Customer:

Continental Automotive GmbH

Siemenstrasse 12 93055 Regensburg Germany

Tel.: +49 941 790-0

RF test report 160637-AU01+W01

Industry Canada

Industrie Canada

Continental Automotive GmbH Transceiver

NCMF1_01

The test result refers exclusively to the tested model. This test report may not be copied or published in a part without the written authorization of the accreditation agency and/or

EMV TESTHAUS GmbH

Akkreditierungsstelle D-PL-12155-01-00

EMV TESTHAUS GmbH

Gustav-Hertz-Straße 35 94315 Straubing Tel.: +49 9421 56868-0

Fax: +49 9421 56868-100 Email: info@emv-testhaus.com

Accreditation:

FCC facility registration number: 221458
Test Firm Type "2.948 listed": Valid until 2017-04-22
Test Firm Type "accredited": Valid until 2017-06-09
MRA US-EU, FCC designation number: DE0010
BnetzA-CAB-02/21-02/04 Valid until 2018-11-27

Industry Canada test site numbers with registration expiry date: 3472A-1, expiring 2018-11-09 3472A-2, expiring 2018-11-12

Test Laboratory:

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

The technical accuracy is guaranteed through the quality management of the EMV **TESTHAUS** GmbH

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

Table of contents

1	Test regulations	5
2	Summary of test results	6
3	Equipment under Test (EUT)	7
4	Radiated emission measurement (<1 GHz)	10
5	Radiated emission measurement (>1 GHz)	21
6	Bandwidths	26
7	Equipment calibration status	30
8	Measurement uncertainty	31
9	Revision History	32

List of pictures

Picture 1: Test setup for radiated emission measurement (< 30 MHz)	13
Picture 2: Test setup for radiated emission measurement (< 1 GHz)	13
Picture 3: Radiated emission 9 kHz – 30 MHz @ 3m distance	15
Picture 4: Restricted band of operation, QP @ 3m distance	17
Picture 5: Restricted band of operation, AV @ 3m distance	18
Picture 6: Radiated emission 30 MHz - 1000MHz @ 3m distance	20
Picture 7: Test setup for radiated emission measurement (> 1 GHz)	24
Picture 8: Radiated emission measurement (>1 GHz)	25
Picture 9: Occupied bandwidth (99 %)	28
Picture 10: -20 dB emission bandwidth	29
List of tables	
Table 1: Equipment calibration status	30
Table 2: Measurement uncertainty	31

1 Test regulations

47 CFR Part 2: 10-2015 Code of Federal Regulations Part 2 (Frequency allocation and

radio treaty matters; General rules and regulations) of the Federal

Communication Commission (FCC)

47 CFR Part 15: 10-2015 Code of Federal Regulations Part 15 (Radio Frequency Devices)

of the Federal Communication Commission (FCC)

ANSI C63.10:2013-06 American National Standard of Procedures for Compliance Testing

of Unlicensed Wireless Devices

ICES-003 Spectrum Management and Telecommunications

Issue 6, January 2016 Interference-Causing Equipment Standard

Information Technology Equipment (ITE) - Limits and methods of

measurement

RSS-Gen Spectrum Management and Telecommunications

Issue 4, November 2014 Radio Standards Specification

General Requirements and Information for the Certification of

Radiocommunication Equimpment

RSS-102 Spectrum Management and Telecommunications

Issue 5, March 2015 Radio Standards Specification

Radio Frequency (RF) Exposure Compliance of

Radiocommunication Apparatus (All Frequency Bands)

RSS-210 Spectrum Management and Telecommunications

Issue 9, August 2016 Radio Standards Specification

Licence-exempt Radio Apparatus (All Frequency Bands):

Category I Equipment

2 Summary of test results

Standard Test result

47 CFR Part 15, section 15.209, 15.111

Passed

RSS-210 Issue 9 Section 4.3 (with appropriate references to RSS-Gen Issue 4)

Passed

Straubing, November 16, 2016

Martin Müller Test engineer

EMV TESTHAUS GmbH

Rainer Heller

Struck Heller

Head of EMC/Radio department

EMV **TESTHAUS** GmbH

3 Equipment under Test (EUT)

Product type: Transceiver

Model Name: NCMF1_01

Applicant: Continental Automotive GmbH

Manufacturer: Continental Automotive GmbH

Serial number: #3

FCC ID: KR5NCMF101
IC certification number: 7812D-NCMF101

Application frequency band: n/a

Frequency range: 125 kHz (TX) / 433,92 MHz (RX)
Operating frequency: 125 kHz (TX) / 433,92 MHz (RX)

