

FCC RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC Part 15.231
FCC ID	KR5IK4CH-01
Trade name	Continental
Product name	Radio Frequency Transmitter(Key Fob)
Model No.	IK4CH-01
Operation Freq.	433.92 MHz
Test Result	Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of SGS Compliance Certification Services Inc.(Wugu Laboratory)

Approved by:

Sam Chicang

Reviewed by:

ED. Chiang

Sam Chuang Manager ED Chiang Engineer

Revision History

Rev.	Issue Date	Revisions	Revised By
00	May 2, 2017	Initial Issue	Angel Cheng
01	July 6, 2017	 Modify bandwidth in P.5. Added section 3.3 in P.11. Modify section 4.3.4 in P.16. 	Angel Cheng
02	July 11, 2017	 Modify section 3.3 in P.11 Modify section 4.3.4 in P.16 	Angel Cheng
03	July 13, 2017	 Modify RF filed strength in P.10. Modify section 3.3 in P.11 Modify notes in P.16 	Angel Cheng
04	July 14, 2017	1. Modify above 1GHz Data in page 24-25.	Angel Cheng

Table of contents

1.	GEN	ERAL INFORMATION
	1.1	EUT INFORMATION
	1.2	EUT CHANNEL INFORMATION
	1.3	ANTENNA INFORMATION
	1.4	MEASUREMENT UNCERTAINTY6
	1.5	FACILITIES AND TEST LOCATION7
	1.6	INSTRUMENT CALIBRATION
	1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT
	1.8	TEST METHODOLOGY AND APPLIED STANDARDS
	1.9	TABLE OF ACCREDITATIONS AND LISTINGS8
2.	TEST	SUMMERY
3.	DES	CRIPTION OF TEST MODES 10
	3.1	THE WORST MODE OF OPERATING CONDITION 10
	3.2	THE WORST MODE OF MEASUREMENT 10
4.	TEST	RESULT
	4.1	AC POWER LINE CONDUCTED EMISSION 12
	4.2	EMISSION BANDWIDTH 13
	4.3	FIELD STRENGTH OF FUNDAMENTAL 15
	4.4	RADIATION UNWANTED EMISSION 18
	4.5	OPERATION RESTRICTION
A	PPENI	DIX 1 – PHOTOGRAPHS OF EUT

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	Continental Automotive GmbH Siemensstrasse 12, 93055, Regensburg, Germany
Equipment	Radio Frequency Transmitter(Key Fob)
Model Name	IK4CH-01
Model Discrepancy	N/A
Received Date	April 18, 2017
Date of Test	May 2 ~ July 14, 2017
Periodic operation	 (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation (3) Periodic transmissions at regular predetermined intervals are not permitted. (4) Periodic transmissions (lower field strength): each transmission is not greater than 1 sec and the silent period between transmissions is at least 30 times the duration of the transmission but in no case less than 10 sec.
Power Operation	Lithium battery: 3V

1.2 EUT CHANNEL INFORMATION

Frequency Range	433.92 MHz
Modulation Type	FSK
Bandwidth	227.206 KHz
Number of Channels	1 channel

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested					
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation					
1 MHz or less	1	Middle			
1 MHz to 10 MHz	2	1 near top and 1 near bottom			
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

1.3 ANTENNA INFORMATION

Antenna Type	PCB Antenna
Antenna Gain	-17dBi

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1GHz~8GHz	+/- 2.5975
3M Semi Anechoic Chamber / 8GHz~18GHz	+/- 2.6112
3M Semi Anechoic Chamber / 18GHz~26GHz	+/- 2.7389
3M Semi Anechoic Chamber / 26GHz~40GHz	+/- 2.9683
3M Semi Anechoic Chamber / 40GHz~60GHz	+/- 1.8509
3M Semi Anechoic Chamber / 60GHz~75GHz	+/- 1.9869
3M Semi Anechoic Chamber / 75GHz~110GHz	+/- 2.9651
3M Semi Anechoic Chamber / 110GHz~170GHz	+/- 2.7807
3M Semi Anechoic Chamber / 170GHz~220GHz	+/- 3.6437
3M Semi Anechoic Chamber / 220GHz~325GHz	+/- 4.2982
Remark [.]	

