 31 Rev.: 00

3.3 FIELD STRENGTH OF FUNDAMENTAL

3.3.1 Test Limit

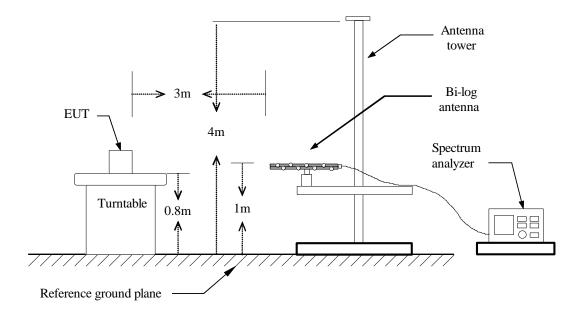
According to §15.231(b)

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of fundamental (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

* Linear interpolation with frequency, f, in MHz:

For 130-174 MHz: Field Strength (μ V/m) = (56.82 × f)-6136 For 260-470 MHz: Field Strength (μ V/m) = (41.67 × f)-7083

3.3.2 Test Procedure


Test method Refer as ANSI 63.10:2013 clause 4.1.4 and clause 6.5

	☑ 4.1.4.2.2: Measurement Peak value.
clause 4.1.4	☐ 4.1.4.2.3: Duty cycle ≥ 100%.
	☑ 4.1.4.2.4: Measurement Average value.

Page: 18 / 31 Rev.: 00

3.3.3 Test Setup

Page: 19 / 31 Rev.: 00

3.3.4 Test Result

		Field Strength			
Frequency (MHz)	Fundamental (dBuV/m) at 3m	Limit (dBuV/m) at 3m	Margin (dB)	Axis/Pol.	Remark
433.92	72.45	80.82	-8.37	Y/V	AVG

Remark:

1. Fundamental measured method setting on spectrum, RBW=100 kHz, VBW=100kHz and Detector=Peak.

2. Average result = Peak result + Duty factor = 84.64 dBuV/m - 12.19= 72.45 dBuV/m

3. 260MHz ~ 470MHz limit is 41.67 * (Frequency, MHz) – 7083

Limit = 41.67 * (433.92 MHz) – 7083 =10998.44640 (uV/m)

dBuv/m = 20 Log (uV/m) = 20 Log (10998.44640 uV/m) = 80.82 dBuV/m

Page: 20 / 31 Rev.: 00

Test Data

Test Mode:		X-433.92MHz	Ter	mp/Hum	20.4(°C)/ 40%R	
Test Item	F	undamental	Te	st Date	April 29, 2020	
xis/Polarize		Y-Plane / Ver.		Engineer	Jerry C	hang
Detector		Peak & AVG				
Level (dBuV/m)						
			1			
		2				
433.72	433.8	433.88 Frequency	433.96 (MHz)	4	134.04	434.12
Frequency	Detector Mode (PK/QP/AV)	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
(MHz)			· · ·	、 /	• •	· · ·
-	xis/Polarize Detector .evel (dBuV/m)	xis/Polarize Detector .evel (dBuV/m) .avel (dBuV/m) </td <td>xis/Polarize Y-Plane / Ver. Detector Peak & AVG .evel (dBuV/m) 2 .avel (dBuV/m)</td> <td>xis/Polarize Y-Plane / Ver. Test Detector Peak & AVG </td> <td>xxis/Polarize Y-Plane / Ver. Test Engineer Detector Peak & AVG .evel (dBuV/m) 2 .evel (dBuV/m) 2 .avel (dBuV/m) 2 .evel (dBuV/m) 2 .avel (dBuV/m) 2</td> <td>xis/Polarize Y-Plane / Ver. Test Engineer Jerry C Detector Peak & AVG </td>	xis/Polarize Y-Plane / Ver. Detector Peak & AVG .evel (dBuV/m) 2 .avel (dBuV/m)	xis/Polarize Y-Plane / Ver. Test Detector Peak & AVG	xxis/Polarize Y-Plane / Ver. Test Engineer Detector Peak & AVG .evel (dBuV/m) 2 .evel (dBuV/m) 2 .avel (dBuV/m) 2 .evel (dBuV/m) 2 .avel (dBuV/m) 2	xis/Polarize Y-Plane / Ver. Test Engineer Jerry C Detector Peak & AVG

	Test Mode:	T	X-433.92MHz	Ter	mp/Hum	20.4(°C)/ 40%R	
	Test Item		Fundamental		st Date	April 29	
	Axis/Polarize		/-Plane / Hor.	Test	Engineer	Jerry C	hang
	Detector		Peak & AVG				
110	Level (dBuV/m)			1]
100)						
80)		2				
60)						
40)						
20)						
0	433.72	433.8	433.88 Frequency	433.96 (MHz)	4	134.04	434.12
No	Frequency	Detector	Spectrum	Factor	Actual	Limit	Margin
		Mode	Reading Level		FS	@3m	
	(MHz)	(PK/QP/AV)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
	433.92	Peak	83.06	-4.72	78.34	100.82	-22.48

Page: 22 / 31 Rev.: 00

3.4 RADIATION UNWANTED EMISSION

3.4.1 Test Limit

According to §15.231(b) and §15.209, §15.205

Unwanted emissions limit follow the table or the FCC Part 15.209, whichever limit permits higher field strength.