21.9 MHz

Number of RF-channels: 1
Modulation: ASK

Highest frequency generated or used in the device or on which the device operates or

tunes:

Antenna type(s): PCB antenna

☐ detachable ☐ not detachable

Power supply: Battery powered

nominal: 12.8 VDC minimal: 9.0 VDC maximal: 16.0 VDC

Temperature range: -40°C to +85°C

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

3.1 Photo documentation

For external photos of the EUT see annex B, for internal ones see annex C. For photos taken during testing including EUT positions see annex A.

3.2 Short description of the EUT

Transceiver for vehicles.

3.3 Operation mode

EUT was set to pulsed wave (125 kHz).

According to customer information there is no possibility to set another mode of operation. The 433,92 MHz receiver was continuously activated.

The EUT was tested in 3 orthogonal positions. These are documented in annex A.

3.4 Configuration

The following peripheral devices and interface cables were connected during the tests:

Device	Model:	Serial or inventory no.
Transceiver	NCMF1_01	#3
Door antenna 1	REF SI581 03 113 00	
Door antenna 2	REF SI581 03 113 00	
Kazashi	350µH/7 Ohms	
Middle antenna	28E6 5RA0A	
Bumper antenna	285E4 JK60A or 285E5 JK60A	
TEST BOX	Test box NewCFM1	
DC power supply (120 V / 60 Hz <-> 9.0 V DC)	Statron 3231.1	E00017
AC power supply (230 V / 50 Hz <-> 120 V / 60 Hz)	Chroma 61605	ASQ00000305

3.5 Used cables

Port	Classification Cable type		Cable length	
Fort	Classification	Cable type	used	maximum
DC power	dc power	Unshielded	1.0 m	

4 Radiated emission measurement (<1 GHz)

according to 47 CFR Part 15, section 15.205(a), 15.209(a), 15.111(b) and

RSS-210, section 4.3 with RSS-Gen, sections 8.10 ,8.9 and 7.1.2

4.1 Test Location

- Scan with peak detector in 3 m CDC.
- ☑ Final CISPR measurement with quasi peak detector on 3 m open area test site.

Description	Manufacturer	Inventory No.	
CDC	Albatross Projects	E00026	
Open area test site (OATS)	EMV TESTHAUS GmbH	E00354	

4.2 Test instruments

	Description	Manufacturer	Inventory No.
	ESU 26 (AC)	Rohde & Schwarz	W00002
\boxtimes	ESCI (CDC & OATS)	Rohde & Schwarz	E00001
	ESR7 (SAC)	Rohde & Schwarz	E00739
\boxtimes	VULB 9163 (OATS)	Schwarzbeck	E00013
\boxtimes	VULB 9160 (CDC)	Schwarzbeck	E00011
	VULB 9162-041 (SAC)	Schwarzbeck	E00643
\boxtimes	HFH2-Z2 (CDC & OATS)	Rohde & Schwarz	E00060
\boxtimes	Cable set CDC	Huber + Suhner	E00459, E00446
	Cable set AC 3 m	Huber + Suhner	W00095, E00432, E00307
	Cable set OATS 3 m	Huber + Suhner	E00453, E00456, E00458
	Cable set SAC 3 m	Huber + Suhner	E00804, E00806, E00807

4.3 Limits

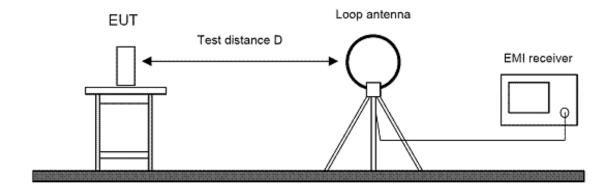
The field strength of any emissions (including spurious emissions) falling into restricted bands as specified in 15.205(a) shall not exceed the general radiated emission limits as specified in 15.209.

