

FCC Measurement/Technical Report on

Tire Pressure Sensor (Wheel Unit)

TIS-24

FCC ID: KR5TIS-24

IC: 7812D-TIS24

Report Reference: MDE_CONTI_2013_FCC_04_Rev01

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbHBorsigstraße 11
40880 Ratingen, Germany
T +49 (0) 2102 749 0
F +49 (0) 2102 749 350

Geschäftsführer/
Managing Directors:
Frank Spiller
Bernhard Retka
Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

TABLE OF CONTENTS

1 Applied Standards and Test Summary	3
Applied Standards FCC-IC Correlation table Measurement Summary /Signatures Report version control	3 4 5 6
2 Administrative Data	7
Testing Laboratory Project Data Applicant Data MANUFACTURER Data	7 7 7 7
3 Test object Data	8
General EUT Description EUT Main components EUT Setups Operating Modes Product labelling FCC ID label	8 9 10 10 10
4 Test Results	11
Duty cycle measurement (based on dwell time measurement) Spurious radiated emissions Maximum radiated field strength at fundamental frequency Occupied bandwidth	11 14 28 30
6 Antenna Factors, Cable Loss and Sample Calculations	35
Antenna R&S HFH2-Z2 (9 kHz – 30 MHz) Antenna R&S HL562 (30 MHz – 1 GHz) Antenna R&S HF907 (1 GHz – 18 GHz)	35 36 37
7 Photo Report	38

1 APPLIED STANDARDS AND TEST SUMMARY

APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator (Periodic operation in the band above 70 MHz)

Applicable FCC Rules

Edition of FCC Rules: 10-1-19

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C - Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.231 Periodic operation in the band 40.66-40.70 MHz, above 70 MHz

Note: § 15.207 is not applicable because the EUT is DC powered. It will not be connected to the public AC mains network.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0 Measurement Summary / Signatures.

Test report Reference: MDE_CONTI_2013_FCC_04_Rev01 Page 3 of 39

FCC-IC CORRELATION TABLE

Correlation of measurement requirements for Momentarily (incl. Periodically) Operated Devices and Remote Control from FCC and IC $\,$

Radio equipment

Measurement	FCC reference	IC reference
Transmitter spurious radiated emissions	§ 15.231 (b) / (e)	RSS Gen Issue 5 & AMD1 & AMD2: 6.10/6.13/8.9/8.10; RSS-210 Issue 10 & AMD1: A1.2 Table 2
Duty cycle measurement (based on dwell time measurement)	§ 15.231 (a)	RSS-210 Issue 10 & AMD1: A1.1
Maximum radiated field strength at fundamental frequency	§ 15.231 (b) / (e)	RSS-210 Issue 10 & AMD1: A1.2 Table 2; RSS Gen Issue 5 & AMD1 & AMD2: 6.12
Occupied bandwidth	§ 15.231 (c)	RSS-210 Issue 10 & AMD1: A1.3
Antenna requirement	§ 15.203 / 15.204	RSS Gen Issue 5 & AMD1 & AMD2: 8.3
Receiver spurious emissions	-	RSS-210 Issue 10 & AMD1: 2.3 RSS Gen Issue 5 & AMD1 & AMD2: 5/7 *)

^{*)} Receivers are exempted from certification besides if operating in stand-alone mode in the frequency range 30–960 MHz or if these are scanner receivers.

Final Result

Final Result

MEASUREMENT SUMMARY /SIGNATURES

FCC Part 15, Subpart C § 15.207

Conducted emissions (AC power line)

The measurement was performed according to ANSI C63.10 2013

OP-Mode Setup Port

AC Port (power line) N/A

FCC Part 15, Subpart C § 15.231

Duty cycle measurement (based on dwell time measurement)

The measurement was performed according to ANSI C63.10 2013

OP-Mode Setup Port

op-mode 4 S01_BC01 Enclosure passed

FCC Part 15, § 15.231

Subpart C

Spurious Radiated Emissions

The measurement was performed according to ANSI C63.10 2013

OP-ModeSetupPortFinal Resultop-mode 1S01_BE01Enclosurepassedop-mode 2S01_BE01Enclosurepassed

FCC Part 15, § 15.231

Subpart C

Maximum radiated field strength at

fundamental frequency

The measurement was performed according to ANSI C63.10 2013

OP-ModeSetupPortFinal Resultop-mode 3S01_BE01Enclosurepassed

FCC Part 15, § 15.231

Subpart C

Occupied Bandwidth

The measurement was performed according to ANSI C63.10 2013

OP-ModeSetupPortFinal Resultop-mode 1S01_BC01Enclosurepassedop-mode 2S01_BC01Enclosurepassed

N/A not applicable (the EUT is powered by Lithium battery)

REPORT VERSION CONTROL

Report version control			
Version	Release date	Change Description	Version validity
initial	2021-06-11		invalid
Rev01	2021-06-25	Modification of IC Number	valid

(responsible for accreditation scope)
Dipl.-Ing. Andreas Petz

(responsible for testing and report)
M.Sc. Joel Asongwe

2 ADMINISTRATIVE DATA

TESTING LABORAT(ORY	1
------------------	-----	---

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01 | -02 | -03

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier: DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl.-Ing. Andreas Petz

Report Template Version: 2020-02-12

PROJECT DATA

Responsible for testing and report: M.Sc. Joel Asongwe

Date of Report: 2021-06-25

Testing Period: 2021-05-13 to 2021-06-08

APPLICANT DATA

Company Name: Continental Automotive GmbH

Address: Siemensstraße 12

93055 Regensburg

Germany

Contact Person: Kelvin Fongang

MANUFACTURER DATA

Company Name: Please see applicant Data

Address:

Contact Person:

3 TEST OBJECT DATA

GENERAL EUT DESCRIPTION

The device is a Tire Pressure Monitoring Sensor which is a wheel unit inside each tire, mounted to the valve stem, periodically measures the actual tire pressure. By means of UHF communication, this pressure information is transmitted to the UHF receiver/decoder.	
Tire Pressure Sensor (Wheel Unit)	
TIS-24	
the supplier	
DC (1x internal Lithium battery of type CR2450)	
3.0 V	
Transmitter on 315 MHz	
315 MHz	
Enclosure Temporary DC port for conducted measurements	
A trigger tool provided by the manufacturer was used	
CM and CW (The CW mode was provided just for testing purposes)	
Continuous Modulation (CM) Frequency Shift Keying (FSK)	
Continuous Modulation (CM) Amplitude Shift Keying (ASK)	

The main components of the EUT are listed and described in Chapter 0.