According to §15.231(b)

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of fundamental (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹Linear interpolations.

Below 30MHz

_			Field Strengtl	า	
Frequency (MHz)	(µV/m)	(dBµV/m)	Measurement Distance (meter)	(dBµV/m)	Measurement Distance (meter)
0.009 - 0.490	2400/F(kHz)	48.52 – 13.80	300	128.52–104.84	3
0.490 - 1.705	24000/F(kHz)	33.80 - 22.97	30	73.80– 62.97	3
1.705 – 30.0	30	29.54	30	69.54	3

Above 30MHz

Frequency			Measurement Distance
(MHz)	(µV/m)	(dBµV/m)	(meter)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Page: 23 / 31 Rev.: 00

3.4.2 Test Procedure

Test method Refer as ANSI 63.10:2013

Unwanted Emission	 □ clause 4.1.4.2.2: Measurement Peak value. □ clause 4.1.4.2.3: Duty cycle ≥ 100%. □ clause 4.1.4.2.4: Measurement Average value.
-------------------	---

3m. tance 3m.
ta

- 1. The EUT is placed on a turntable, which is 0.8m for test below 1GHz and 1.5m for test above 1GHz, above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

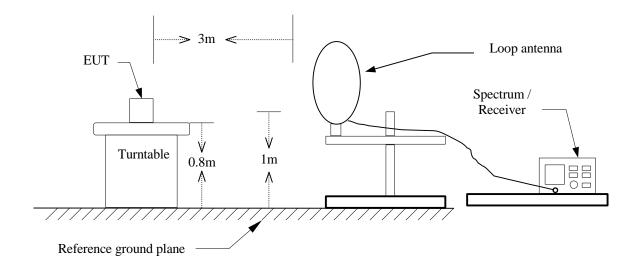
RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

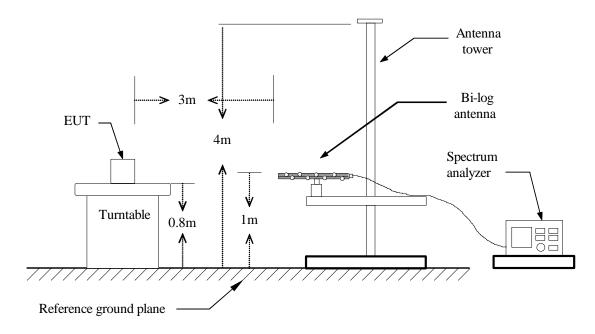
(a)PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO

(b)AVERAGE: RBW=1MHz,

7. Repeat above procedures until the measurements for all frequencies are complete.

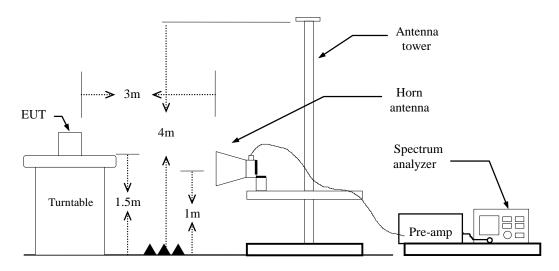

Remark.

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
 No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).



Page: 24 / 31 Rev.: 00

3.4.3 Test Setup <u>9kHz ~ 30MHz</u>


<u>30MHz ~ 1 GHz</u>

Page: 25 / 31 Rev.: 00

<u>Above 1 GHz</u>

3.4.4 Test Result

<u>Pass.</u>

Page: 26 / 31 Rev.: 00

Test Data

Below 1GHz

Test Mode: Test Item		TX-433.92MHz	Т	emp/Hum	20.4(°C)/	40%R⊦
		Below 1GHz		est Date	April 22, 2020	
Polariz	e	Vertical	Tes	st Engineer	Jerry Chang	
Detecto	or	Peak				
110 Level (dBuV	/m)					
100						
					_	
80						
60						
40						
12		3			4	56
20						
0	224.	418.	61		-	
50	224.		iency (MHz)	ζ.	806.	1000
Frequency	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margir
(MHz)	(PK/QP/AV)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
	Peak	33.55	-11.23	22.32	43.50	-21.18
105.66	I Cak					04.00
105.66 120.21	Peak	31.31	-9.17	22.14	43.50	-21.36
			-9.17 -5.41	22.14 22.12	43.50 46.00	-21.36 -23.88
120.21	Peak	31.31				
120.21 410.24	Peak Peak	31.31 27.53	-5.41	22.12	46.00	-23.88