Frequency [MHz]	Field strength Fs [µV/m]	Field strength [dBµV/m]	Measurement distance d [m]
0.009 - 0.490	266.6 – 4.9	48.5 – 13.8	300
0.490 – 1.705	48.98 – 14.08	33.8 – 22.97	30
1.705 – 30.0	30	29.54	30
30 – 88	100	40	3
88 – 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

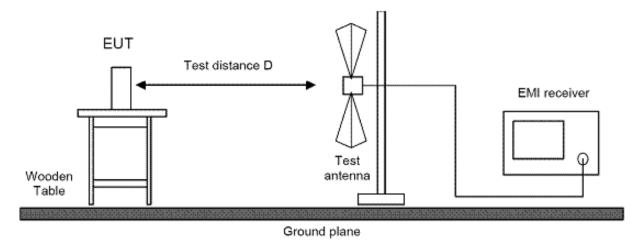
Note:

Limits for 3 m test distance are calculated according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point".

According to 15.35(b) on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. When average radiated emission measurements are specified, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions of 20 dB above the maximum permitted average emission limit.



4.4 Test procedure


- 1. EUT was configured according to ANSI C63.10. It was placed on the top of the turntable 0.8 meter above ground. The receiving antenna was placed 3 meters from the turntable. The test setup was placed inside a compact diagnostic chamber.
- 2. EUT and all peripherals were powered on.
- 3. The broadband antenna was set to vertical polarization.
- 4. The EMI receiver performed a scan from 30 MHz to 1000 MHz with peak detector peak and measurement bandwidth set to 120 kHz.
- 5. The turn table was rotated to 6 different positions (360° / 6) and the antenna polarization was changed to horizontal.
- 6. Test procedure at step 4 and 5 was repeated.
- 7. The test setup was then placed in an OATS at 3 m distance and all peak values over or with less margin to the limit than 6dB were marked and re-measured with a quasi-peak detector.
- 8. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 9. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization. The highest value was recorded.
- 10. For emissions below 30 MHz measurements were done using a loop antenna. Prescan was performed with peak detector and final measurements with quasi-peak except for the frequency bands 9 to 90 kHz and 110 to 490 k Hz where average detector applies. Antenna height was not changed during this test. Appropriate CISPR bandwidths of 200 Hz for frequencies up to 150 kHz and 9 or 10 kHz for frequencies above were used.

4.5 Test setup

Picture 1: Test setup for radiated emission measurement (< 30 MHz)

Picture 2: Test setup for radiated emission measurement (< 1 GHz)

4.6 Test deviation

There is no deviation from the standards referred to.

4.7 Test results

Temperature:	21°C	Humidity:	49%
Tested by:	Martin Müller	Test date:	2016-09-26

Radiated Emission Measurement 9 kHz - 30 MHz

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

 $d_{\text{near field}} = 47.77 / f_{\text{MHz}}, \text{ or}$

 f_{MHz} = 47.77 / $d_{near field}$

The frequency f_{MHz} at which the near field distance is equal to the limit and/or test distance is important for selection of the right formula for determining the recalculation factor:

 f_{MHz} (300 m) ≈ 0.159 MHz f_{MHz} (30 m) ≈ 1.592 MHz f_{MHz} (3 m) ≈ 15.923 MHz

For 9 kHz \leq f \leq 159 kHz and 490 kHz < f \leq 1.592 MHz:

Recalculation factor = -40 log(d_{limit} / d_{measure})

For 159 kHz < $f \le 490$ kHz and 1.592 MHz < $f \le 15.923$ MHz:

Recalculation factor = -40 $\log(d_{\text{near field}} / d_{\text{measure}})$ - 20 $\log(d_{\text{limit}} / d_{\text{near field}})$

For f > 15.923 MHz:

Recalculation factor = -20 log(d_{limit} / d_{near field})

The limits in the graphics and value lists are derived from the general radiated emission limits as specified in 15.209 using the recalculation factor as described above.

EMV TESTHAUS GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Frequency range	Step	IF	Detector		Measurer	Preamplifier	
	size	Bandwidth	Prescan	Final scan	Prescan	Final scan	
9 kHz – 90 kHz	80 Hz	200 Hz	PK	AV	1 ms	1 s	off
90 kHz – 110 kHz	80 Hz	200 Hz	PK	QPK	1 ms	1 s	off
110 kHz – 150 kHz	80 Hz	200 Hz	PK	AV	1 ms	1 s	off
150 kHz – 490 kHz	4 kHz	9 kHz	PK	AV	1 ms	1 s	off
490 kHz – 30 MHz	4 kHz	9 kHz	PK	QPK	1 ms	1 s	off

The following picture shows the worst-case-emissions for the spurious emissions at EUT-position 3, antenna in line.