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	N/A	Not applicable
Radiation	ED Chiang	-
RF Conducted	Kevin Kuo	-

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site						
Equipment Manufacturer Model S/N Cal Date Cal Due						
Spectrum Analyzer R&S FSV 40 101073 10/5/2016 10/4/2017						

3M 966 Chamber Test Site						
Equipment	S/N	Cal Date	Cal Due			
Bilog Antenna	Sunol Sciences	JB3	A030105	07/03/2016	07/02/2017	
Horn Antenna	EMCO	3117	00055165	2/20/2017	2/19/2018	
Pre-Amplifier	EMCI	EMC 012635	980151	06/23/2016	06/22/2017	
Pre-Amplifier	EMEC	EM330	060609	06/08/2016	06/07/2017	
Spectrum Analyzer	Agilent	E4446A	US42510252	12/05/2016	12/04/2017	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	

Remark: Each piece of equipment is scheduled for calibration once a year.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

There are no accessories and support equipment be used during the test.

EUT Accessories Equipment							
No.	No. Equipment Brand Model Series No. FCC ID						
	N/A						

Support Equipment								
No.	Equipment Brand Model Series No. FCC ID							
	N/A							

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC 15.231 Rules.

1.9 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

2. TEST SUMMERY

Standard Sec.	Chapter	Test Item	Result
15.203	1.2	Antenna Requirement	Pass
15.207	4.1	AC Power-line Conducted Emission	Not applicable
15.231(c)	4.2	Emission Bandwidth	Pass
15.231(b)	4.3	Fundamental Emission	Pass
15.209(b)	4.4	Transmitter Radiated Emission	Pass
15.231(a)(1)	4.5	Operation Restriction	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

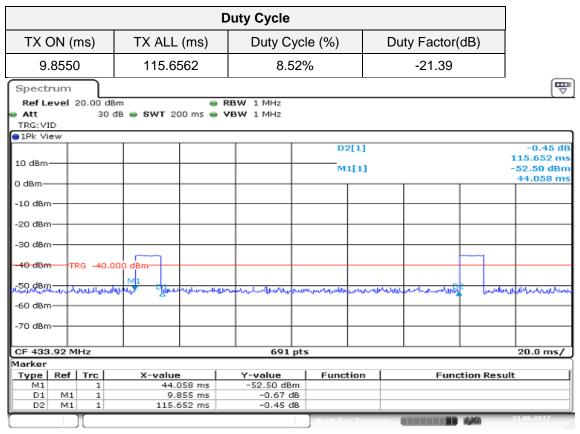
Operation mode	433.92 MHz
RF Filed strength	Peak: 43.04 dBuv/m Average : 21.65 dBuv/m

Remark: Field strength performed Average level at 3m.

3.2 THE WORST MODE OF MEASUREMENT

I	Radiated Emission Measurement Above 1G			
Test Condition	Band edge, Emission for Unwanted and Fundamental			
DC Voltage	3V			
Test Mode	Mode 1: EUT power by battery.			
Worst Mode	Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4			
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 			
Worst Polarity	Horizontal Vertical			

Radiated Emission Measurement Below 1G				
Test Condition	Test Condition Radiated Emission Below 1G			
DC Voltage	DC Voltage 3V			
Test Mode	Test Mode Mode 1: EUT power by battery.			
Worst Mode	🛛 🖂 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4			


Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(X-Plane and Horizontal) were recorded in this report

3.3 EUT DUTY CYCLE

Date: 21.JUN 2017 14:11:55

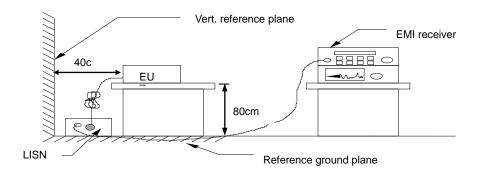
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a),