Peak

Peak

26.05

25.46

958.29

988.36

-15.80

-23.76

46.00

54.00

Test Mod	de:	TX-433.92MHz	Te	emp/Hum	20.4(°C)/	40%RH
Test Ite	m	Below 1GHz	Т	est Date	April 22	2, 2020
Polariz	е	Horizontal	Tes	st Engineer	Jerry C	Chang
Detecto	or	Peak				
110 Level (dBuV/	(m)					
100		····				
80					·····	
60						
40						
					4	56
20	12	3				
0	224.	418.	61	-		
30	224.		uency (MHz)	Ζ.	806.	1000
_		•				
Frequency	Detector Mode	Spectrum	Factor	Actual FS	Limit @3m	Margin
/MU=)	(PK/QP/AV)	Reading Level	(dD)	dBuV/m)	-	(dD)
(MHz) 128.94	Peak	(dBuV) 27.10	(dB) -9.10	18.00	(dBuV/m) 43.50	(dB) -25.50
128.94	Peak	27.95	-9.73	18.00	43.50	-25.28
420.91	Peak	27.00	-5.04	21.96	46.00	-24.04
861.29	Peak	26.53	2.66	29.19	46.00	-16.81

4.15

4.78

30.20

30.24

Page: 28 / 31 Rev.: 00

Above 1GHz

Test Mod	de:	TX-433.92MHz		ſemp/Hum	20.4(°C)/	40%RH
Test Ite	m	Above 1GHz Vertical		Test Date	ate April 22, 202	
Polariz	е			st Engineer	Jerry (Chang
Detecto	or	Peak				
100 Level (dBuV/ 90 80 70 60 50 40 30 20	m)					
10						
0 <mark></mark>	1800.	2600.	34	0	4200.	5000
			uency (MHz)			
Frequency	Detector	Spectrum	Factor	Actual	Limit	Margir
	Mode	Reading Level	(15)	FS	@3m	(
(MHz)	(PK/QP/AV)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
1300.98	Peak	45.05	-7.95	37.10	74.00	-36.90
N/A						
				1		

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page: 29 / 31 Rev.: 00

Test Mode: Test Item		TX-433.92MHz		emp/Hum	20.4(°C)/ 40%RH April 22, 2020	
		Above 1GHz		Test Date		
Polariz		Horizontal	Te	st Engineer	Jerry C	Chang
Detecto	or	Peak				
100	/m)					
90				, , , ,		
80						
70						
60	· · · · · · · · · · · · · · · · · · ·					
50						
40						
30	, 					
20						
10	i i J i i				· · · · · · · · · · · · · · · · · · ·	
0 <mark></mark>	4000	2000			1200	5000
1000	1800.	2600. 3400. 4200. Frequency (MHz)				5000
Frequency	Detector	Spectrum	Factor	Actual	Limit	Margir
	Mode	Reading Level		FS	@3m	_
(MHz)	(PK/QP/AV)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
1300.98	Peak	43.25	-7.95	35.30	74.00	-38.70
N/A						
						1

Remark:

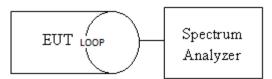
1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page: 30 / 31 Rev.: 00

3.5 OPERATION RESTRICTION

3.5.1 Test Limit

15.231(a)(1),


A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

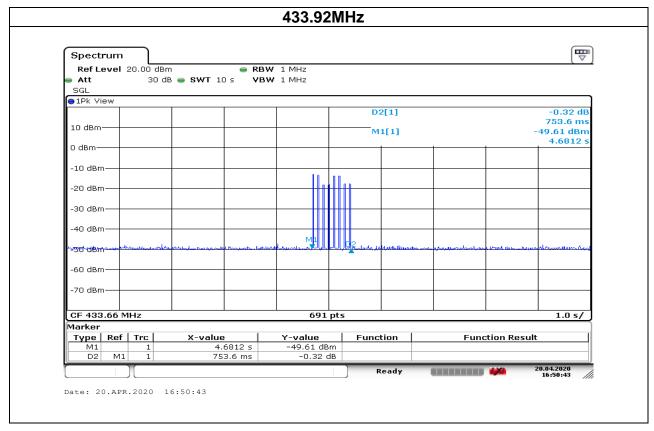
3.5.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 7.4

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=1MHz, VBW=1MHz, Detector = Peak, Trace mode = Max hold, Sweep = 1s. Measure

3.5.3 Test Setup

3.5.4 Test Result


433.92MHz

Dwell Time							
Operation condition	Pulse On Time (s) Limits		Result				
manually operated	0.7536	5 sec	PASS				

Page: 31 / 31 Rev.: 00

Test Data

- End of Test Report -