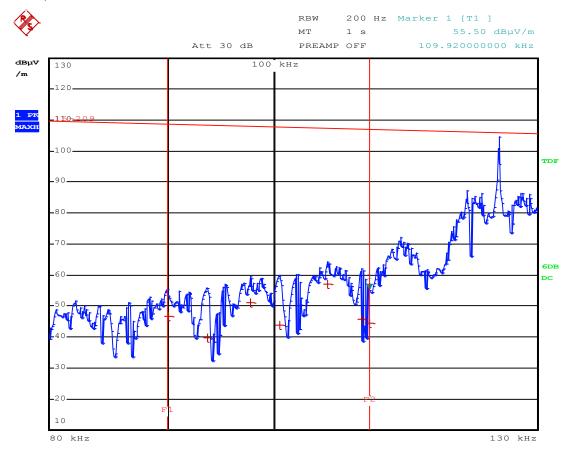
Picture 3: Radiated emission 9 kHz - 30 MHz @ 3m distance

Frequency [kHz]	Measured value [dBµV/m]	Detector	Recalculation factor [dB]	Field strength [dBµV/m]	Limit [dBµV/m]	Margin	Result
125.080	98.02	AV	-80.0	18.02	25.66	7.64	Pass
125.080	104.89	PK	-80.0	24.89	45.66	20.77	Pass

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

 $d_{\text{near field}} = 47.77 / f_{\text{MHz}}$

Recalculation factor = -40 $\log(d_{limit} / d_{measure})$


f _{MHz} [kHz]	d _{near field} [m]	d _{measure} [m]	d _{limit} [m]	Recalculation factor [dB]	
125.080	381.916	3.0	300.0	-80.0	

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

Restricted band of operation from 0.090 MHz to 0.110 MHz

The following pictures show the worst-case-emissions for the spurious emissions at EUT-position 3, antenna in line.

Picture 4: Restricted band of operation, QP @ 3m distance

Frequency [kHz]	Measured value [dBµV/m]	Detector	Recalculation factor [dB]	Field strength [dBµV/m]	Limit [dBµV/m]	Margin	Result
90.00	46.59	QP	-80.0	-33.41	28.52	61.93	Pass
93.52	39.87	QP	-80.0	-40.13	28.19	68.32	Pass
97.68	51.20	QP	-80.0	-28.80	27.81	56.61	Pass
100.56	43.89	QP	-80.0	-36.11	27.56	63.67	Pass
105.44	57.10	QP	-80.0	-22.90	27.14	50.04	Pass
109.12	45.64	QP	-80.0	-34.36	26.85	61.21	Pass
109.92	44.59	QP	-80.0	-35.41	26.78	62.19	Pass

80 kHz

200 Hz Marker 1 [T1] RBW

MT 1 s 104.59 dBµV/m

Att 30 dB

PREAMP OFF

125.040000000 kHz

130 kHz

Picture 5: Restricted band of operation, AV @ 3m distance

Frequency [kHz]	Measured value [dBµV/m]	Detector	Recalculation factor [dB]	Field strength [dBµV/m]	Limit [dBµV/m]	Margin	Result
125.04	97.07	AV	-80.0	17.07	25.66	8.59	Pass

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

Continental Automotive GmbH Transceiver NCMF1_01

160637-AU01+W01

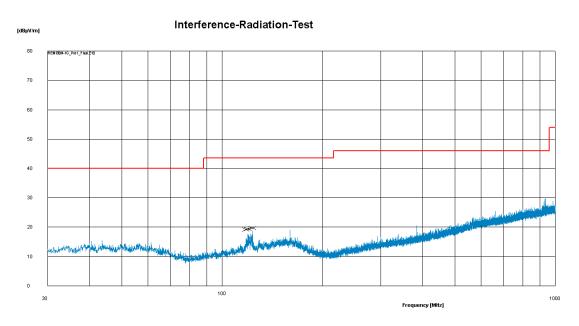
Page 18 of 32

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

 $d_{\text{near field}} = 47.77 / f_{\text{MHz}}$

Recalculation factor = $-40 \log(d_{limit} / d_{measure})$

f _{MHz} [MHz]	d _{near field} [m]	d _{measure} [m]	d _{limit} [m]	Recalculation factor [dB]
90.00	530.78	3.0	300.0	-80.0
93.52	510.80	3.0	300.0	-80.0
97.68	489.05	3.0	300.0	-80.0
100.56	475.04	3.0	300.0	-80.0
105.44	453.05	3.0	300.0	-80.0
109.12	437.77	3.0	300.0	-80.0
109.92	434.59	3.0	300.0	-80.0
125.04	382.04	3.0	300.0	-80.0



EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

Radiated Emission Measurement 30 MHz - 1000 MHz

Frequency	Polari-	Step	IF Band-	Band- Detector		Measurement Time		Pre-
range	sation	size	width	Prescan	Final scan	Prescan	Final scan	amplifier
30 MHz – 1 GHz	H/V	60 kHz	120 kHz	PK	QPK	1 ms	1 s	20 dB

The following pictures show the worst-case-emissions at EUT-position 1.

f [MHz]	E _{final} [dBV/m]	Limit [dBµV/m]	Height [cm]	TT [°]	Polarisation	Result
118.08	19.13	43.52	100	58.8	V	Pass
119.64	19.35	43.52	100	68.7	V	Pass
123.42	19.70	43.52	100	87.3	V	Pass

Picture 6: Radiated emission 30 MHz - 1000MHz @ 3m distance

5 Radiated emission measurement (>1 GHz)

according to 47 CFR Part 15, section 15.209(a), RSS-210, section 4.3 with RSS-Gen, section 8.9 and 7.1.2

5.1 Test Location

- Scan with peak and average detector in 3 m semi anechoic chamber.
- ☑ Final measurement with peak and average detector in 3 m semi anechoic chamber.

Description	Manufacturer	Inventory No.	
Semi anechoic chamber (SAC)	Albatross Projects GmbH	E00716	

5.2 Test instruments

	Description	Manufacturer	Inventory No.
	ESCI (OATS)	Rohde & Schwarz	E00552
	ESU 26 (AC)	Rohde & Schwarz	W00002
	ESCI (CDC)	Rohde & Schwarz	E00001
\boxtimes	ESR7 (SAC)	Rohde & Schwarz	E00739
	VULB 9163 (OATS)	Schwarzbeck	E00013
	VULB 9160 (CDC)	Schwarzbeck	E00011
	VULB 9162-041 (SAC)	Schwarzbeck	E00643
	HFH2-Z2 (CDC & OATS)	Rohde & Schwarz	E00060
\boxtimes	BBHA 9120D	Schwarzbeck	E00053
\boxtimes	AMF-5D-00501800	Miteq	W00089
	Cable set CDC	Huber + Suhner	E00459, E00446
	Cable set AC 3 m	Huber + Suhner	W00095, E00432, E00307
	Cable set OATS 3 m	Huber + Suhner	E00453, E00456, E00458
\boxtimes	Cable set SAC 3 m	Huber + Suhner	E00804, E00806, E00807

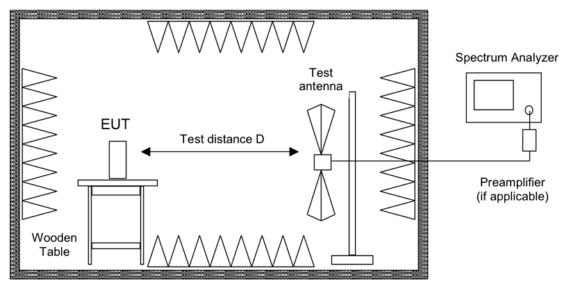
Note: Although the highest frequency generated or used in the device or on which the device operates or tunes is less than 108 MHz (see clause 3) radiated emission test above 1 GHz was performed and is therefore documented in this test report.

5.3 Limits

The field strength of any emissions including spurious emissions falling into restricted bands as specified in 15.205(a) shall not exceed the general radiated emission limits as specified in 15.209.

Frequency [MHz]	Field strength Fs [μV/m]	Field strength [dBµV/m]	Measurement distance d [m]
0.009 - 0.490	266.6 – 4.9	48.5 – 13.8	300
0.490 - 1.705	48.98 – 14.08	33.8 – 22.97	30
1.705 – 30.0	30	29.54	30
30 – 88	100	40	3
88 – 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

According to 15.35(b) on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. When average radiated emission measurements are specified, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions of 20 dB above the maximum permitted average emission limit.


