



Page: 1 / 31 Rev.: 02

# FCC RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

| Test Standard               | FCC Part 15.231                                                                                                                                              |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trade name                  | Continental                                                                                                                                                  |
| Product name                | Radio Frequency Transmitter                                                                                                                                  |
| Model No.                   | MTXN1                                                                                                                                                        |
| Operation Freq.             | TX: 433.92MHz, RX: 125kHz                                                                                                                                    |
| Test Result                 | Pass                                                                                                                                                         |
| Statements of<br>Conformity | Determination of compliance is based on the results of<br>the compliance measurement,<br>not taking into account measurement instrumentation<br>uncertainty. |

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of SGS Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Komil Ismi

Kevin Tsai Deputy Manager

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部分複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms\_and\_conditions.htm and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms\_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Compliance Certification Service Inc. 程智科技股份有限公司 No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan / 新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2298-1882 www.sgs.tw www.ccsrf.com



Page: 2 / 31 Rev.: 02

# **Revision History**

| Rev. | Issue Date       | Revisions                        | Effect<br>page | Revised By |
|------|------------------|----------------------------------|----------------|------------|
| 00   | January 17, 2020 | Initial Issue                    | ALL            | May Lin    |
| 01   | January 21, 2020 | See the following Note Rev. (01) | P.5-6          | May Lin    |
| 02   | January 21, 2020 | See the following Note Rev. (02) | P.5            | May Lin    |

Rev (01):

1. Revised the section 1.1.

Rev (02):

1. Revised the section 1.1.



Page: 3 / 31 Rev.: 02

## Table of contents

| 1.        | GENERAL INFORMATION                               |
|-----------|---------------------------------------------------|
| 1.1       | EUT INFORMATION                                   |
| 1.2       | EUT CHANNEL INFORMATION 6                         |
| 1.3       | ANTENNA INFORMATION                               |
| 1.4       | MEASUREMENT UNCERTAINTY7                          |
| 1.5       | FACILITIES AND TEST LOCATION                      |
| 1.6       | INSTRUMENT CALIBRATION                            |
| 1.7       | SUPPORT AND EUT ACCESSORIES EQUIPMENT9            |
| 1.8       | TEST METHODOLOGY AND APPLIED STANDARDS9           |
| 2.        | TEST SUMMERY 10                                   |
| 3.        | DESCRIPTION OF TEST MODES 11                      |
| 3.1       | THE WORST MODE OF OPERATING CONDITION 11          |
| 3.2       | THE WORST MODE OF MEASUREMENT11                   |
| 3.3       | FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS 12 |
| 3.4       | EUT DUTY CYCLE 14                                 |
| 4.        | TEST RESULT                                       |
| 4.1       | AC POWER LINE CONDUCTED EMISSION 15               |
| 4.2       | EMISSION BANDWIDTH 16                             |
| 4.3       | FIELD STRENGTH OF FUNDAMENTAL                     |
| 4.4       | RADIATION UNWANTED EMISSION                       |
| 4.5<br>AP | OPERATION RESTRICTION                             |



## 1. GENERAL INFORMATION

## **1.1 EUT INFORMATION**

|                     | Continental Automotive GmbH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Applicant           | Siemensstrasse 12 SV C TS RBG EMC-Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                     | Regensburg, 93055 Germany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                     | Continental Automotive GmbH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Manufacturer        | Siemensstrasse 12 SV C TS RBG EMC-Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                     | Regensburg, 93055 Germany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                     | Continental Automotive Changchun Co., Ltd.Jingyue Branch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Factory             | No. 5800 Shengtai StreetJingyue Zone, Changchun City,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                     | Jilin Province, P. R. China 130000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Equipment           | Radio Frequency Transmitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Model Name          | MTXN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Model Discrepancy   | Please see the note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Received Date       | October 14, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Date of Test        | October 16 ~ 21, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Periodic operation  | <ul> <li>(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.</li> <li>(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation</li> <li>(3) Periodic transmissions at regular predetermined intervals are not permitted.</li> <li>(4) Periodic transmissions (lower field strength): each transmission is not greater than 1 sec and the silent period between transmissions is at least 30 times the duration of the transmission but in no case less</li> </ul> |  |  |
|                     | than 10 sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Power Operation     | Power from Battery: CR2025 x1 (Lithium: 3V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Operation Frequency | TX: 433.92MHz, RX: 125kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| S/W Version         | MTXN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| H/W Version         | MTXN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |



Page: 5 / 31 Rev.: 02

#### Note:

1. All the specification and layout are identical except they come with different external appearance, as shown below:

| Product reference | Product variant       | S/N    |
|-------------------|-----------------------|--------|
| S180145200        | Lock/Unlock           | T20891 |
| S180145300        | Lock/Unlock/PBD       | T3000  |
| S180145400        | Lock/Unlock/Panic     | T30438 |
| S180145500        | Lock/Unlock/PBD/Panic | T40742 |



Page: 6 / 31 Rev.: 02

## **1.2 EUT CHANNEL INFORMATION**

| Frequency Range | TX: 433.92MHz, RX: 125kHz |
|-----------------|---------------------------|
| Modulation Type | FSK                       |

#### Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

| Number of frequencies to be tested                                                                 |   |                                              |  |  |
|----------------------------------------------------------------------------------------------------|---|----------------------------------------------|--|--|
| Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation |   |                                              |  |  |
| 1 MHz or less                                                                                      | 1 | Middle                                       |  |  |
| 1 MHz to 10 MHz                                                                                    | 2 | 1 near top and 1 near bottom                 |  |  |
| More than 10 MHz                                                                                   | 3 | 1 near top, 1 near middle, and 1 near bottom |  |  |

## **1.3 ANTENNA INFORMATION**

| Antenna Type      | internal, 3D (dimensional) loop antenna<br>(Model: 434MTXN1) |  |
|-------------------|--------------------------------------------------------------|--|
| Antenna Gain      | -17 dBi                                                      |  |
| Antenna Connector | N/A                                                          |  |



Page: 7 / 31 Rev.: 02

## **1.4 MEASUREMENT UNCERTAINTY**

| PARAMETER                             | UNCERTAINTY |
|---------------------------------------|-------------|
| AC Powerline Conducted Emission       | +/- 1.2575  |
| Emission bandwidth, 20dB bandwidth    | +/- 0.0014  |
| RF output power, conducted            | +/- 1.14    |
| Power density, conducted              | +/- 1.40    |
| 3M Semi Anechoic Chamber / 30M~200M   | +/- 4.12    |
| 3M Semi Anechoic Chamber / 200M~1000M | +/- 4.68    |
| 3M Semi Anechoic Chamber / 1G~8G      | +/- 5.18    |
| 3M Semi Anechoic Chamber / 8G~18G     | +/- 5.47    |
| 3M Semi Anechoic Chamber / 18G~26G    | +/- 3.81    |
| 3M Semi Anechoic Chamber / 26G~40G    | +/- 3.87    |

#### Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of *k*=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.



Page: 8 / 31 Rev.: 02

## **1.5 FACILITIES AND TEST LOCATION**

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

| Test site          | Test Engineer | Remark                                                                   |  |  |
|--------------------|---------------|--------------------------------------------------------------------------|--|--|
| AC Conduction Room | -             | Not applicable, because EUT doesn't<br>connect to AC Main Source direct. |  |  |
| Radiation          | Dally Hong    | -                                                                        |  |  |
| RF Conducted       | KW Huang      | -                                                                        |  |  |

**Remark:** The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

## **1.6 INSTRUMENT CALIBRATION**

| RF Conducted Test Site |                                            |        |        |            |            |  |
|------------------------|--------------------------------------------|--------|--------|------------|------------|--|
| Equipment              | ment Manufacturer Model S/N Cal Date Cal D |        |        |            |            |  |
| Coaxial Cable          | Woken                                      | WC12   | CC003  | 06/28/2019 | 06/27/2020 |  |
| Signal Analyzer        | R&S                                        | FSV 40 | 101073 | 09/25/2019 | 09/24/2020 |  |
| Software               | N/A                                        |        |        |            |            |  |

| Fully Chamber Test Site        |                  |                 |            |            |            |  |
|--------------------------------|------------------|-----------------|------------|------------|------------|--|
| Equipment                      | Manufacturer     | Model           | S/N        | Cal Date   | Cal Due    |  |
| Bilog Antenna                  | Sunol Sciences   | JB1             | A052609    | 03/06/2019 | 03/05/2020 |  |
| Loop Ant                       | COM-POWER        | AL-130          | 121051     | 03/22/2019 | 03/21/2020 |  |
| Cable                          | HUBER SUHNER     | SUCOFLEX 104PEA | 23452      | 06/27/2019 | 06/26/2020 |  |
| Cable                          | HUBER SUHNER     | SUCOFLEX 104PEA | 33960      | 06/27/2019 | 06/26/2020 |  |
| Digital Thermo-<br>Hygro Meter | WISEWIND         | 1110            | D06        | 01/30/2019 | 01/29/2020 |  |
| Horn Antenna                   | SCHWARZBECK      | BBHA 9120D      | 779        | 03/09/2019 | 03/08/2020 |  |
| Pre-Amplifier                  | Anritsu          | MH648A          | M89145     | 06/27/2019 | 06/26/2020 |  |
| Pre-Amplifier                  | EMEC             | EM01G26G        | 060570     | 06/27/2019 | 06/26/2020 |  |
| Signal Analyzer                | Agilent          | N9010A          | MY52220817 | 03/20/2019 | 03/19/2020 |  |
| Antenna Tower                  | CCS              | CC-A-1F         | N/A        | N.C.R      | N.C.R      |  |
| Controller                     | CCS              | CC-C-1F         | N/A        | N.C.R      | N.C.R      |  |
| Turn Table                     | CCS              | CC-T-1F         | N/A        | N.C.R      | N.C.R      |  |
| Software                       | e3 6.11-20180413 |                 |            |            |            |  |

Remark:

1. Each piece of equipment is scheduled for calibration once a year.

2. N.C.R. = No Calibration Required.



Page: 9 / 31 Rev.: 02

## **1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT**

There are no accessories and support equipment be used during the test.

|                                            | EUT Accessories Equipment |  |  |  |  |  |  |  |  |
|--------------------------------------------|---------------------------|--|--|--|--|--|--|--|--|
| No. Equipment Brand Model Series No. FCC I |                           |  |  |  |  |  |  |  |  |
|                                            | N/A                       |  |  |  |  |  |  |  |  |

| Support Equipment |                                             |  |  |  |  |  |  |  |
|-------------------|---------------------------------------------|--|--|--|--|--|--|--|
| No.               | No. Equipment Brand Model Series No. FCC ID |  |  |  |  |  |  |  |
|                   | N/A                                         |  |  |  |  |  |  |  |

## **1.8 TEST METHODOLOGY AND APPLIED STANDARDS**

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC 15.231.