Test report Reference: MDE_CONTI_2013_FCC_04_Rev01

EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT N	DE1304038be01	Radiated Sample
Sample Parameter		Value
Serial No.	-	
HW Version	-	
SW Version	-	
Comment	Sample with integral Antenn	a

Sample Name	Sample Code	Description
EUT M	DE1304038bc01	Conducted Sample
Sample Parameter		Value
Serial No.	-	
HW Version	-	
SW Version	-	
Comment	Sample with temporary external antenna connector	

General description of ancillary equipment

Device	Details (Manufacturer, Type Model, OUT Code)	Reason for using
-	-	-

General description of auxiliary equipment

Device	Details (Manufacturer, HW, SW, S/N)	Description
-	-	-

Test report Reference: MDE_CONTI_2013_FCC_04_Rev01

EUT SETUPS

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup	Combination of EUTs	Description
S01_BE01	EUT N	Setup for radiated measurements.
S01_BC01	EUT M	Setup for conducted measurements.

OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	Continuous transmission	Transmitter sends continuously modulated signal, FSK
op-mode 2	Continuous transmission	Transmitter sends continuously modulated signal, ASK
op-mode 3	Continuous transmission	Transmitter sends continuously unmodulated signal
op-mode 4	Single burst	Transmitter sends single burst signal

PRODUCT LABELLING

FCC ID LABEL

Please refer to the documentation of the applicant.

IC Label

Please refer to the documentation of the applicant.

LOCATION OF THE LABEL ON THE EUT Please refer to the documentation of the applicant.

Test report Reference: MDE_CONTI_2013_FCC_04_Rev01

4 TEST RESULTS

DUTY CYCLE MEASUREMENT (BASED ON DWELL TIME MEASUREMENT)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was setup in a shielded room to perform the dwell time measurements. For analyzer settings please see measurement plots.

4.1.2 TEST REQUIREMENTS / LIMITS

Depending on the function of the EUT different paragraphs of FCC §15.231 apply:

Fither

(a)(1): A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Or

(a)(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

And

(a)(3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

Otherwise

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation [...]. In addition, [...] the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

This test is also performed to determine the pulse train of the transmitter and calculate the correction factor for pulse modulated transmitters according to FCC §15.35. This factor is used as a correction factor for the field strength measurements, both for Spurious radiated emissions and Maximum radiated field strength at fundamental frequency.

4.1.3 TEST PROTOCOL

Temperature: 25 °C Air Pressure: 1002 hPa Humidity: 35 %

Op. Mode	Setup	Port
op-mode 4	S01_BC01	Temporary DC port

a) Determine the total duration of a transmission within 100 ms:

Duty cycle = ((L1*N1) + (L2*N2) + ... + (Ln*Nn)) / 100 ms or T, whichever is less Correction factor = 20 * LOG (Duty cycle) [dB]

Step 1	Holdover time	Less than 5s
Step 2	Cycle to determine the on/off ratio within a cycle (period T)	100 ms
Step 3	Sweep of a data word to determine the on time within a data word (L1-LN)	L1 = 23.2465 ms

Calculation of Duty Cycle / Correction Factor:

If T > 100 ms = T = 100 ms; L1 = 23.2465 ms; N1 = 1;

In 100 ms $T_{on} = (8.058 + 30.377 / 2)$ ms

Duty cycle = (8.058 + 30.377 / 2) / 100 = 0.232465

CORRECTION FACTOR = $20*\log(0.232465) \approx -12.67 \text{ dB}$

b) Determine the period of periodic re-transmission, if any, or cease (deactivation) time:

The period of retransmission depends on how much LF interrogations are sent. Normally, after the answer (0.232465 s), there are no more transmissions from the EUT.

Deactivation after $T_c = 0.0 \text{ s}$, Limit: $\leq 5 \text{ s}$

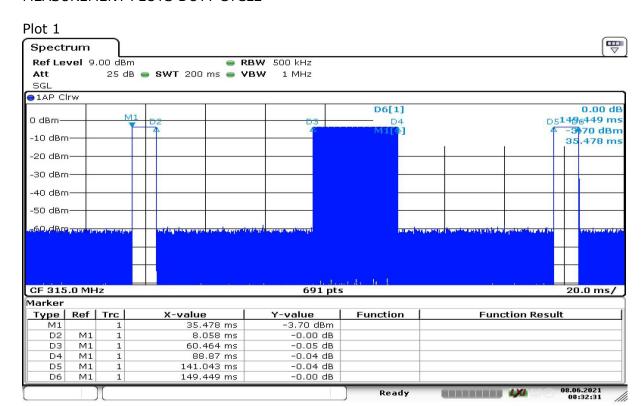
c) Determine the total duration of periodic transmissions within 1 hour, if any:

Duration t_d of all pulses/bursts during T_R ("on-time"):

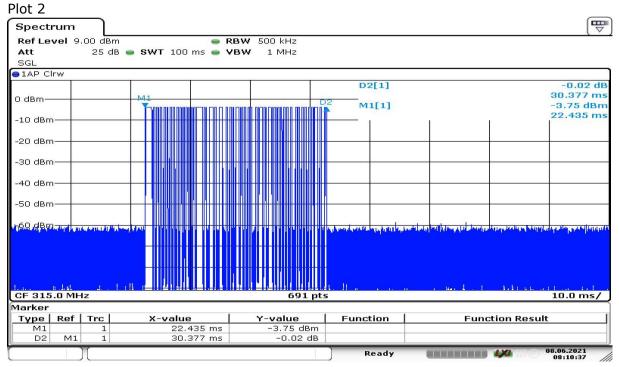
d) If the result of c) exceeds 2 seconds/hour then paragraph (e) applies:

Determine the duration of each transmission (one complete pulse train) and silent time: Duration t_{PT} , Limit: ≤ 1 s (Remark: t_{PT} is identical to t_d if $T \leq 100$ ms).

The duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.


 $t_{PT} = 0.232465 s (\le 1 s)$

Silent time between transmissions: After the answer, there are no more transmissions. Limit: \leq Maximum (>10 s and >30*t_{PT}).


Test report Reference: MDE_CONTI_2013_FCC_04_Rev01 Page 12 of 39

MEASUREMENT PLOTS DUTY CYCLE

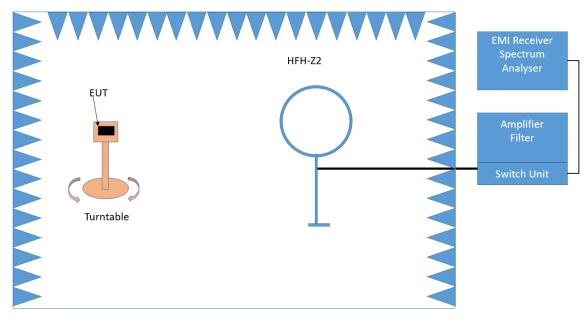
Date: 8.JUN.2021 08:32:32

Date: 8.JUN.2021 08:10:37

SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:


ANSI C63.10-2013

4.1.4 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30--1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. (Exploratory) Tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is also performed while the EUT is powered from DC (battery) power in order to find the worst-case operating condition.

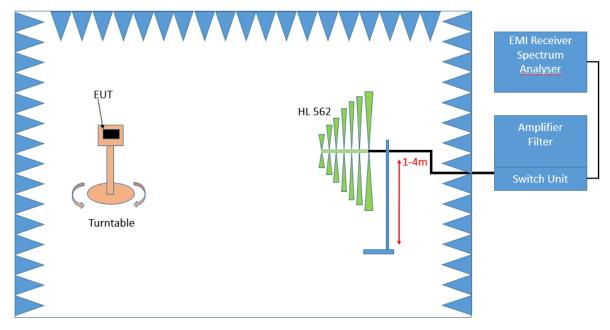
1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz - 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: premeasurement

- Anechoic chamber
- Antenna distance: 3 m
- Antenna height: 1 m (lowest part to ground)
- Antenna polarisation: 3 axis
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)


Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement will be performed with the following changed settings. Intention of this step is to find the maximum emission level.

- Detector: Quasi-Peak besides 9–90 kHz and 110–490 kHz: Average and Peak
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

Antenna distance: 3 m

Detector: Peak-Maxhold / Quasipeak (FFT-based)

• Frequency range: 30 – 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 ms

• Turntable angle range: -180° to 90°

Turntable step size: 90°

Height variation range: 1 – 4 m
Height variation step size: 1.5 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

Detector: Peak – Maxhold

• Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHz
Measuring time: 100 ms
Turntable angle range: 360°
Height variation range: 1 - 4 m

Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed: EMI receiver settings for step 3:

Detector: Quasi-Peak (< 1 GHz)

• Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement, a plot will be generated. It contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

Above 1 GHz:

The following changes apply to the measurement procedure for the frequency range > 1 GHz:

Step 1:

- Turntable step size: 45°

- Detector: Peak, Average (Maxhold)

- IF - Bandwidth: 1 MHz- Frequency steps: 250 kHz- Measuring time: 500 ms / GHz

Step 2:

- IF - Bandwidth: 1 MHz

Step 3:

- Detector: Peak / CISPR Average

- IF - Bandwidth: 1 MHz

After every measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

Floor absorbers are placed between test volume and measurement antenna.

4.1.5 Test Requirements / Limits

1) FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limit (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according to FCC §15.31 (2).

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

2) RSS-216, 6.2.2.2, Radiated Emission Limits

The raw values obtained at the measurement distance are extrapolated to the FCC's definition distance. The limits defined in RSS-216 are calculated for these FCC's distances in order to include the limits directly in one measurement plot and to demonstrate if compliance is achieved. The verdict related to RSS-216 is basing on the margin which is constant for different distances and i.e. is not altered by these linear transformations.

Limits ICES-001, 3.3.4.1, table 2 (quasi-peak limits) of magnetic field strength:

Frequency in MHz	Limit (RSS-216) (dBµA/m) @3m	Measurement distance (m)	Limit (dBµV/m) @ FCC distance	Comment
0.009 - 0.070	69	3	(40.5)@300m	-
0.07 - 0.15	69 – 39 ^{*)}	3	(40.5 - 10.5)@300m	-
0.15 - 0.49	39 - 31.9 *'**)	3	(10.5 - 3.4)@300m	intermediate step
0.49 - 30.0	31.9 – 7 ***)	3	(43.4 - 18.5)@30m	intermediate step

^{*)} Decreasing linearly with logarithm of frequency between 0.07 and 0.15 MHz

The measured field strength is extrapolated to the distance specified using the formula indicating that the field strength varies as the inverse distance square (40 dB per decade of distance), according to RSS-Gen, 6.5.

For fractal values of definition and reference distance the factor of $40*LOG_{10}(d_{ref}/d_{def})$ applies.

Relation between electrical and magnetic field strength: $dB\mu V = dB\mu A + 51.5 dB$.

Test report Reference: MDE_CONTI_2013_FCC_04_Rev01 Page 18 of 39

^{***)} Decreasing linearly with logarithm of frequency between 0.15 and 30.0 MHz

Limits ICES-001, 3.3.4.2, table 4 (quasi-peak limits) of electric field strength:

Frequency in MHz	Limit (dBµV/m)	Limit (dBµV/m)	Limit (dBµV/m)	SAC Limit (dBµV/m)
Trequency III MI12	OATS or SAC @10m	OATS or SAC @3m	FAR @3m	@ FCC distance
30 - 230	30	40	42 - 35 ^{**)}	(40)@3m
230 - 1000	37	47	42	(47)@3m

^{**)} The limit level in $dB\mu V/m$ decreases linearly with the logarithm of frequency.

Note: OATS = open-area test site, SAC = semi-anechoic chamber, FAR = fully anechoic room

4.1.6 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.231 (b)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Calculate Limit (dBµV/m @10m)	Limit (dBµV/m) @10m
0.009 - 0.49	2400/F (kHz)	300	(48.5 - 13.8) + 59.1 dB	107.6 - 72.9
0.49 - 1.705	24000/F (kHz)	30	(33.8 - 23.0) + 19.1 dB	52.9 - 42.1
1.705 - 30	30	30	29.5 + 19.1 dB	39.5

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit ...

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

§15.35(c):

[...] when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted $[\dots]$.

Test report Reference: MDE_CONTI_2013_FCC_04_Rev01 Page 19 of 39

§15.231 (b) emissions table

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)		
40.66-40.70	2,250	225		
70-130	1,250	125		
130-174	¹ 1,250 to 3,750	¹ 125 to 375		
174-260	3,750	375		
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250		
Above 470	12,500	1,250		

¹Linear interpolations.

§15.231(b)(3)

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator.

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasipeak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

Interpretation of the test laboratory:

The last subordinate clause of $\S15.231(b)(3)$ is overruled by $\S15.205/209$, therefore within the restricted bands the limits defined at $\S15.205/209$ and outside the restricted bands the limits defined at $\S15.231(b)$ resp. $\S15.231(e)$ are applied.

§15.231 (e) emissions table

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

¹Linear interpolations.

4.1.7 TEST PROTOCOL

4.1.7.1 MEASUREMENT UP TO 30 MHz

Temperature: 25 °C Air Pressure: 1001 hPa Humidity: 35 %

Op. Mode	Setup	Port
op-mode 1	S01_BE01	Enclosure
op-mode 2	S01 BE01	Enclosure

Measuring Antenna	Spurious Emission Frequency		rected va		Limit [dBµV/m]	Limit [dBµV/m]	Limit [dBµV/m]	Margin to limit [dB]	Margin to limit [dB]
Polarisation	[MHz]	QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
0°									
90°									

Remark: In step 1 no spurious emissions in the range 20 below the limit were found, using a peak detector, therefore step 2 (using a QP-detector) was not performed. For this test, the EUT was sending a continuously modulated signal. Please see the measurement plot.

4.1.7.2 MEASUREMENT ABOVE 30 MHz TO 7 GHz

Temperature: 25 °C Air Pressure: 1001 hPa Humidity: 35 %

Op. Mode	Setup	Port
op-mode 1	S01_BE01	Enclosure
op-mode 2	S01_BE01	Enclosure

Polarisation of the antenna and	Spurious Emission Frequency		ected val	ue	Limit [dBµV/m]	Limit [dBµV/m]	Limit	Margin to limit [dB]	Margin to limit [dB]
the EUT	[MHz]	QP	Peak	AV	QP	Peak	AV	QP/Peak	ΑV
0°									
90°									

Remarks: No other spurious emissions in the range 15 dB below the limit were found. For 1 GHz to 7 GHz see table of peaks below measurement plot

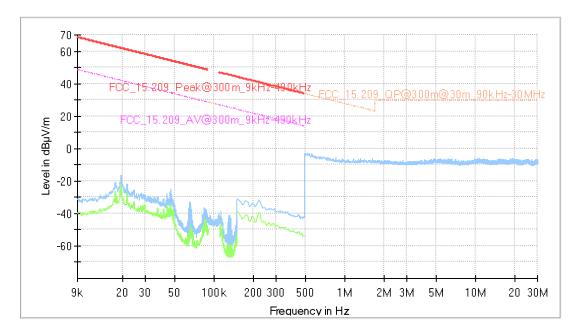
4.1.8 MEASUREMENT PLOTS

4.1.8.1 RADIATED EMISSIONS (f < 30 MHz)

Test Description: Radiated Emissions, Test Site: Semi Anechoic Chamber @ 3 m

Test Standard: FCC 15c.209 EUT / Setup Code: DE1304038be01

Operating Conditions: Modulated TX on 315 MHz, FSK


Operator Name: HAE

Comment:

x-Orientation (indicate h=100) loop plane vertical, vector in measurement axis directed to EUT y-Orientation (indicate h=200) loop plane vertical, vector perpendicular to measurement axis z-Orientation (indicate h=300) loop plane horizontal, normal vector directed to ground

Legend: Trace: blue = Peak; green = AV, Star: = critical frequency; Rhombus:

blue = final QP

Final Result

Frequency (MHz)	QuasiPeak (dBµV/m)	DET 2 (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)

Test Description: Radiated Emissions, Test Site: Semi Anechoic Chamber @ 3 m

Test Standard: FCC 15c.209 EUT / Setup Code: DE1304038be01

Operating Conditions: Modulated TX on 315 MHz, ASK

Operator Name: HAE Comment:

x-Orientation (indicate h=100) y-Orientation (indicate h=200) z-Orientation (indicate h=300)

Legend:

loop plane vertical, vector perpendicular to measurement axis loop plane horizontal, normal vector directed to ground

Trace: blue = Peak; green = AV, Star: = critical frequency; Rhombus:

loop plane vertical, vector in measurement axis directed to EUT

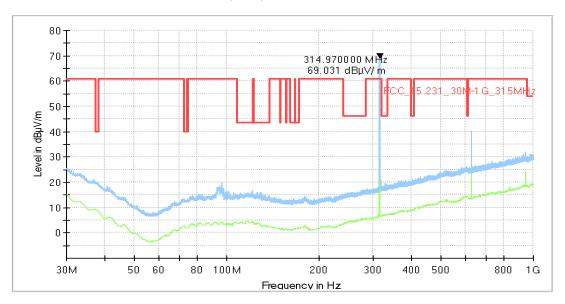
blue = final QP

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	DET 2 (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)

4.1.8.2 RADIATED EMISSIONS (30 MHz < f < 1 GHz)

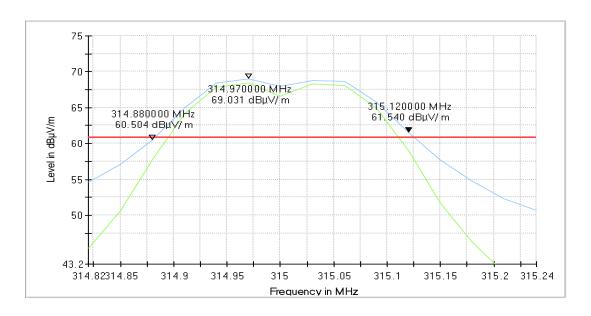
Test Standard: FCC 15c.231 EUT / Setup Code: DE1304038be01


Operating Conditions: Modulated TX on 315 MHz, FSK

Operator Name: HAE

Comment: -

Legend: Trace (preview): blue = PK, green = QP; Star: red or blue = critical

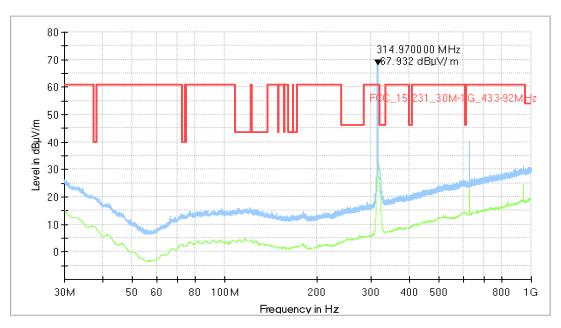

frequency; Rhombus: blue = final QP

Final Result

Frequency (MHz)	QuasiPeak (dBµV/m)	DET 2 (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
	_	_	-	-		-	-	_	-	-

Note: The peak value over the limit line is the modulated carrier in the exclusion band. Below is a detailed plot.

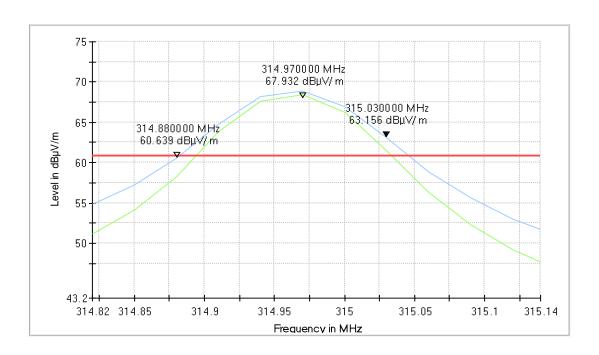
Test Standard: FCC 15c.231 EUT / Setup Code: DE1304038be01


Operating Conditions: Modulated TX on 315 MHz, ASK

Operator Name: HAE

Comment: -

Legend: Trace (preview): blue = PK, green = QP; Star: red or blue = critical


frequency; Rhombus: blue = final QP

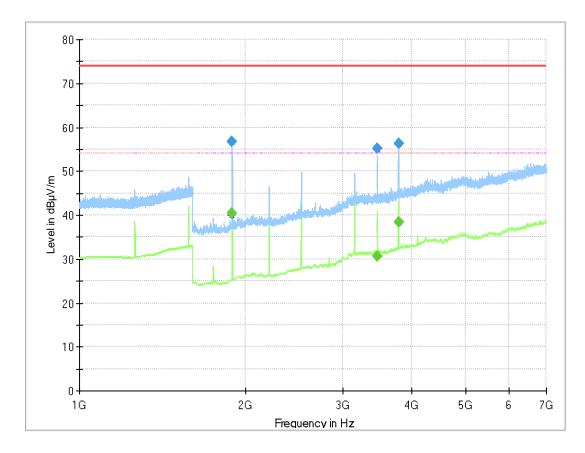
Final Result

Frequency (MHz)	QuasiPeak (dBµV/m)	DET 2 (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
							-	-	_	

Note: The peak value over the limit line is the modulated carrier in the exclusion band. Below is a detailed plot.

4.1.8.3 RADIATED EMISSIONS (1 GHz < f < 7 GHz)

Test Description: Radiated Emissions @ 3 m, FAC


Test Standard: FCC 15c.231 EUT / Setup Code: DE1304038be01

Operating Conditions: Modulated TX on 315 MHz, FSK

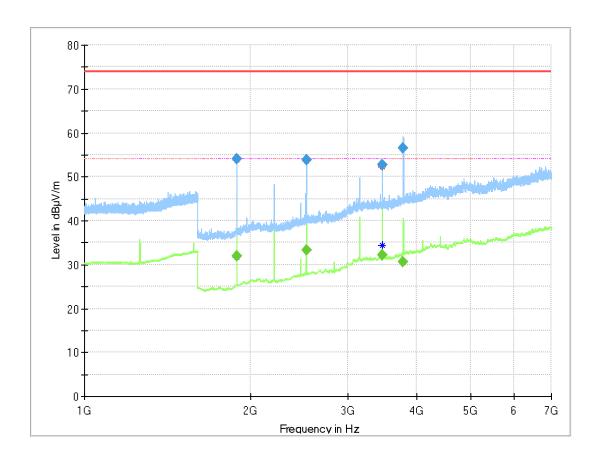
Operator Name: HAE Comment: -

Legend: Trace (preview): blue = PK, green = AV; Star: red or blue = critical

frequency; Rhombus: blue = final PK, Rhombus: green = final AV

Final Result

•	mai_ncsu											
	Frequency	MaxPeak	CAverag	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr.
	(MHz)	(dBµV/m)	е	(dBµ	n	Time	h	t		h	n	(dB/
			(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)
ĺ	1889.440	56.7		73.98	17.29	1000.0	1000.000	150.0	Н	-169.0	4.0	-6.2
ĺ	1889.980		40.3	53.98	13.63	1000.0	1000.000	150.0	Н	-169.0	3.0	-6.2
ſ	3465.700	55.1		73.98	18.86	1000.0	1000.000	150.0	V	-90.0	78.0	0.0
ſ	3466.240		30.7	53.98	23.27	1000.0	1000.000	150.0	V	-90.0	93.0	0.0
	3779.440	56.4		73.98	17.60	1000.0	1000.000	150.0	Н	-186.0	4.0	1.3
ſ	3779.980		38.5	53.98	15.49	1000.0	1000.000	150.0	Н	-169.0	3.0	1.3


Test Description: Radiated Emissions @ 3 m, FAC

Test Standard: FCC 15c.231 EUT / Setup Code: DE1304038be01

Operating Conditions: Modulated TX on 315 MHz, ASK

Operator Name: HAE Comment: -

Legend: Trace (preview): blue = PK, green = AV; Star: red or blue = critical frequency; Rhombus: blue = final PK, Rhombus: green = final AV

Final Result

•	a \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \											
	Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
	1889.440	54.0		73.98	20.00	1000.0	1000.000	150.0	Н	11.0	-6.0	-6.2
	1889.440		32.0	53.98	22.00	1000.0	1000.000	150.0	Н	11.0	-4.0	-6.2
	2520.160	53.8		73.98	20.16	1000.0	1000.000	150.0	Н	11.0	-3.0	-3.5
	2520.160		33.4	53.98	20.58	1000.0	1000.000	150.0	Н	11.0	-4.0	-3.5
	3464.620		32.1	53.98	21.91	1000.0	1000.000	150.0	Н	49.0	-12.0	-0.1
	3464.620	52.7		73.98	21.29	1000.0	1000.000	150.0	Н	50.0	-5.0	-0.1
	3778.360		30.7	53.98	23.32	1000.0	1000.000	150.0	Н	0.0	0.0	1.3
	3778.360	56.5		73.98	17.51	1000.0	1000.000	150.0	Н	-6.0	-8.0	1.3

MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY

Standard FCC Part 15, Subpart C

The test was performed according to:

ANSI C63.10-2013

4.1.9 TEST DESCRIPTION

Please refer to sub-clause 4.1.1

4.1.10 TEST LIMITS

Please refer to sub-clause 4.1.2 FCC 15.231 b) applies.

4.1.11 TEST PROTOCOL

Temperature: 25 °C Air Pressure: 1001 hPa Humidity: 35 %

Op. Mode	Setup	Port
op-mode 3	S01_BE01	Enclosure

Frequency [MHz]	Output power [dBµV/m]	Limit [dBµV/m]	Margin to Limit [dB]	Remarks
315.0	68.84	75.62	6.78	Maximum radiated field strength

Notes:

The EUT transmitted continuously unmodulated carrier.

4.1.12 TEST RESULT:

MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 3	passed

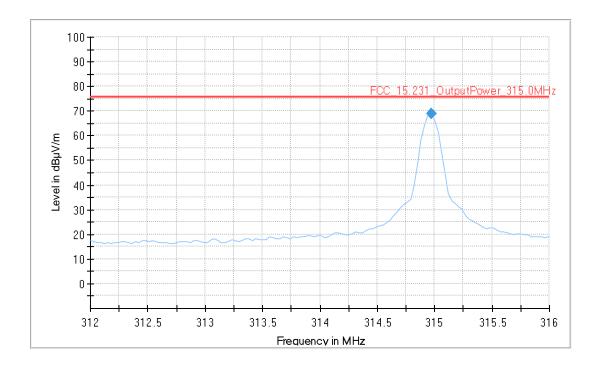
Test report Reference: MDE_CONTI_2013_FCC_04_Rev01 Page 28 of 39

4.1.13 MEASUREMENT PLOTS

4.1.13.1 MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY

Common Information

Test Description:
Cutput Power
Test Standard:
FCC 15c.231
EUT / Setup Code:
DE1304038be01


Operating Conditions: Unmodulated TX on 315 MHz, CW

Operator Name: HAE

Comment:

Legend: Trace (preview): blue = PK, green = QP; Star: red or blue = critical

frequency; Rhombus: blue = final QP

Final Result without Duty Cycle correction

Frequency (MHz)	QuasiPea k	DET 2 (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimut h	Corr. (dB/m)
	(dRuV/m)				(me)				(nah)	
	(dBµV/m)				(ms)				(deg)	

OCCUPIED BANDWIDTH

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10-2013

4.1.14 TEST DESCRIPTION

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

For analyzer settings please see the measurement plots.

4.1.15 TEST LIMITS

FCC Part 15, Subpart C, §15.231(c)

The maximum 20 dB bandwidth of a transmitter operating at a frequency range:

70 to 900 MHz is 0.25% of the centre frequency above 900 MHz is 0.5% of the centre frequency

4.1.16 TEST PROTOCOL

Temperature: 25 °C Air Pressure: 1002 hPa Humidity: 35 %

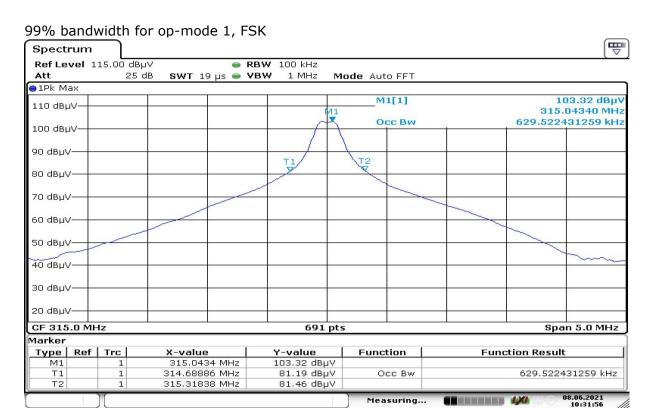
Op. Mode	Setup	Port
op-mode 1	S01_BC01	Temporary DC port

Cannel	20 dB	99%	20 dB	Remarks
Frequency	bandwidth	bandwidth	Limit	
[MHz]	[kHz]	[kHz]	[kHz]	
315.0	528.2	629.522	787.5	20 dB Limit calculated as: 315 MHz (declared by applicant) * 0.25% = 787.5 kHz.

Remark: Please see the measurement plots.

Op. Mode	Setup	Port
op-mode 2	S01_BC01	Temporary DC port

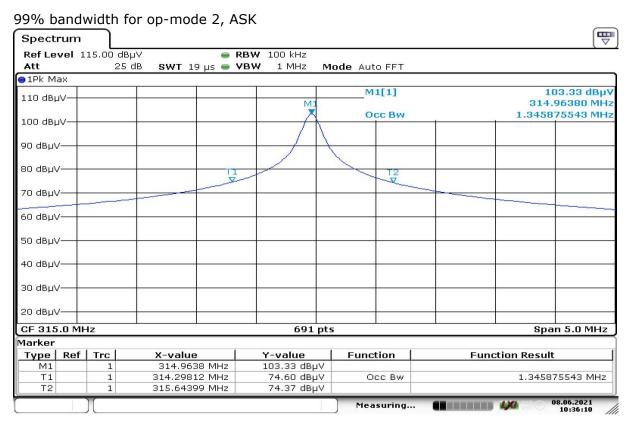
Cannel	20 dB	99%	20 dB	Remarks
Frequency	bandwidth	bandwidth	Limit	
[MHz]	[kHz]	[kHz]	[kHz]	
315.0	521.0	1345.88	787.5	20 dB Limit calculated as: 315 MHz (declared by applicant) * 0.25% = 787.5 kHz.


Remark: Please see the measurement plots.

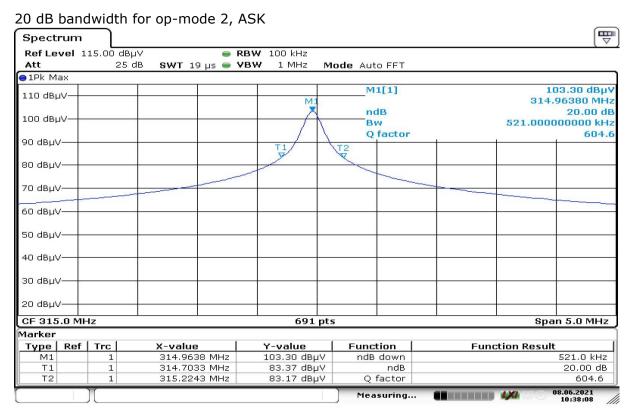
4.1.17 TEST RESULT: OCCUPIED BANDWIDTH

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed

4.1.18 MEASUREMENT PLOTS OCCUPIED BANDWIDTH



Date: 8.JUN.2021 10:31:56


20 dB bandwidth for op-mode 1, FSK ₩ Spectrum Ref Level 130.00 dBµV RBW 100 kHz SWT 19 µs 👄 VBW Att 40 dB 1 MHz Mode Auto FFT 1Pk Max M1[1] 103.37 dBµV 315.04340 MHz 120 dBµVndB 20.00 dB Bw 528.200000000 kHz 110 dBµV-Q factor 100 dBµV-90 dBuV-80 dBµV-70 dBuV-60 dBµV-50 dBµV-40 dBµV-Span 5.0 MHz CF 315.0 MHz 691 pts Marker Type | Ref | Trc **Function Result** X-value Y-value Function 315.0434 MHz 528.2 kHz M1 103.37 dBµV ndB down 314.7395 MHz 83.41 dBµV 20.00 dB ndB 315.2677 MHz 83.27 dBµV Q factor 596.4 08.06.2021 10:39:52 Measuring... 1,70

Date: 8.JUN.2021 10:39:53

Date: 8.JUN.2021 10:36:11

Date: 8.JUN.2021 10:38:09

Test Equipment

1 Radiated Emissions

Lab to perform radiated emission tests

		radiated emission		1		1
Ref.No.		Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	NRV-Z1	Sensor Head A	Rohde & Schwarz GmbH & Co. KG	827753/005		
1.2	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2020-11	2021-11
1.3	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2019-05	2021-05
1.4	ESW44	EMI Test Receiver	Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12
1.5	Anechoic Chamber	10.58 x 6.38 x 6.00 m ³		none	2018-06	2021-06
1.6	HL 562	Ultralog new biconicals	Rohde & Schwarz	830547/003	2018-07	2021-07
1.7	1.5-KK	High Pass Filter	Trilithic	9942012		
1.8	kg	Antenna Mast	Maturo GmbH	-		
1.9	Fluke 177 Digital Multimeter 03 (Multimeter)		Fluke Europe B.V.	86670383	2020-04	2022-04
1.10		Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.11	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
1.12	4HC1600/12750- 1.5-KK	High Pass Filter	Trilithic	9942011		
1.13	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
1.14	TT 1.5 WI	Turn Table	Maturo GmbH	-		
1.15	5HC3500/18000- 1.2-KK	High Pass Filter	Trilithic	200035008		
1.16	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2021-01	2024-01
1.17	Opus10 THI (8152.00)	ThermoHygro Datalogger 12 (Environ)	Regeltechnik GmbH	12482	2019-06	2021-06
1.18	ESR 7		Rohde & Schwarz	101424	2021-01	2023-01
1.19	35-5P	Amplifier 30 MHz - 18 GHz	Miteq	896037		
1.20	AS 620 P	Antenna mast	HD GmbH	620/37		
1.21	(Rohacell)	Antrieb TD1.5-10kg		TD1.5- 10kg/024/3790709		
1.22	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
1.23	AFS42-00101800- 25-S-42	Broadband Amplifier 25 MHz - 18 GHz	Miteq	2035324		
1.24	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/11920513		
1.25	HF 907	Double-ridged horn		102444	2018-07	2021-07

2 R&S TS8997 2.4 and 5 GHz Bands Conducted Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2020-08	2023-08
2.2	EX520	Digital Multimeter 12		05157876	2020-04	2022-04
2.3	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2020-05	2022-05
2.4	Opus10 THI (8152.00)	T/H Logger 15	Lufft Mess- und Regeltechnik GmbH	13985	2019-06	2021-06
2.5	NGSM 32/10	Power Supply	Rohde & Schwarz GmbH & Co. KG	3456	2020-01	2022-01
2.6	Temperature Chamber KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2020-05	2022-05
2.7	SMB100A	Signal Generator 100 kHz - 40 GHz	Rohde & Schwarz Vertriebs-GmbH	181486	2019-11	2021-11
2.8	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	13993	2019-06	2021-06
2.9	OSP120	Contains Power Meter and Switching Unit OSP- B157W8	Rohde & Schwarz	101158	2018-05	2021-05

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

cable loss 1 cable loss 2 cable loss 3 cable loss 4 distance corr. (meas. distance distance decade) dunit (meas. distance distance decade) dunit (meas. distance distance decade) distance distance (limit) distance distance distance (limit) distance distance distance (limit) distance distance distance (limit) distance distance (limit) distance	
(inside chamber) (outside chamber) (switch unit) (to receiver) (-40 dB/decade) distance (limit) distance (used decade) dB dB dB dB dB m m 0.1 0.1 0.1 0.1 -80 300	
chamber) chamber) unit) receiver) decade) (limit) (used dB dB dB dB dB dB m m 0.1 0.1 0.1 0.1 -80 300	
dB dB dB dB dB m m 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300	
0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300)
0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300	
0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300	3
0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30	3
0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1	3
0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30	3
0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30	3
0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30	3
0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30	3
0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30	3
0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30	3
0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30	3
0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30	3
0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30	3
0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30	3
0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30	3
0.1 0.1 0.1 0.1 -40 30	3
0.1 0.1 0.1 0.1 40 30	3
0.1 0.1 0.1 0.1 -40 30	3
0.1 0.1 0.1 0.1 -40 30	3
0.2 0.1 0.1 0.1 -40 30	3
0.2 0.1 0.1 0.1 -40 30	3
0.2 0.1 0.1 0.1 -40 30	3
0.2 0.1 0.1 0.1 -40 30	3
0.2 0.1 0.2 0.1 -40 30	3
0.2 0.1 0.2 0.1 -40 30	3
0.2 0.1 0.2 0.1 -40 30	3
0.3 0.1 0.2 0.1 -40 30	3
0.3 0.1 0.2 0.1 -40 30	3
0.3 0.1 0.2 0.1 -40 30	3
0.3 0.1 0.2 0.1 -40 30	3
0.3 0.1 0.2 0.1 -40 30	3
0.3 0.1 0.2 0.1 -40 30	3
0.3 0.1 0.3 0.1 -40 30	3
0.4 0.1 0.3 0.1 -40 30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$

(d _{Limit} =)	3 m)	
	AF R&S	
Frequency	HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable	cable	cable	cable	distance	d_{Limit}	$d_{\sf used}$
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

(aLimit = .	10 m)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (dum / dum)

distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

cable loss 1		cable loss 3 (switch		
(relay + cable	cable loss 2	unit, atten-	cable	
inside chamber)	(outside chamber)	uator & pre-amp)	loss 4 (to receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

			cable		
			loss 4		
cable			(switch		
loss 1	cable	cable	unit,		used
(relay	loss 2	loss 3	atten-	cable	for
inside	(inside	(outside	uator &	loss 5 (to	FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable loss 1 (relay inside chamber)	cable loss 2 (High Pass)	cable loss 3 (pre- amp)	cable loss 4 (inside chamber)	cable loss 5 (outside chamber)	cable loss 6 (to receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

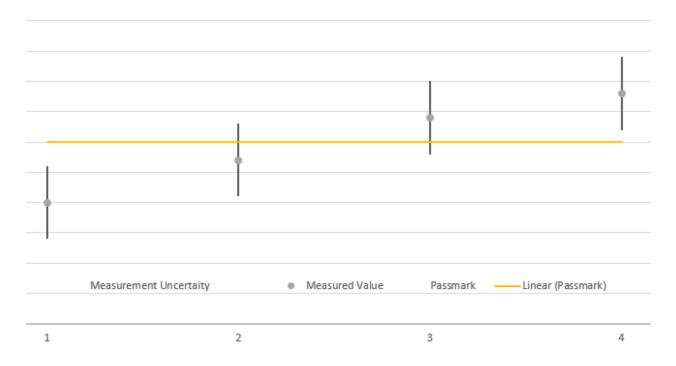
E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.


7 PHOTO REPORT Photos are included in an external report.

MEASUREMENT UNCERTAINTIES

Parameter	Uncertainty
Radio frequency	± 0.5 ppm
RF Power, conducted	± 1.5 dB
Unwanted Emissions, conducted	± 3.0 dB
All emissions, radiated	± 4.5 dB
Temperature	± 0.3 °C
Humidity	± 3%
DC and low frequency voltages	± 1.5% + 2 digits
Time	± 5%
Duty Cycle	± 5%
RF level uncertainty for a given BER	± 1.5 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according to the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.