5.4 Test procedure

- 1. The test setup is placed inside a semi anechoic chamber with floor absorbers between receiving antenna and EUT.
- 2. EUT and peripherals are configured according to ANSI C63.10. EUT is placed on the top of the turntable 0.8 meter above ground. EUT and all peripherals are powered on.
- 3. Exploratory radiated emissions measurements are performed by moving the receiving antenna over all sides of the EUT at a closer distance while observing the display of the test receiver to find the emissions to be re-tested during final radiated emission measurements. As a result a list of frequencies containing position of EUT as well as polarization of receiving antenna.
- 4. For final radiated emission measurements the receiving antenna is placed 3 meters from the turntable.
- 5. The receiving antenna is set to vertical polarization.
- 6. The EMI receiver performs a scan from 1000 MHz up to the frequency as specified in 15.33(a) for intentional radiator part and 15.33(b) for unintentional radiator part of EUT. The detector is set to Peak and Average with a measurement bandwidth of 1 MHz.
- 7. The turn table is rotated to 12 different positions $(360^{\circ} / 12 = 30^{\circ})$ and the antenna is moved between 1 m and 4 m height. The tilt of the antenna is changed automatically by changing the height of the antenna.
- 8. Change polarization to horizontal and repeat step 6 and 7.
- After recording prescan values in horizontal and vertical polarization data reduction is performed using a margin of 10 dB to the appropriate limit.
 The critical frequencies are re-measured using a Peak and Average detector with a bandwidth set to 1 MHz. At every frequency the polarization with the emission closest to the limit is selected for final test.
- 10. During Final measurement the turntable is rotated by +/ 30° to determine the position of the highest radiation around the maximum emission found during the prescan.
- 11. The height of the broadband receiving antenna is varied between 1 m and 4 m above ground, the slope of the antenna is changed automatically by variation of the antenna height to find the maximum emissions field strength of both horizontal and vertical polarization. The highest value is recorded.

During pre-tests EUT-position 2 was investigated as worst-case.

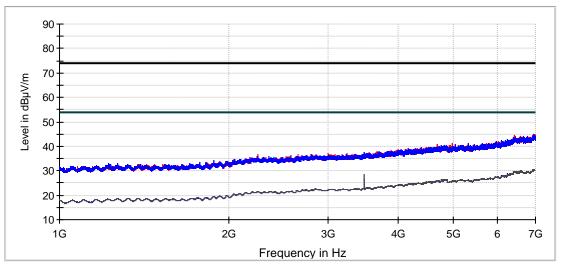
5.5 Test setup

Fully or semi anechoic room

Picture 7: Test setup for radiated emission measurement (> 1 GHz)

5.6 Test deviation

There is no deviation from the standards referred to.



5.7 Test results

Temperature:	21°C	Humidity:	51%
Tested by:	Martin Müller	Test date:	2016-10-04

Frequency	Polari-	Step	IF Band-	IF Band- Detector		Measurement Time		Pre-
range	sation	size	width	Prescan	Final scan	Prescan	Final scan	amplifier
1 GHz - 7 GHz	H/V	250 kHz	1 MHz	PK / AV	PK / AV	1 ms	1 s	20 dB

The following pictures show the worst-case-emissions at EUT-position 1.

Preview Result 2H-AVG
Preview Result 1H-PK+
Preview Result 2V-AVG
Preview Result 1V-PK+
47 CFR §15.209 Radiated emission 3m Class B PK
47 CFR §15.209 Radiated emission 3m Class B AV
Final_Result PK+
Final_Result AVG

Picture 8: Radiated emission measurement (>1 GHz)

6 Bandwidths

according to CFR 47 Part 2, section 2.202(a), and RSS-Gen, section 6.6

6.1 Test Location

See clause 4.1 on page 10.

6.2 Test instruments

See clause 4.2 on page 10.

6.3 Limits

The bandwidths are recorded only. There are no limits specified in CFR 47 Part 15, section 15.209, and RSS-210, section 4.3

6.4 Test setup

See clause 4.5 on page 13.

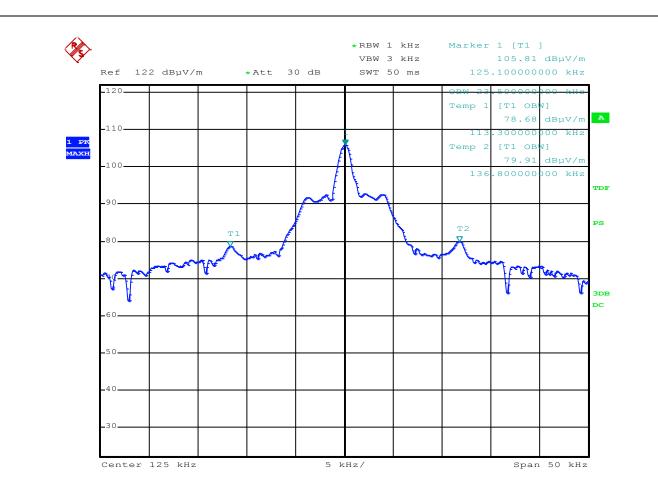
6.5 Test deviation

There is no deviation from the standards referred to.

