MPE calculation 24 GHz Blind-Spot Radar Sensor

Result

The EUT will only be used with a separation of 20 centimetres or greater between the antenna and the body of the user. The MPE calculation for this exposure is shown below. **The peak radiated output power (EIRP) is calculated as follows:**

EIRP = -35.9 dBm/1MHz	Highest peak power density measured with a 1MHz resolution bandwidth
EIRP _{max} = -7.9 dBm	EIRP over the hole used bandwidth

 $EIRP_{max} = EIRP + 10log (BW / 1 MHz)$ $EIRP_{max} = -35.9 dBm + 10log (637 MHz / 1 MHz)$ $EIRP_{max} = -35.9 dBm + 28 dB = -7.9 dBm = 0.162 mW$

Power density at the specific separation:

$S = PG/(4R^2\pi)$	Where,
	S = Maximum power density (mW/cm2)
$S = (0.162) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.032 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna (20cm = limit for MPE)
The maximum normizable concerns $(\Lambda (DE))$ for the concern normalization is $1 \text{ mW}/\text{cm}^2$	

The maximum permissible exposure (MPE) for the general population is 1 mW/cm^2 . The power density at 20cm does not exceed the 1 mW/cm^2 limit.

Estimated safe separation:

$R = \sqrt{(PG/4\pi)}$	Where,
	P = Power input to the antenna (mW)
$R = \sqrt{(0.162/4\pi)}$	G = Numeric power gain of the antenna)
R = 0.11 cm	R = Distance to the center of the radiation of the antenna (20cm = limit for MPE)