Page: 10 / 31 Rev.: 02

Report No.: T191014W01-RP

## 2. TEST SUMMERY

| Standard Sec. | Chapter | Test Item                        | Result         |
|---------------|---------|----------------------------------|----------------|
| 15.203        | 1.3     | Antenna Requirement              | Pass           |
| 15.207        | 4.1     | AC Power-line Conducted Emission | Not applicable |
| 15.231(c)     | 4.2     | Emission Bandwidth               | Pass           |
| 15.231(b)     | 4.3     | Fundamental Emission             | Pass           |
| 15.209(b)     | 4.4     | Transmitter Radiated Emission    | Pass           |
| 15.231(a)(1)  | 4.5     | Operation Restriction            | Pass           |



Page: 11 / 31 Rev.: 02

## 3. DESCRIPTION OF TEST MODES

## 3.1 THE WORST MODE OF OPERATING CONDITION

| Operation mode    | TX: 433.92MHz, RX: 125kHz                                  |
|-------------------|------------------------------------------------------------|
| RF Field strength | <u>Peak: 77.44 dBuv/m</u><br><u>Average : 58.44 dBuv/m</u> |

Remark: Field strength performed Average level at 3m.

## **3.2 THE WORST MODE OF MEASUREMENT**

| Radiated Emission Measurement Above 1G                 |                                                                                                                                                                                                                      |  |  |  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Condition                                         | Test Condition Band edge, Emission for Unwanted and Fundamental                                                                                                                                                      |  |  |  |  |
| Power supply Mode Mode 1: EUT power by Battery (DC 3V) |                                                                                                                                                                                                                      |  |  |  |  |
| Worst Mode   Mode 1 Mode 2 Mode 3 Mode 4               |                                                                                                                                                                                                                      |  |  |  |  |
| Worst Position                                         | <ul> <li>Placed in fixed position.</li> <li>Placed in fixed position at X-Plane (E2-Plane)</li> <li>Placed in fixed position at Y-Plane (E1-Plane)</li> <li>Placed in fixed position at Z-Plane (H-Plane)</li> </ul> |  |  |  |  |

| Radiated Emission Measurement Below 1G                                 |                                                        |  |  |  |  |
|------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| Test Condition                                                         | Test Condition Radiated Emission Below 1G              |  |  |  |  |
| Power supply Mode                                                      | Power supply Mode Mode 1: EUT power by Battery (DC 3V) |  |  |  |  |
| Worst Mode         Mode 1         Mode 2         Mode 3         Mode 4 |                                                        |  |  |  |  |

Remark:

1. The worst mode was record in this test report.

2. The EUT pre-scanned in three axis ,X,Y,  $\dot{Z}$  and two polarity, Horizontal and Vertical for radiated measurement. The worst case (X-Plane) were recorded in this report.



Page: 12 / 31 Rev.: 02

## 3.3 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

According to FCC 15.231(b), 15.231(e),

(b) In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

| Fundamental frequency<br>(MHz) | Field strength of<br>fundamental<br>(microvolts/meter) | Field strength of spurious<br>emissions<br>(microvolts/meter) |
|--------------------------------|--------------------------------------------------------|---------------------------------------------------------------|
| 40.66-40.70                    | 2,250                                                  | 225                                                           |
| 70-130                         | 1,250                                                  | 125                                                           |
| 130-174                        | <sup>1</sup> 1,250 to 3,750                            | <sup>1</sup> 125 to 375                                       |
| 174-260                        | 3,750                                                  | 375                                                           |
| 260-470                        | <sup>1</sup> 3,750 to 12,500                           | <sup>1</sup> 375 to 1,250                                     |
| Above 470                      | 12,500                                                 | 1,250                                                         |

<sup>1</sup>Linear interpolations.

(1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

(2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.



Page: 13 / 31 Rev.: 02

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following:

| Fundamental frequency<br>(MHz) | Field strength of<br>fundamental<br>(microvolts/meter) | Field strength of spurious<br>emissions<br>(microvolts/meter) |
|--------------------------------|--------------------------------------------------------|---------------------------------------------------------------|
| 40.66-40.70                    | 1,000                                                  | 100                                                           |
| 70-130                         | 500                                                    | 50                                                            |
| 130-174                        | 500 to 1,500 <sup>1</sup>                              | 50 to 150 <sup>1</sup>                                        |
| 174-260                        | 1,500                                                  | 150                                                           |
| 260-470                        | 1,500 to 5,000 <sup>1</sup>                            | 150 to 500 <sup>1</sup>                                       |
| Above 470                      | 5,000                                                  | 500                                                           |

<sup>1</sup>Linear interpolations.

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.



Page: 14 / 31 Rev.: 02

## 3.4 EUT DUTY CYCLE

#### <u>433MHz - 434MHz</u>

| Duty Cycle |            |                |                 |  |  |  |  |  |
|------------|------------|----------------|-----------------|--|--|--|--|--|
| TX ON (ms) | TX All(ms) | Duty Cycle (%) | Duty Factor(dB) |  |  |  |  |  |
| 9.57       | 85.22      | 11.22%         | -19.00          |  |  |  |  |  |
|            |            |                |                 |  |  |  |  |  |

| Spect            | rum     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
|------------------|---------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|---------|---------|---------------------------------------|--------------------|------------------|------------|------------------------|
| Ref Le           | evel    | -10.00 c               | 1Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 😑 R  | BW 1 MHz  |         |         |                                       |                    |                  |            |                        |
| 🗕 Att            |         | 0                      | i dB 🥌 SWT 200 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - V  | BW 1 MHz  |         |         |                                       |                    |                  |            |                        |
| TRG: VI          | D       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
| 😑 1Pk Vi         | ew      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
|                  |         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         | D       | 2[1]                                  |                    |                  |            | 1.72 dB                |
| -20 dBm          |         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            | 85.217 ms              |
| -20 4011         | '       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         | M       | 1[1]                                  |                    |                  |            | -81.69 dBm             |
| -30 dBm          | n       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            | 84.638 ms              |
|                  |         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
| -40 dBm          | η       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
|                  |         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
| -50 dBm          |         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
|                  |         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
| -60 dBm          | דן דו   | RG -60.0               | )00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |           |         |         |                                       |                    |                  |            |                        |
|                  |         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
| -70 dBm          | ו—ר     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
| 00               |         | 1. K.                  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | M1 D1     |         |         |                                       |                    |                  | , D2       |                        |
| -80 a <b>b</b> w | 200-9-0 | 0 <del>0,0,-</del> -04 | Sada and a second a second of the second of | with | collin    | 10-Q-Q- |         | a a a a a a a a a a a a a a a a a a a | <del>30000</del> 4 | an a strange and | providence | Propose and have       |
| -00 dBm          |         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
| -50 abii         | ·       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
| -100 dB          |         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
| 100 00           |         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
|                  |         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           | L_      |         |                                       |                    |                  |            |                        |
| CF 433           | 92 M    | IHZ                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 691       | pts     |         |                                       |                    |                  |            | 20.0 ms/               |
| Marker           |         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         |         |                                       |                    |                  |            |                        |
| Туре             | Ref     | Trc                    | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _    | Y-value   |         | Func    | tion                                  |                    | Fund             | tion Resul | t                      |
| M1               |         | 1                      | 84.638 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ;    | -81.69 dB | m       |         |                                       |                    |                  |            |                        |
| D1               | M1      | 1                      | 9.565 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ;    | 2.88 c    | 18      |         |                                       |                    |                  |            |                        |
|                  | INIT    |                        | 85.217 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,    | 1.72 0    | 1B      |         |                                       |                    |                  |            |                        |
|                  |         | Л                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           |         | Wait fo | r Trigg                               | er (               |                  | 4444       | 16.10.2019<br>10:01:39 |

Date: 16.0CT.2019 10:01:39

#### Notes:

- 1. The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by 20 log (Time<sub>(on)</sub> / [Period or 100 ms whichever is the lesser])
- 2. The EUT transmits for a Time(on) of 9.565 milliseconds.

20 log (Time<sub>(on)</sub> / [Period or 100 ms whichever is the lesser]).

20 log (9.565/85.217) = -19.00dB



Page: 15 / 31 Rev.: 02

## 4. TEST RESULT

## 4.1 AC POWER LINE CONDUCTED EMISSION

## 4.1.1 Test Limit

According to §15.207(a),

| Frequency Range | Limits(dBµV) |           |  |  |
|-----------------|--------------|-----------|--|--|
| (MHz)           | Quasi-peak   | Average   |  |  |
| 0.15 to 0.50    | 66 to 56*    | 56 to 46* |  |  |
| 0.50 to 5       | 56           | 46        |  |  |
| 5 to 30         | 60           | 50        |  |  |

\* Decreases with the logarithm of the frequency.

## 4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete

## 4.1.3 Test Setup



# 4.1.4 Test Result



Page: 16 / 31 Rev.: 02

## **4.2 EMISSION BANDWIDTH**

## 4.2.1 Test Limit

According to §15.231(c),

Limit

☑ 70 MHz – 900 MHz : Fc \* 0.25 %
 ☑ Above 900 MHz : Fc \* 0. 5 %

## 4.2.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.9.2,

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=20KHz, VBW=30KHz, Detector = Peak, Trace mode = Max hold, Sweep = Auto. Measure the maximum width of the emission that is constrained by the frequencies associated with the 20dB Bandwidth.

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. SA set RBW =  $1\% \sim 5\%$  OBW, VBW = three times the RBW and Detector = Peak, Trace mode = Max hold, Sweep = Auto. Measure the maximum width of the emission that is constrained by the frequencies associated with the Occupied Bandwidth (99%).

## 4.2.3 Test Setup



## 4.2.4 Test Result

| Spectrum Bandwidth                                                                                                           |        |           |          |           |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----------|-----------|--|--|--|--|
| Frequency<br>(MHz)20dB Bandwidth<br>(KHz)20dB Bandwidth<br>Limits (MHz)99% Occupied BW<br>(KHz)99% Bandwidth<br>Limits (MHz) |        |           |          |           |  |  |  |  |
| 433.92                                                                                                                       | 204.10 | 469.77264 | 201.1577 | 469.77264 |  |  |  |  |



## Test Data

#### 20dB Bandwidth



Date: 16.0CT.2019 10:42:06

#### 99% Occupied BW



Date: 16.0CT.2019 10:44:05

Page: 17 / 31 Rev.: 02



Page: 18 / 31 Rev.: 02

## 4.3 FIELD STRENGTH OF FUNDAMENTAL

## 4.3.1 Test Limit

According to §15.231(b)

| Fundamental frequency (MHz) | Field strength of fundamental<br>(microvolts/meter) | Field strength of fundamental<br>(microvolts/meter) |  |
|-----------------------------|-----------------------------------------------------|-----------------------------------------------------|--|
| 40.66-40.70                 | 2,250                                               | 225                                                 |  |
| 70-130                      | 1,250                                               | 125                                                 |  |
| 130-174                     | <sup>1</sup> 1,250 to 3,750                         | <sup>1</sup> 125 to 375                             |  |
| 174-260                     | 3,750                                               | 375                                                 |  |
| 260-470                     | <sup>1</sup> 3,750 to 12,500                        | <sup>1</sup> 375 to 1,250                           |  |
| Above 470                   | 12,500                                              | 1,250                                               |  |

\* Linear interpolation with frequency, f, in MHz:

For 130-174 MHz: Field Strength ( $\mu$ V/m) = (56.82 × f)-6136 For 260-470 MHz: Field Strength ( $\mu$ V/m) = (41.67 × f)-7083

## 4.3.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 4.1.4 and clause 6.5

|              | A.1.4.2.2: Measurement Peak value.    |
|--------------|---------------------------------------|
| clause 4.1.4 | ☐ 4.1.4.2.3: Duty cycle ≥ 100%.       |
|              | A.1.4.2.4: Measurement Average value. |



Page: 19 / 31 Rev.: 02

## 4.3.3 Test Setup





Page: 20 / 31 Rev.: 02

## 4.3.4 Test Result

| Field Strength     |                               |                         |                |           |        |
|--------------------|-------------------------------|-------------------------|----------------|-----------|--------|
| Frequency<br>(MHz) | Fundamental<br>(dBuV/m) at 3m | Limit<br>(dBuV/m) at 3m | Margin<br>(dB) | Axis/Pol. | Remark |
| 433.92             | 58.44                         | 80.80                   | -5.89          | X/H       | AVG    |

Remark:

1. Fundamental measured method setting on spectrum, RBW=100 kHz, VBW=100kHz and Detector=Peak.

2. Average result = Peak result + Duty factor = 77.44 dBuV/m - 19.00= 58.44dBuV/m

3. 260MHz ~ 470MHz limit is 41.67 \* (Frequency, MHz) – 7083

Limit = 41.67 \* (433.92 MHz) - 7083 =10998.4464 (uV/m)

dBuv/m = 20 Log (uV/m) = 20 Log (10998.4464 uV/m) = 80.82 dBuV/m



Page: 21 / 31 Rev.: 02

## Test Data





Page: 22 / 31 Rev.: 02

## 4.4 RADIATION UNWANTED EMISSION

## 4.4.1 Test Limit

According to §15.231(b) and §15.209, §15.205

Unwanted emissions limit follow the table or the FCC Part 15.209, whichever limit permits higher field strength.

#### According to §15.231(b)

| Fundamental frequency (MHz) | Field strength of fundamental<br>(microvolts/meter) | Field strength of fundamental<br>(microvolts/meter) |
|-----------------------------|-----------------------------------------------------|-----------------------------------------------------|
| 40.66-40.70                 | 2,250                                               | 225                                                 |
| 70-130                      | 1,250                                               | 125                                                 |
| 130-174                     | <sup>1</sup> 1,250 to 3,750                         | <sup>1</sup> 125 to 375                             |
| 174-260                     | 3,750                                               | 375                                                 |
| 260-470                     | <sup>1</sup> 3,750 to 12,500                        | <sup>1</sup> 375 to 1,250                           |
| Above 470                   | 12,500                                              | 1,250                                               |

<sup>1</sup>Linear interpolations.

#### Below 30MHz

| _                  | Field Strength |               |                                    |               |                                    |  |
|--------------------|----------------|---------------|------------------------------------|---------------|------------------------------------|--|
| Frequency<br>(MHz) | (µV/m)         | (dBµV/m)      | Measurement<br>Distance<br>(meter) | (dBµV/m)      | Measurement<br>Distance<br>(meter) |  |
| 0.009 - 0.490      | 2400/F(kHz)    | 48.52 – 13.80 | 300                                | 128.52–104.84 | 3                                  |  |
| 0.490 - 1.705      | 24000/F(kHz)   | 33.80 - 22.97 | 30                                 | 73.80– 62.97  | 3                                  |  |
| 1.705 - 30.0       | 30             | 29.54         | 30                                 | 69.54         | 3                                  |  |

#### Above 30MHz

| Frequency | Field  | d Strength | Measurement Distance |
|-----------|--------|------------|----------------------|
| (MHz)     | (µV/m) | (dBµV/m)   | (meter)              |
| 30-88     | 100    | 40.0       | 3                    |
| 88-216    | 150    | 43.5       | 3                    |
| 216-960   | 200    | 46.0       | 3                    |
| Above 960 | 500    | 54.0       | 3                    |



Page: 23 / 31 Rev.: 02

## 4.4.2 Test Procedure

Test method Refer as ANSI 63.10:2013

| ⊠ Unwanted Emission | <ul> <li>Clause 4.1.4.2.2: Measurement Peak value.</li> <li>Clause 4.1.4.2.3: Duty cycle ≥ 100%.</li> <li>Clause 4.1.4.2.4: Measurement Average value.</li> </ul> |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Radiated Emission | <ul> <li>➢ clause 6.4: below 30 MHz and test distance is 3m.</li> <li>➢ clause 6.5: below 30 MHz -1 GHz and test distance is 3m.</li> <li>➢ clause 6.6: Above 30 MHz and test distance is 3m.</li> </ul> |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

- 1. The EUT is placed on a turntable, which is 0.8m for test below 1GHz and 1.5m for test above 1GHz, above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

(a)PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO

(b)AVERAGE: RBW=1MHz,

7. Repeat above procedures until the measurements for all frequencies are complete.

#### Remark.

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
 No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).



Page: 24 / 31 Rev.: 02

## 4.4.3 Test Setup <u>9kHz ~ 30MHz</u>









Page: 25 / 31 Rev.: 02

## <u>Above 1 GHz</u>



## 4.4.4 Test Result

<u>Pass.</u>



Page: 26 / 31 Rev.: 02

## Test Data

#### Below 1GHz

| Test Mo            | de:                          | TX-433.92MHz                        |             | Temp/     | Hum                    | 25.9(°C)/                | 50%RH          |
|--------------------|------------------------------|-------------------------------------|-------------|-----------|------------------------|--------------------------|----------------|
| Test Ite           | m                            | Below 1GHz                          |             | Test Date |                        | 2019/10/21               |                |
| Polariz            | e                            | Vertical                            |             | Test En   | gineer                 | Dally I                  | Hong           |
| Detecto            | or                           | Peak                                |             |           |                        |                          |                |
| 110<br>100<br>100  | /m)                          |                                     |             |           |                        |                          |                |
| 80                 |                              |                                     |             |           |                        |                          |                |
| 60                 |                              |                                     |             |           |                        |                          |                |
| 40                 | <b>/</b>                     |                                     | 3           | 4         |                        | 6<br>5<br>1              | 7              |
| 20                 | 2                            |                                     |             |           |                        |                          |                |
| 30                 | 224.                         | 418.<br>Freq                        | juency (MHz | 612.<br>) |                        | 806.                     | 1000           |
| Frequency<br>(MHz) | Detector<br>Mode<br>PK/QP/AV | Spectrum<br>Reading Level<br>(dBuV) | Facto       | or A      | Actual<br>FS<br>BuV/m) | Limit<br>@3m<br>(dBuV/m) | Margin<br>(dB) |
| 120.21             | Peak                         | 32.72                               | -8.8        | 3 2       | 23.84                  | 43.50                    | -19.66         |
| 269.59             | Peak                         | 27.85                               | -8.58       | 3         | 19.27                  | 46.00                    | -26.73         |
| 492.69             | Peak                         | 26.84                               | -2.97       | 7 2       | 23.87                  | 46.00                    | -22.13         |
| 638.19             | Peak                         | 26.76                               | -0.3        | 7 2       | 26.39                  | 46.00                    | -19.61         |
| 801.15             | Peak                         | 26.42                               | 1.72        | 2 2       | 28.14                  | 46.00                    | -17.86         |
| 867.84             | Peak                         | 31.18                               | 2.92        | 2 (       | 34.10                  | 80.82                    | -46.72         |
| 975.75             | Peak                         | 26.49                               | 5.54        | + :       | 32.03                  | 54.00                    | -21.97         |
|                    |                              |                                     |             |           |                        |                          |                |



|                        |                              |                                     |                    |                          | 1                        |                |
|------------------------|------------------------------|-------------------------------------|--------------------|--------------------------|--------------------------|----------------|
| Test Mo                | de:                          | TX-433.92MHz                        | Te                 | emp/Hum                  | 25.9(°C)/                | 50%RH          |
| Test Ite               | m                            | Below 1GHz                          | T                  | est Date                 | 2019/                    | 10/21          |
| Polariz                | e                            | Horizontal                          | Tes                | t Engineer               | Dally I                  | Hong           |
| Detect                 | or                           | Peak                                |                    |                          |                          |                |
| 110 Level (dBuV<br>100 | /m)                          |                                     |                    | 4 5                      | 6                        | 7              |
|                        |                              |                                     |                    |                          |                          |                |
| 0                      | 224.                         | 418.<br>Freq                        | 612<br>uency (MHz) | 2.                       | 806.                     | 1000           |
| Frequency<br>(MHz)     | Detector<br>Mode<br>PK/QP/AV | Spectrum<br>Reading Level<br>(dBuV) | Factor<br>(dB)     | Actual<br>FS<br>(dBuV/m) | Limit<br>@3m<br>(dBuV/m) | Margin<br>(dB) |
| 120.21                 | Peak                         | 28.65                               | -8.88              | 19.77                    | 43.50                    | -23.73         |
| 197.81                 | Peak                         | 27.15                               | -9.46              | 17.69                    | 43.50                    | -25.81         |
| 275.41                 | Peak                         | 27.74                               | -8.42              | 19.32                    | 46.00                    | -26.68         |
| 621.70                 | Peak                         | 27.47                               | -0.81              | 26.66                    | 46.00                    | -19.34         |
| 647.89                 | Peak                         | 26.81                               | -0.06              | 26.75                    | 46.00                    | -19.25         |
| 867.84                 | Peak                         | 30.54                               | 2.92               | 33.46                    | 80.82                    | -47.36         |
| 980.60                 | Peak                         | 25.58                               | 5.72               | 31.30                    | 54.00                    | -22.70         |
| 992.24                 | Peak                         | 26.26                               | 5.17               | 31.43                    | 54.00                    | -22.57         |
|                        |                              |                                     |                    |                          |                          |                |



Page: 28 / 31 Rev.: 02

#### Above 1GHz

| Test Mo                 | de:      | TX-433.92MHz     | -                  | Temp/Hum     | 25.9(°C)/ | 50%RH      |
|-------------------------|----------|------------------|--------------------|--------------|-----------|------------|
| Test Item               |          | Above 1GHz       |                    | Test Date    | 2019/     | 10/21      |
| Polariz                 | e        | Vertical         | Te                 | est Engineer | Dally     | Hong       |
| Detecto                 | or       | Peak / Average   |                    |              |           |            |
| 110                     | /m)      |                  |                    |              |           |            |
| 100                     |          |                  |                    |              |           |            |
| 80                      |          |                  |                    |              |           |            |
| 60                      |          |                  |                    |              |           | 10         |
| 401                     | 2        | 3 4              | 5                  | 6 7          | 8         | _ <u>9</u> |
| 20                      |          |                  |                    |              |           |            |
| 0 <mark></mark><br>1000 | 1800.    | 2600.<br>Free    | 34<br>quency (MHz) | 00.          | 4200.     | 5000       |
| Frequency               | Detector | Spectrum         | Factor             | Actual       | Limit     | Margin     |
|                         | Mode     | Reading<br>Level |                    | FS           | @3m       |            |
| (MHz)                   | PK/QP/AV | (dBuV)           | (dB)               | (dBuV/m)     | (dBuV/m)  | (dB)       |
| 1301.76                 | Peak     | 46.07            | -8.11              | 37.96        | 74.00     | -36.04     |
| 1735.68                 | Peak     | 46.23            | -6.52              | 39.71        | 74.00     | -34.29     |

| 1001.70 | TOUR | 10.01 | 0.11  | 01.00 | 11.00 | 00.01  |
|---------|------|-------|-------|-------|-------|--------|
| 1735.68 | Peak | 46.23 | -6.52 | 39.71 | 74.00 | -34.29 |
| 2169.60 | Peak | 45.11 | -2.89 | 42.22 | 74.00 | -31.78 |
| 2603.52 | Peak | 44.61 | -2.05 | 42.56 | 74.00 | -31.44 |
| 3037.44 | Peak | 42.62 | -1.79 | 40.83 | 74.00 | -33.17 |
| 3471.36 | Peak | 41.04 | -0.38 | 40.66 | 74.00 | -33.34 |
| 3905.28 | Peak | 40.85 | 2.10  | 42.95 | 74.00 | -31.05 |
| 4339.20 | Peak | 45.35 | 2.26  | 47.61 | 74.00 | -26.39 |
| 4773.12 | Peak | 55.31 | 2.92  | 58.23 | 74.00 | -15.77 |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Frequency: 4773.12 MHz

Average result = Peak result + Duty factor = 58.23 dBuV/m - 19.00= 39.23 dBuV/m



| Test Mod         | le:      | TX-433.92MHz   | Т            | emp/Hum             | 25.9(°C)/ | 50%RH  |
|------------------|----------|----------------|--------------|---------------------|-----------|--------|
| Test Iter        | n        | Above 1GHz     | -            | Test Date           | 2019/     | 10/21  |
| Polarize         | Э        | Horizontal     | Te           | st Engineer         | Dally     | Hong   |
| Detecto          | r        | Peak / Average |              |                     |           |        |
| 110 Level (dBuV/ | m)       |                |              |                     |           |        |
| 100              |          |                |              |                     |           |        |
| 100              |          |                |              |                     |           |        |
| 80               |          |                |              | <br> <br> <br> <br> |           |        |
|                  |          |                |              |                     |           |        |
| 60               |          |                |              |                     |           | -10    |
| 1                |          | 3 4            | 5            | 6 7                 | 8         |        |
| 40               | 2        |                |              |                     |           |        |
| 20               |          |                |              |                     |           |        |
|                  |          |                |              |                     |           |        |
| 0 1000           | 1800.    | 2600.          | 340          | <u>  :  </u><br>)0. | 4200.     | 5000   |
|                  |          | Free           | luency (MHz) |                     |           |        |
|                  |          |                |              |                     |           |        |
| Frequency        | Detector | Spectrum       | Factor       | Actual              | Limit     | Margin |
|                  | Mode     | Reading        |              | FS                  | @3m       |        |
| (MHz)            | PK/QP/AV | (dBuV)         | (dB)         | (dBuV/m)            | (dBuV/m)  | (dB)   |
| 1301.76          | Peak     | 46.21          | -8.11        | 38.10               | 74.00     | -35.90 |
| 1735.68          | Peak     | 42.73          | -6.52        | 36.21               | 74.00     | -37.79 |
| 2169.60          | Peak     | 43.07          | -2.89        | 40.18               | 74.00     | -33.82 |
| 2603.52          | Peak     | 41.79          | -2.05        | 39.74               | 74.00     | -34.26 |
| 3037.44          | Peak     | 41.87          | -1.79        | 40.08               | 74.00     | -33.92 |
| 3471.36          | Peak     | 41.51          | -0.38        | 41.13               | 74.00     | -32.87 |
| 3905.28          | Peak     | 40.14          | 2.10         | 42.24               | 74.00     | -31.76 |
| 4339.20          | Peak     | 43.58          | 2.26         | 45.84               | 74.00     | -28.16 |
| 4773.12          | Peak     | 53.11          | 2.92         | 56.03               | 74.00     | -17.97 |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Frequency: 4773.12 MHz

Average result = Peak result + Duty factor = 56.03 dBuV/m - 19.00= 37.03 dBuV/m

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。



Page: 30 / 31 Rev.: 02

## **4.5 OPERATION RESTRICTION**

#### 4.5.1 Test Limit

15.231(a)(1),

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

## 4.5.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 7.4

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=1MHz, VBW=1MHz, Detector = Peak, Trace mode = Max hold, Sweep = 1s. Measure

## 4.5.3 Test Setup



## 4.5.4 Test Result

#### 433.92MHz

|                     | Dwell             | Time   |        |  |
|---------------------|-------------------|--------|--------|--|
| Operation condition | Pulse On Time (s) | Limits | Result |  |
| manually operated   | 2.23913s          | 5 sec  | PASS   |  |



Page: 31 / 31 Rev.: 02

## Test Data

| Ref Level -10.00 | )dBm 😑                                                               | RBW 1 MHz              |                            |                                                          | ( '                      |  |
|------------------|----------------------------------------------------------------------|------------------------|----------------------------|----------------------------------------------------------|--------------------------|--|
| SGL              | 0 dB 👄 SWT 5 s 👄                                                     | VBW 1 MHz              |                            |                                                          |                          |  |
| ●1Pk View        |                                                                      |                        |                            |                                                          |                          |  |
|                  |                                                                      |                        | D1[1]                      |                                                          | -0.13 di<br>240.59 m     |  |
| -20 dBm          |                                                                      |                        | M1[1]                      |                                                          | -77.47 dBr               |  |
| -30 dBm          |                                                                      |                        |                            |                                                          | 2.23913                  |  |
| 10 -10           |                                                                      |                        |                            |                                                          |                          |  |
| -40 dBm          |                                                                      |                        |                            |                                                          |                          |  |
| -50 dBm          |                                                                      |                        |                            |                                                          |                          |  |
| -60 dBm          |                                                                      |                        |                            |                                                          |                          |  |
|                  |                                                                      |                        |                            |                                                          |                          |  |
| -70 dBm          |                                                                      | M1 n                   | 1                          |                                                          |                          |  |
| -80 dBm          | han har warden harden harden har | Low Low Way            | - Jacob and a strategy and | worther water have been been been been been been been be | munder have been and the |  |
| -90 dBm          |                                                                      |                        |                            |                                                          |                          |  |
|                  |                                                                      |                        |                            |                                                          |                          |  |
| -100 dBm         |                                                                      |                        |                            |                                                          |                          |  |
| CE 433.92 MHz    |                                                                      | 691 m                  |                            |                                                          |                          |  |
| Marker           |                                                                      | 0511                   |                            |                                                          | 000101113,               |  |
| Type Ref Trc     | X-value                                                              | Y-value                | Function                   | Function                                                 | Result                   |  |
| D1 M1 1          | 2.23913 s<br>340.58 ms                                               | -//.4/ dBm<br>-0.13 dB |                            |                                                          |                          |  |
|                  |                                                                      |                        | Ready                      |                                                          | 16.10.2019               |  |

- End of Test Report -