6.6 Test results

Temperature:	22°C	Humidity:	49%
Tested by:	Martin Müller	Test date:	2016-09-26

Occupied bandwidth (99 %)

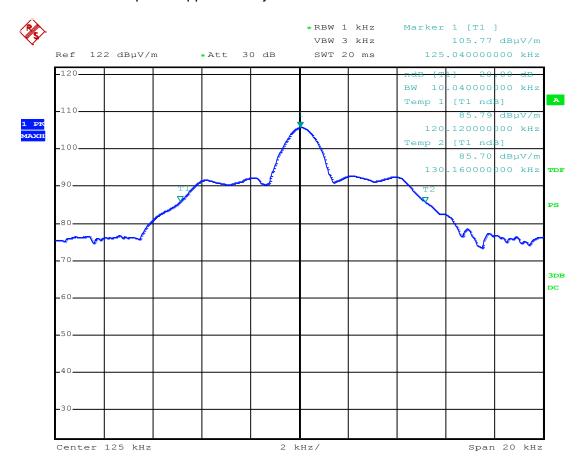

Test procedure

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured. The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual.

The trace data points are recovered and directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth. For this purpose the appropriate measurement function of the spectrum analyzer is used.

Picture 9: Occupied bandwidth (99 %)


Measured occupied bandwidth (99 %): 23.500 kHz

-20 dB emission bandwidth

Test procedure

Where indicated, the -20 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 20 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

Picture 10: -20 dB emission bandwidth

Measured -20 dB emission bandwidth: 10.040 kHz

7 Equipment calibration status

Description	Modell number	Serial number	Inventory number(s)	Last calibration	Next calibration
Test receiver	ESCI	100013	E00001	2016-02	2018-02
Test receiver	ESR7	101059	E00739	2016-02	2018-02
Broadband antenna	VULB 9160	9160-3050	E00011	2014-09 (see n	2017-09 ote 1)
Broadband antenna	VULB 9163	9163-114	E00013	2015-09	2017-09
Broadband horn antenna	BBHA 9120D	9120D-593	E00053	2014-03	2017-03
Loop antenna	HFH2-Z2	871398/0050	E00060	2016-09	2018-09
Preamplifier	AMF-5D- 00501800	1319793	W00089	2015-05	2017-05
Compact diagnostic chamber (CDC)	VK041.0174	D62128-A502-A69- 2-0006	E00026	N,	/A
Open area test site (OATS)	OATS		E00354	2015-10	2017-10
Semi-anechoic chamber (SAC)	P26726	C62128-A520- A643-x-0006	E00716	2015-03	2017-03
Cable set CDC	Cables no. 37 and 38		E00459 E00460	2015-05	2017-05
Cable set OATS 3 m	Cables no. 19, 34 and 36		E00453 E00456 E00458	2015-11	2017-11
Cable set SAC 3 m	Cables no. 57, 58 and 59		E00453 E00455 E00458	2015-10	2017-10

Table 1: Equipment calibration status

Note 1: Used for prescans only.

Expiry date of measurement facility registration by Note 2:

- FCC (registration number 221458): 2017-04

- Industry Canada (test site numbers 3472A-1 and 3472A-2): 2018-11

8 Measurement uncertainty

Description	Max. deviation	k
Conducted emission AMN (9kHz to 30 MHz)	± 4.0 dB	2
Radiated emission open field (30 MHz to 1 GHz)	± 4.5 dB	2
Radiated emission absorber chamber (> 1000 MHz)	± 5.4 dB	2

Table 2: Measurement uncertainty

The uncertainty stated is the expanded uncertainty obtained by multiplying the standard uncertainty by the coverage factor k. For a confidence level of 95 % the coverage factor k is 2.

9 Revision History

Date	Description	Person	Revision
2016-11-16	First edition	M. Müller	0

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany