

FCC ID: KR5TIS-09DH Report No.: T201124W03-RP IC: 7812D-TIS09DH

Page: 1 / 35 Rev.: 02

FCC RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C (Class II Permissive Change)

Test Standard	FCC Part 15.231+ IC RSS-210 Issue 10
Trade name	Continental
Product name	Tire Pressure Monitor Sensor
Model No.	TIS-09DH
Operation Freq.	433.92 MHz
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of SGS Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Komil Tson

Kevin Tsai Deputy Manager

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 2 / 35 Rev.: 02

Revision History

Rev.	Issue Date	Revisions	Effect page	Revised By
00	February 5, 2021	Initial Issue Note (01)	ALL	Allison Chen
01	February 18, 2021	See the following Note Rev.(01)	P.7. P.18-22	Allison Chen
02	February 18, 2021	See the following Note Rev.(02)	P.16	Allison Chen

Note (01)

1. Applicant change LF coil pad size, Battery hole enlargement and Duty cycle value as per customer requested to verify radiated test data below 1GHz, above 1GHz and duty cycle.

2. Applicant adds 2nd supplier for RF antenna.

Rev.(01)

1. Added CABID number.

2. Revised average limit calculation formula.

3. Added description note for average result.

Rev.(02)

1. Revised limit for standard RSS-210 A.1.4.

Page: 3 / 35 Rev.: 02

Table of contents

1.	GENERAL INFORMATION	•
1.1	EUT INFORMATION	
1.2	EUT CHANNEL INFORMATION	,
1.3	ANTENNA INFORMATION	,
1.4	MEASUREMENT UNCERTAINTY 6	i
1.5	FACILITIES AND TEST LOCATION	,
1.6	INSTRUMENT CALIBRATION7	,
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT8	;
1.8	TEST METHODOLOGY AND APPLIED STANDARDS 8	;
2.	TEST SUMMARY9)
3.	DESCRIPTION OF TEST MODES 10)
3.1	THE WORST MODE OF OPERATING CONDITION10)
3.2	THE WORST MODE OF MEASUREMENT10)
3.3	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS 11	
3.4	EUT DUTY CYCLE	,
4.	TEST RESULT14	•
4.1	AC POWER LINE CONDUCTED EMISSION14	•
4.2	EMISSION BANDWIDTH 15	,
4.3	FIELD STRENGTH OF FUNDAMENTAL	i
4.4	RADIATION UNWANTED EMISSION	
	OPERATION RESTRICTION)

Page: 4 / 35 Rev.: 02

1. GENERAL INFORMATION

1.1 EUT INFORMATION

FCC Applicant / Manufacturer	Continental Automotive GmbH Siemensstrasse 12 SV C TS RBG EMC-Laboratory Regensburg, 93055 Germany		
IC Applicant / Manufacturer	Continental Automotive GmbH Siemensstrasse 12 Regensburg 93055 Germany (Federal Republic Of)		
Factory	 Continental Automotive Guadalajara México, S.A. de C.V. Tlajomulco de Zúñiga, Jalisco Camino a la Tijera No. 3 Km 3.5 Carretera Guadalajara-Morelia C.P. 45640 México Continental Automotive France S.A.S. 1 Av. Paul Ourliac 31036 Toulouse Cedex 1 France Continental Automotive Changchun Co., Ltd. Jingyue Branch 5800 Shengtai Street 130000, Changchun, Jilin P.R. China 		
Equipment	Tire Pressure Monitor Sensor		
Model Name	TIS-09DH		
Model Discrepancy	N/A		
Received Date	November 24, 2020		
Date of Test	January 19 ~ 27, 2021		
Periodic operation	 (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation (3) Periodic transmissions at regular predetermined intervals are not permitted. (4) Periodic transmissions (lower field strength): each transmission is not greater than 1 sec and the silent period between transmissions is at least 30 times the duration of the transmission but in no case less than 10 sec. 		
Power Operation	Power from DC lithium battery. (CR2032 Type)		
Operation Frequency	433.92 MHz		
S/W Version	01		
H/W Version	01		
EUT serial #	1		
Domarkı			

Remark:

1. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.

Page: 5 / 35 Rev.: 02

1.2 EUT CHANNEL INFORMATION

Frequency Range	433.92 MHz
Modulation Type	ASK/FSK
Number of Channels	1 channel

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

Frequency range in which device operates	Number of frequencies	Location in frequency range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom

1.3 ANTENNA INFORMATION

Antenna Type	Integral antenna	
Antenna Gain	-22.4 dBi	
Antenna Connector	N/A	

Page: 6 / 35 Rev.: 02

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 0.0014
RF output power, conducted	+/- 1.14
Power density, conducted	+/- 1.40
3M Semi Anechoic Chamber / 30M~200M	+/- 4.12
3M Semi Anechoic Chamber / 200M~1000M	+/- 4.68
3M Semi Anechoic Chamber / 1G~8G	+/- 5.18
3M Semi Anechoic Chamber / 8G~18G	+/- 5.47
3M Semi Anechoic Chamber / 18G~26G	+/- 3.81
3M Semi Anechoic Chamber / 26G~40G	+/- 3.87

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 7 / 35 Rev.: 02

Report No.: T201124W03-RP

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan. (R.O.C.) CABID: TW1309

Test site	Test Engineer	Remark
AC Conduction Room	-	Not applicable, because EUT doesn't connect to AC Main Source direct.
Radiation	Dally Hong	-
RF Conducted	-	Not applicable. The EUT only verify radiation emission test data.

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

3M 966 Chamber Test Site					
Equipment	Manufacturer	Model S/N		Cal Date	Cal Due
Bilog Antenna	Sunol Sciences	JB3	A030105	07/24/2020	07/23/2021
Coaxial Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	02/25/2020	02/24/2021
Coaxial Cable	EMCI	EMC105	190914+327109/4	09/19/2020	09/18/2021
Digital Thermo-Hygro Meter	WISEWIND	1206	D07	01/06/2021	01/05/2022
double Ridged Guide Horn Antenna	ETC	MCTD 1209	DRH13M02003	09/30/2020	09/29/2021
High Pass Filter	SOLVANG TECHNOLOGY INC.	STI15	9923	02/25/2020	02/24/2021
Loop Ant	COM-POWER	AL-130	121051	03/27/2020	03/26/2021
Pre-Amplifier	EMEC	EM330	060609	02/25/2020	02/24/2021
Pre-Amplifier	HP	8449B	3008A00965	02/25/2020	02/24/2021
PSA Series Spectrum Analyzer	Agilent	E4446A	MY46180323	07/24/2020	07/23/2021
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R
Software	e3 6.11-20180413				

Remark: Each piece of equipment is scheduled for calibration once a year.

Page: 8 / 35 Rev.: 02

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

There are no accessories and support equipment be used during the test.

EUT Accessories Equipment						
No. Equipment Brand Model Series No. FCC ID						
	N/A					

Support Equipment					
No.	Equipment	Brand	Model	Series No.	FCC ID
	N/A				

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC 15.231, IC RSS-210, IC RSS-Gen Rules.

Page: 9 / 35 Rev.: 02

2. TEST SUMMARY

FCC Standard Sec.	IC Standard Sec.	Chapter	Test Item	Result
15.203	RSS-GEN Sec. 8.3	1.3	Antenna Requirement	Pass
15.207	RSS-GEN Sec. 8.8	4.1	AC Power-line Conducted Emission	Not applicable
15.231(c)	RSS-210 A.1.3	4.2	Emission Bandwidth	Not applicable
15.231(b)	RSS-210 A.1.4	4.3	Field Strength of Fundamental	Pass
15.209(b)	RSS-GEN Sec. 8.9	4.4	Transmitter Radiated Emission	Pass
15.231(a)(1)	RSS-210 A.1.2	4.5	Operation Restriction	Not applicable

Page: 10 / 35 Rev.: 02

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	433.92 MHz
RF Filed strength	ASK <u>Peak: 78.02 dBuv/m</u> <u>Average : 70.43 dBuv/m</u> FSK <u>Peak: 77.97 dBuv/m</u> <u>Average : 70.38 dBuv/m</u>

Remark: Field strength performed Average level at 3m.

3.2 THE WORST MODE OF MEASUREMENT

Radiated Emission Measurement Above 1G				
Test Condition	Test Condition Band edge, Emission for Unwanted and Fundamental			
Power supply Mode	Mode 1: EUT power by Battery			
Worst Mode	Worst Mode 🛛 🖾 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4			
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 			

Radiated Emission Measurement Below 1G			
Test Condition	Test Condition Radiated Emission Below 1G		
Power supply Mode Mode 1: EUT power by Battery			
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4			

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(X-Plane, Vertical) were recorded in this report

Page: 11 / 35 Rev.: 02

3.3 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

According to FCC 15.231(b), 15.231(e),

(b) In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹Linear interpolations.

(1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

(2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

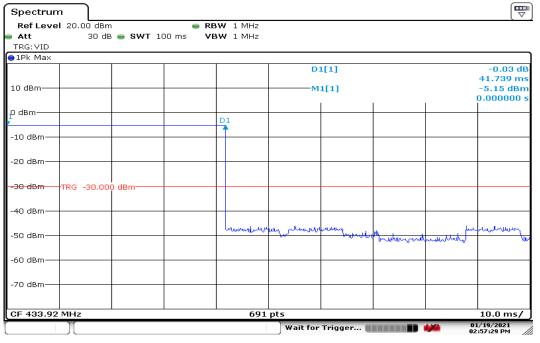
Page: 12 / 35 Rev.: 02

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

¹Linear interpolations.

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.



Page: 13 / 35 Rev.: 02

3.4 EUT DUTY CYCLE

Temperature:	22.6°C	Test date:	January 19, 2021
Humidity:	58% RH	Tested by:	Ray Li

Duty Cycle				
TX ON (ms)	TX All(ms)	Duty Cycle	Duty Factor(dB)	
41.74	100.00	41.74%	<u>-7.59</u>	

Date: 19.JAN.2021 14:57:30

Notes:

- 1. The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by 20 log (Time(on) / [Period or 100 ms whichever is the lesser])
- 2. The EUT transmits for a Time(on) of 41.74 milliseconds.

20 log (Time_(on) / [Period or 100 ms whichever is the lesser]).

20 log (41.74/100) = -7.59dB

Page: 14 / 35 Rev.: 02

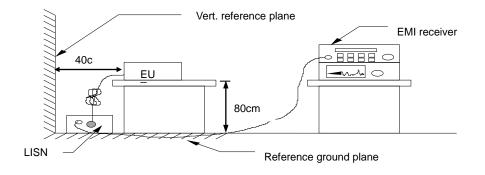
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a), RSS-Gen Sec.8.8,

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	


* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete

4.1.3 Test Setup

4.1.4 Test Result

Not applicable, because EUT doesn't connect to AC Main Source direct.

Page: 15 / 35 Rev.: 02

4.2 EMISSION BANDWIDTH

4.2.1 Test Limit

According to §15.231(c), RSS-210 A.1.3,

Limit

☑ 70 MHz – 900 MHz : Fc * 0.25 %
 ☑ Above 900 MHz : Fc * 0. 5 %

4.2.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.9.2,

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=20KHz, VBW=30KHz, Detector = Peak, Trace mode = Max hold, Sweep = Auto. Measure the maximum width of the emission that is constrained by the frequencies associated with the 20dB Bandwidth.

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. SA set RBW = $1\% \sim 5\%$ OBW, VBW = three times the RBW and Detector = Peak, Trace mode = Max hold, Sweep = Auto. Measure the maximum width of the emission that is constrained by the frequencies associated with the Occupied Bandwidth (99%).

4.2.3 Test Setup

4.2.4 Test Result

Not applicable. The EUT only verify radiation emission test data.

Page: 16 / 35 Rev.: 02

4.3 FIELD STRENGTH OF FUNDAMENTAL

4.3.1 Test Limit

According to §15.231(b)

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of fundamental (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

According to RSS-210 A.1.4

Table A2 — Reduced field strength limits for momentarily operated devices			
Fundamental Frequency (MHz), Excluding Restricted Frequency Bands Specified in RSS-Gen	Field Strength of the Fundamental Emissions (μV/m at 3 m)		
70-130	500		
130-174	500 to 1,500*		
174-260**	1,500		
260-470**	1,500 to 5,000*		
Above 470	5,000		

Note:

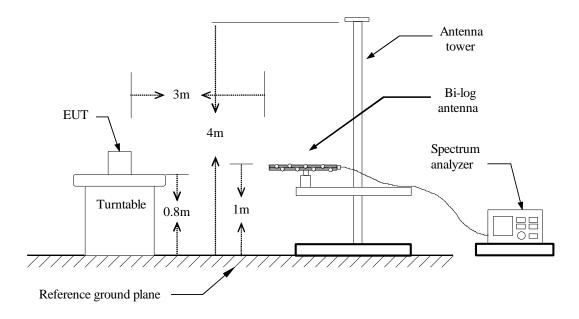
* Linear interpolation with frequency, f, in MHz:

For 130-174 MHz: Field Strength (μ V/m) = (22.73 x f)-2454.55

For 260-470 MHz: Field Strength (μ V/m) = (16.67 x f)-2833.33

**: Frequency bands 225-328.6 MHz and 335.4-399.9 MHz are designated for the exclusive use of the Government of Canada. Manufacturers should be aware of possible harmful interference and degradation of their licence-exempt radio equipment in these frequency bands.

4.3.2 Test Procedure


Test method Refer as ANSI 63.10:2013 clause 4.1.4 and clause 6.5

	4.1.4.2.2: Measurement Peak value.
clause 4.1.4	4.1.4.2.3: Duty cycle ≥ 100%.
	4.1.4.2.4: Measurement Average value.

Page: 17 / 35 Rev.: 02

4.3.3 Test Setup

Page: 18 / 35 Rev.: 02

4.3.4 Test Result

Temperature:	21.4°C	Test date:	January 27, 2021
Humidity:	59% RH	Tested by:	Ray Li

ASK

Field Strength						
Frequency (MHz)	Fundamental (dBuV/m) at 3m	Limit (dBuV/m) at 3m	Margin (dB)	Axis/Pol.	Remark	
433.92	70.43	72.87	-2.44	X/V	AVG	

Remark:

1. Fundamental measured method setting on spectrum, RBW=100 kHz, VBW=100kHz and Detector=Peak.

2. Average result = Peak result + Duty factor = 78.02 dBuV/m - 7.59= 70.43dBuV/m

3. 260MHz ~ 470MHz limit is 16.67 * (Frequency, MHz) – 2833.33

Limit = 16.67 * (433.92 MHz) – 2833.33 = 4400.1164 (uV/m)

dBuv/m = 20 Log(uV/m) = 20 Log (4400.1164 uV/m)= 72.87dBuV/m

FSK

Field Strength						
Frequency (MHz)	Fundamental (dBuV/m) at 3m	Limit (dBuV/m) at 3m	Margin (dB)	Axis/Pol.	Remark	
433.92	70.38	72.87	-2.49	X/V	AVG	

Remark:

1. Fundamental measured method setting on spectrum, RBW=100 kHz, VBW=100kHz and Detector=Peak.

2. Average result = Peak result + Duty factor = 77.97 dBuV/m - 7.59= 70.38dBuV/m

3. 260MHz ~ 470MHz limit is 16.67 * (Frequency, MHz) – 2833.33

Limit = 16.67 * (433.92 MHz) - 2833.33= 4400.1164 (uV/m)

dBuv/m = 20 Log(uV/m) = 20 Log (4400.1164 uV/m)= 72.87dBuV/m

Page: 19 / 35 Rev.: 02

Test Data

ASK

	Test Mode:	4	433.92MHz		np/Hum	21.4(°C)/	59%RH
	Test Item	F	undamental	Tes	Test Date Jan		27, 2021
Α	xis/Polarize	X	(-Plane/Ver.	Test	Engineer	Ray	Li
	Detector	F	Peak & AVG				
110	Level (dBuV/m)						
100							
				1			
80			1				
00			2	1	1		
60				1	1		
40							
20					·		
0	433.72	433.8	433.88	433.96		134.04	434.12
			Frequency	(MHz)			
lo	Frequency	Detector	Spectrum	Factor	Actual	Limit	Margin
	(11)	Mode	Reading Level		FS	@3m	
4	(MHz)	(PK/QP/AV)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
1 2	433.92	Peak	82.66	-4.64	78.02	92.87	-14.85
/	433.92	Average	-	*-7.59	70.43	72.87	-2.44

No.2 Average result = Peak result + Duty factor = 78.02 dBuV/m -7.59= 70.43dBuV/m

Page: 20 / 35 Rev.: 02

	Test Mode:	4	433.92MHz	Terr	np/Hum	21.4(°C)/	59%RH
	Test Item	F	undamental	Tes	st Date	January 2	7, 2021
ŀ	Axis/Polarize	X	-Plane/Hor.	Test	Engineer	Ray	
	Detector	F	Peak & AVG				
110	Level (dBuV/m)						
100							
80)						
60)						
40)						
20)						
0	433.72	433.8	433.88 Frequency	433.96 (MHz)		134.04	434.12
No	Frequency	Detector	Spectrum	Factor	Actual	Limit	Margin
10	(MHz)	Mode (PK/QP/AV)	Reading Level (dBuV)	(dB)	FS (dBuV/m)	@3m (dBuV/m)	(dB)
1	433.92	Peak	82.08	-4.64	77.44	92.87	-15.43
2	433.92	Average	-	*-7.59	69.85	72.87	-3.02

*Note:

No.2 Average result = Peak result + Duty factor = 77.44 dBuV/m -7.59= 69.85 dBuV/m

	Test Mode:	Test Mode: 433.92MHz		Tor	np/Hum	21.4(°C)/ 59%RH	
					•	, ,	
	Test Item Axis/Polarize		-undamental X-Plane/Ver.		st Date	January 2	
/	Detector		Peak & AVG	Test	Engineer	Ray	LI
	Detector						
110	Level (dBuV/m)						
100				, , , , ,			
100				1			
80							
60							
40							
20							
0	433.72	433.8	433.88	433.96	4	134.04	434.12
			Frequency	(MHz)			
No	Frequency	Detector	Spectrum	Factor	Actual	Limit	Margin
	(MHz)	Mode (PK/QP/AV)	Reading Level (dBuV)	(dB)	FS (dBuV/m)	@3m (dBuV/m)	(dB)
1	433.92	Peak	82.61	-4.64	77.97	92.87	-14.90
2	433.92	Average	-	*-7.59	70.38	72.87	-2.49
Note							
0.2	Average res	ult = Peak re	sult + Duty facto	r = 77.97	′dBuV/m –7	59 = 70.38	dBuV/m

	Test Mode:		433.92MHz	Ter	np/Hum	21.4(°C)/	59%RH
	Test Item	F	undamental	Te	st Date	January 2	27, 2021
	Axis/Polarize	>	(-Plane/Hoz.	Test	Engineer	Ray	
	Detector		Peak & AVG				
110	Level (dBuV/m)					1	
100							
80							
60							
40							
20							
0	433.72	433.8	433.88 Frequenc	433.96 y (MHz)	4	134.04	434.12
lo	Frequency (MHz)	Detector Mode (PK/QP/AV)	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
1	433.92	Peak	81.92	-4.64	77.28	92.87	-15.59
2	433.92	Average	_	*-7.59	69.69	72.87	-3.18

*Note:

No.2 Average result = Peak result + Duty factor = 77.28 dBuV/m -7.59= 69.69 dBuV/m

Page: 23 / 35 Rev.: 02

4.4 RADIATION UNWANTED EMISSION

4.4.1 Test Limit

According to §15.231(b) and §15.209, §15.205

Unwanted emissions limit follow the table or the FCC Part 15.209, whichever limit permits higher field strength.

According to RSS-210 A1.4 and RSS-GEN Sec. 8.9

Unwanted emissions shall comply with the general field strength limits specified in RSS-Gen or 10 times below the fundamental emissions field strength limit in table as below, whichever is less stringent.

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of fundamental (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

According to §15.231(b)

¹Linear interpolations.

Below 30MHz

	Field Strength						
Frequency (MHz)	(µV/m)	(dBµV/m)	Measurement Distance (meter)	(dBµV/m)	Measurement Distance (meter)		
0.009 - 0.490	2400/F(kHz)	48.52 – 13.80	300	128.52–104.84	3		
0.490 - 1.705	24000/F(kHz)	33.80 – 22.97	30	73.80– 62.97	3		
1.705 – 30.0	30	29.54	30	69.54	3		

Above 30MHz

Frequency	Field Strength		Measurement Distance
(MHz)	(µV/m)	(dBµV/m)	(meter)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Page: 24 / 35 Rev.: 02

4.4.2 Test Procedure

Test method Refer as ANSI 63.10:2013

Unwanted Emission	 □ clause 4.1.4.2.2: Measurement Peak value. □ clause 4.1.4.2.3: Duty cycle ≥ 100%. □ clause 4.1.4.2.4: Measurement Average value.
-------------------	---

 clause 6.4: below 30 MHz and test distance is 3m. clause 6.5: below 30 MHz -1 GHz and test distance is 3m. clause 6.6: Above 30 MHz and test distance is 3m.

- 1. The EUT is placed on a turntable, which is 0.8m for test below 1GHz and 1.5m for test above 1GHz, above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

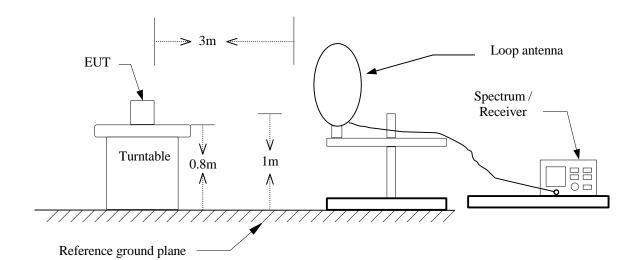
Above 1GHz:

(a)PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO

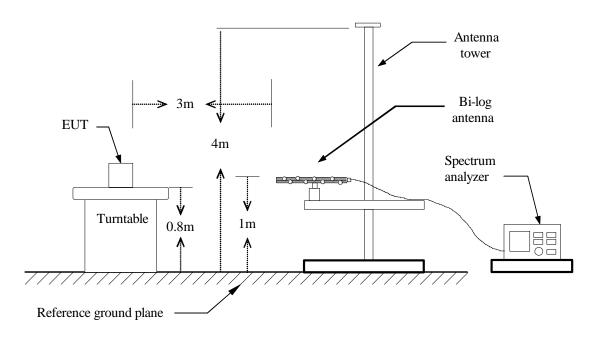
(b)AVERAGE: RBW=1MHz,

7. Repeat above procedures until the measurements for all frequencies are complete.

Remark.

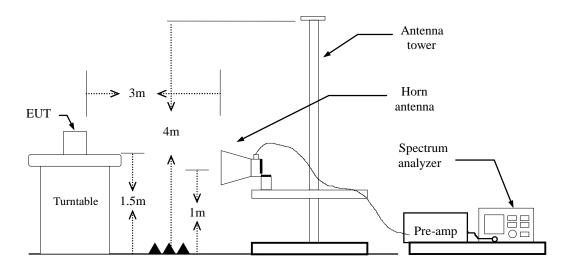

1. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

2. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).



Page: 25 / 35 Rev.: 02

4.4.3 Test Setup <u>9kHz ~ 30MHz</u>



Page: 26 / 35 Rev.: 02

<u>Above 1 GHz</u>

4.4.4 Test Result

Pass.

Page: 27 / 35 Rev.: 02

Test Data

Below 1GHz

Test Mo	de:	ASK_433.92MH	z T	emp/Hum	21.4(°C)/	59%RF		
Test Ite	m	Below 1GHz Test Date January 2		Below 1GHz				27, 2021
Polariz		Vertical	Test Engineer Ra		Ray	Ray Li		
Detecto	or	Peak						
120 Level (dBuV	/m)	i	iiii					
110								
90								
70	- - - - - - - - - - - - - - - - - - -							
50								
					6			
30	2	3			5			
10				 				
0 <mark></mark>	224.	418.	61	2	806.	1000		
30	2271		iency (MHz)	2.		1000		
		-						
Frequency	Detector	Spectrum	Factor	Actual	Limit	Margin		
	Mode	Reading Level	(15)	FS	@3m			
(MHz)	(PK/QP/AV)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
32.91	Peak	25.17	-4.48	20.69	40.00	-19.31		
400.04	Peak	26.29	-9.82	16.47	43.50	-27.03		
196.84			-6.34	19.17	46.00	-26.83		
388.90	Peak	25.51						
388.90 434.49	Peak	33.79	-4.61	29.18	92.88	-63.70		
388.90					92.88 46.00	-63.70 -18.16		

803.09

867.11

Peak

Peak

Page: 28 / 35 Rev.: 02

Test MC	Test Mode: ASK_433.92MHz		z Te	emp/Hum	21.4(°C)/	59%RH
Test Ite	em	Below 1GHz	Т	est Date	January 2	27, 2021
Polariz	ze	Horizontal	Tes	t Engineer	Ray	
Detect	or	Peak		•		
120	//m)					
110						
110						
90						
70					· • • • • • • • • • • •	
50	·					
					6	
30		4				
м		3		i.	i i i	
1	2	i i i				
10	2					
	2 224.	418.	612	2.	806.	1000
10 0 30	2 224.	418.	612 Juency (MHz)	2.	806.	1000
	2 224.	418.		2.	806.	1000
0 <mark></mark> 30		418. Freq	uency (MHz)			
	Detector	418. Freq Spectrum		2. Actual FS	Limit	1000 Margin
0 30 Frequency	Detector Mode	418. Freq Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
0 <mark> </mark> 0	Detector	418. Freq Spectrum	uency (MHz)	Actual	Limit	
0 30 Frequency (MHz)	Detector Mode (PK/QP/AV)	418. Freq Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
030 Frequency (MHz) 32.91	Detector Mode (PK/QP/AV) Peak	418. Freq Spectrum Reading Level (dBuV) 25.46	Factor (dB) -4.48	Actual FS (dBuV/m) 20.98	Limit @3m (dBuV/m) 40.00	Margin (dB) -19.02

1.69

2.48

28.29

32.02

26.60

29.54

46.00

72.86

-17.71

-40.84

867.11

Peak

Page: 29 / 35 Rev.: 02

Test Mo	de:	FSK_433.92MH	z Te	emp/Hum	21.4(°C)/	59%RH
Test Ite	em	Below 1GHz	Т	est Date	January 2	
Polariz		Vertical		st Engineer	Ray Li	
Detect	or	Peak		0		
120 Level (dBuV	/m)					
110						
90						
70						
50						
30	2	3			5	
10						
0 <mark></mark>	224.	418.	61	3	806.	1000
50	224.		uency (MHz)	Ζ,	000.	1000
			uency (Mnz)			
Frequency	Detector	Spectrum	Factor	Actual	Limit	Margin
Frequency	Detector Mode			Actual FS	Limit @3m	Margin
Frequency (MHz)		Spectrum				Margin (dB)
	Mode	Spectrum Reading Level	Factor	FS	@3m	_
(MHz)	Mode (PK/QP/AV)	Spectrum Reading Level (dBuV)	Factor (dB)	FS (dBuV/m)	@3m (dBuV/m)	(dB)
(MHz) 32.91	Mode (PK/QP/AV) Peak	Spectrum Reading Level (dBuV) 25.89	Factor (dB) -4.48	FS (dBuV/m) 21.41	@ 3m (dBuV/m) 40.00	(dB) -18.59
(MHz) 32.91 129.91	Mode (PK/QP/AV) Peak Peak	Spectrum Reading Level (dBuV) 25.89 25.69	Factor (dB) -4.48 -8.99	FS (dBuV/m) 21.41 16.70	@ 3m (dBuV/m) 40.00 43.50	(dB) -18.59 -26.80

2.48

34.43

72.86

-38.43

31.95

817.64

867.11

Peak

Peak

Page: 30 / 35 Rev.: 02

Test Mod	de:	FSK_433.92MH	z Te	emp/Hum	21.4(°C)/	59%RH	
Test Ite	m	Below 1GHz	Т	est Date	January 2	27, 2021	
Polariz	Polarize Horizontal		Tes	t Engineer		Ray Li	
Detecto	or	Peak					
120 Level (dBuV/	m)	iii		i			
110							
90					· +		
70							
50							
30		4			5 6		
2		3					
10							
0 <mark></mark>	224.	418.	612		806.	1000	
50	224.		uency (MHz)		000.	1000	
_							
Frequency	Detector	Spectrum	Factor	Actual	Limit	Margin	
	Mode	Reading Level		FS	@3m		
(MHz)	(PK/QP/AV)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
31.94 124.09	Peak Peak	25.81 25.51	-4.39 -9.06	21.42 16.45	40.00 43.50	-18.58 -27.05	
206 06						26 01	
386.96 434.49	Peak Peak	25.55 30.44	-6.36 -4.61	19.19 25.83	46.00 92.88	-26.81 -67.05	

1.98

2.48

28.22

31.35

46.00

72.86

-17.78

-41.51

26.24

28.87

Page: 31 / 35 Rev.: 02

Above 1GHz

Test Mod	de: /	ASK_433.92MHz	z Te	emp/Hum	21.4(°C)/	59%RF
Test Ite	m	Above 1GHz Vertical		est Date	January 27, 2021 Ray Li	
Polariz	е			st Engineer		
Detecto	or	Peak				
120	/m)					
120	,			1		
110						
90				 		
70						
50	2		5	6 7	8	
1		3 4		Ĩ Í		
30						
10						
0 <mark>1000</mark>	1800.	2600.	340	<u> </u>	4200.	5000
		Frequ	iency (MHz)			
Frequency	Detector	Spectrum	Factor	Actual	Limit	Margir
		Reading Level		FS	@3m	
	Mode	Reading Level		10	@JIII	
(MHz)	Mode (PK/QP/AV)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
(MHz) 1301.76		-	(dB) -6.21			
	(PK/QP/AV)	(dBuV)	. ,	(dBuV/m)	(dBuV/m)	-34.98
1301.76	(PK/QP/AV) Peak	(dBuV) 45.23	-6.21	(dBuV/m) 39.02	(dBuV/m) 74.00	-34.98 -28.39
1301.76 1735.68	(PK/QP/AV) Peak Peak	(dBuV) 45.23 49.92	-6.21 -4.31	(dBuV/m) 39.02 45.61	(dBuV/m) 74.00 74.00	-34.98 -28.39 -36.11
1301.76 1735.68 2169.60	(PK/QP/AV) Peak Peak Peak	(dBuV) 45.23 49.92 38.58	-6.21 -4.31 -0.69	(dBuV/m) 39.02 45.61 37.89	(dBuV/m) 74.00 74.00 74.00	-34.98 -28.39 -36.11 -35.92
1301.76 1735.68 2169.60 2603.52	(PK/QP/AV) Peak Peak Peak Peak	(dBuV) 45.23 49.92 38.58 38.11	-6.21 -4.31 -0.69 -0.03	(dBuV/m) 39.02 45.61 37.89 38.08	(dBuV/m) 74.00 74.00 74.00 74.00	-34.98 -28.39 -36.11 -35.92 -26.71
1301.76 1735.68 2169.60 2603.52 3037.44	(PK/QP/AV) Peak Peak Peak Peak Peak	(dBuV) 45.23 49.92 38.58 38.11 46.81	-6.21 -4.31 -0.69 -0.03 0.48	(dBuV/m) 39.02 45.61 37.89 38.08 47.29	(dBuV/m) 74.00 74.00 74.00 74.00 74.00	(dB) -34.98 -28.39 -36.11 -35.92 -26.71 -30.87 -31.65

Page: 32 / 35 Rev.: 02

1001110	de:	ASK_433.92MH	z To	emp/Hum	21.4(°C)/	59%RH	
Test Ite	m	Above 1GHz		Test Date January 27, 20		27, 2021	
Polariz	e	Horizontal	Tes	st Engineer		ay Li	
Detecto	or	Peak					
120 Level (dBuV	//m)						
110							
90			· · · · · · · · · · · · · · · · · · ·				
50							
70							
50	2	1 1 			8		
1		3 4	5	6 7			
30							
						I	
10							
	1800.	2600.	34(00.	4200.	5000	
10 0 1000	1800.		344 Juency (MHz)	00.	4200.	5000	
	1800.			00.	4200.	5000	
0 1000		Freq	uency (MHz)	1			
	1800. Detector Mode	Freq		Actual	Limit	5000 Margin	
0 1000	Detector	Freq Spectrum Reading Level	uency (MHz)	1			
0 1000 Frequency	Detector Mode	Freq	Factor	Actual FS	Limit @3m	Margin	
0 1000 Frequency (MHz)	Detector Mode (PK/QP/AV)	Freq Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)	
0 1000 Frequency (MHz) 1301.76	Detector Mode (PK/QP/AV) Peak	Freq Spectrum Reading Level (dBuV) 43.84	Factor (dB) -6.21	Actual FS (dBuV/m) 37.63	Limit @3m (dBuV/m) 74.00	Margin (dB) -36.37	
01000 Frequency (MHz) 1301.76 1735.68	Detector Mode (PK/QP/AV) Peak Peak	Freq Spectrum Reading Level (dBuV) 43.84 54.62	Factor (dB) -6.21 -4.31	Actual FS (dBuV/m) 37.63 50.31	Limit @3m (dBuV/m) 74.00 74.00	Margin (dB) -36.37 -23.69	
01000 Frequency (MHz) 1301.76 1735.68 2169.60	Detector Mode (PK/QP/AV) Peak Peak Peak	Freq Spectrum Reading Level (dBuV) 43.84 54.62 39.08	Factor (dB) -6.21 -4.31 -0.69	Actual FS (dBuV/m) 37.63 50.31 38.39	Limit @3m (dBuV/m) 74.00 74.00 74.00	Margin (dB) -36.37 -23.69 -35.61	
0 1000 Frequency (MHz) 1301.76 1735.68 2169.60 2603.52	Detector Mode (PK/QP/AV) Peak Peak Peak Peak	Freq Spectrum Reading Level (dBuV) 43.84 54.62 39.08 40.86	Factor (dB) -6.21 -4.31 -0.69 -0.03	Actual FS (dBuV/m) 37.63 50.31 38.39 40.83	Limit @3m (dBuV/m) 74.00 74.00 74.00 74.00	Margin (dB) -36.37 -23.69 -35.61 -33.17	
0 1000 Frequency (MHz) 1301.76 1735.68 2169.60 2603.52 3037.44	Detector Mode (PK/QP/AV) Peak Peak Peak Peak Peak Peak	Freq Spectrum Reading Level (dBuV) 43.84 54.62 39.08 40.86 42.30	Factor (dB) -6.21 -4.31 -0.69 -0.03 0.48	Actual FS (dBuV/m) 37.63 50.31 38.39 40.83 42.78	Limit @3m (dBuV/m) 74.00 74.00 74.00 74.00 74.00	Margin (dB) -36.37 -23.69 -35.61 -33.17 -31.22	

Page: 33 / 35 Rev.: 02

Test Mo			FSK_433.92MHz Temp/Hum		21.4(°C)/	59%RH	
Test Ite			January 2	January 27, 2021			
Polariz	ze 🛛	Vertical	Tes	st Engineer	Ray	ay Li	
Detect	or	Peak					
120	/m)						
110							
90	4						
70							
			E		8		
50	2	3 4		6 7			
20							
30							
10		<u> </u>					
10							
0 ^L 1000	1800.	2600. Freg	34(uency (MHz)	00.	4200.	5000	
			,				
Frequency	Detector	Spectrum	Factor	Actual	Limit	Margin	
	Mode	Reading Level		FS	@3m		
(MHz)	(PK/QP/AV)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1301.76	Peak	45.99	-6.21	39.78	74.00	-34.22	
1735.68	Peak	50.22	-4.31	45.91	74.00	-28.09	
2169.60	Peak	40.52	-0.69	39.83	74.00	-34.17	
2603.52	Peak	40.26	-0.03	40.23	74.00	-33.77	
3037.44	Peak	45.97	0.48	46.45	74.00	-27.55	
	Peak	42.19	2.38	44.57	74.00	-29.43	
3471.36	Реак	42.19	2.00	44.57	74.00	20.10	
3471.36 3905.28	Peak	42.19 36.71	4.51	41.22	74.00	-32.78	

Page: 34 / 35 Rev.: 02

Test Mo	de: I	SK_433.92MH	z 1	ſemp/Hum	21.4(°C)/	59%RH										
Test Ite	m	Above 1GHz Test Date		Above 1GHz Test Date January 27, 2		Above 1GHz Test Date January 27		Above 1GHz Test Date January 27.		Above 1GHz Test Date January 27, 202		Above 1GHz		Test Date Ja		27, 2021
Polariz	е	Horizontal	Te	st Engineer	Ray											
Detecto	or	Peak														
120 Level (dBuV	m)															
110																
110																
90				· · · · · · · · · · · · · · · · · · ·												
70		i i 		· · · · · · · · · · · · · · · · · · ·	· +											
50	2		5	6 7												
1		3 4	Ĭ	7												
30																
10				· · · · · · · · · · · · · · · · · · ·	· +											
0 <mark>1000</mark>	1800.	2600.	34	: : 400.	4200.	5000										
		Freq	uency (MHz)													
Frequency	Detector	Spectrum	Factor	Actual	Limit	Margin										
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Mode	Reading Level		FS	@3m	J										
(MHz)	(PK/QP/AV)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)										
1301.76	Peak	43.46	-6.21	37.25	74.00	-36.75										
1735.68	Peak	55.59	-4.31	51.28	74.00	-22.72										
2169.60	Peak	40.62	-0.69	39.93	74.00	-34.07										
2603.52	Peak	40.84	-0.03	40.81	74.00	-33.19										
3037.44	Peak	42.09	0.48	42.57	74.00	-31.43										
3471.36	Peak	42.39	2.38	44.77	74.00	-29.23										
3905.28	Peak	36.87	4.51	41.38	74.00	-32.62										
0000.20																

Page: 35 / 35 Rev.: 02

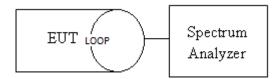
4.5 OPERATION RESTRICTION

4.5.1 Test Limit

15.231(a)(1),

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

RSS-210 A1.2,


However, devices that are designed for limited use for thepurpose of initial programming, reprogramming or installing, and not forregular operations, may operate for up to 5 seconds, provided such devices are used only occasionally in connection with each unit being programmed or installed.

4.5.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 7.4

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=1MHz, VBW=1MHz, Detector = Peak, Trace mode = Max hold, Sweep = 1s. Measure

4.5.3 Test Setup

4.5.4 Test Result

Not applicable. The EUT only verify radiation emission test data.

- End of Test Report -