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	


* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete

4.1.3 Test Setup

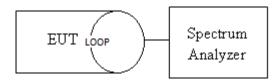
4.1.4 Test Result Not applicable

4.2 EMISSION BANDWIDTH

4.2.1 Test Limit

According to §15.231(c),

```
Limit
```

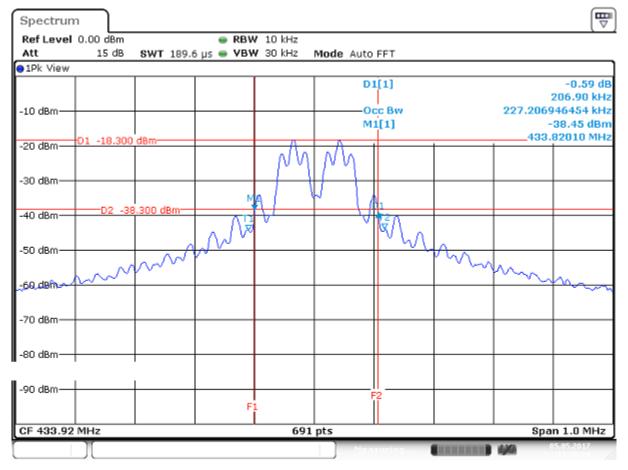

70 MHz - 900 MHz : Fc * 0.25 %
 Above 900 MHz : Fc * 0. 5 %

4.2.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.9.2,

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=10KHz, VBW \geq 3 x RBW, Detector = Peak, Trace mode = Max hold, Sweep = Auto. Measure the maximum width of the emission that is constrained by the frequencies associated with the 20dB Bandwidth and Occupied Bandwidth(99%).

4.2.3 Test Setup



4.2.4 Test Result

Spectrum Bandwidth					
Frequency (MHz)99% Occupied BW (KHz)20dB Bandwidth (KHz)20dB Bandwidth Limits (MHz)					
433.92	227.206	206.90	1.08		

Test Data

Date: 5.MAY.2017 11:30:21

4.3 FIELD STRENGTH OF FUNDAMENTAL

4.3.1 Test Limit

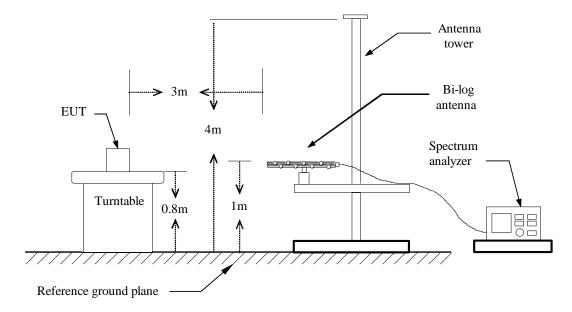
According to §15.231(b)

Fundamental frequency (MHz)	Field strength of fundamental (uv/m) at 3m	Field strength of fundamental (dBuv/m) at 3m
40.66-40.70	2,250	67
70-130	1,250	61.9
*130-174	*1,250 to 3,750	61.9-71.5
174-260	3,750	71.5
*260-470	*3,750 to 12,500	71.5-81.9
Above 470	12,500	81.9

REMARK:

1. Linear interpolations

2. Based on the average value of the measured Field strength of fundamental.


4.3.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 4.1.4 and clause 6.5

clause 4.1.4	 ✓ 4.1.4.2.2: Measurement Peak value. ✓ 4.1.4.2.3: Duty cycle ≥ 100%. ✓ 4.1.4.2.4: Measurement Average value.
clause 4.1.4	4.1.4.2.3: Duty cycle ≥ 100%.

4.3.3 Test Setup

4.3.4 Test Result

Field Strength							
Frequency Fundamental Limit Margin (MHz) (dBuV/m) at 3m (dBuV/m) at 3m (dB) Axis/Pol. Remar							
433.92	21.65	80.14	-58.49	X/H	Avg		

Remark:

1. Fundamental measured method setting on spectrum, RBW=100 kHz, VBW=100kHz and Detector=Peak.

2. Average result = Peak result + Duty factor

Test Data

٦	Fest Mode:		ТХ	Temp/H	lum 2	27(°C)/ 53	3%RH	
	Test Item	Fu	Fundamental		Test Date		2017/5/9	
A	xis/Polarize	Х-	Plane/Hor	Test Eng		Kevin k		
	Detector		Peak	Test Vol	tage:	3Vdo	C	
100).0 dBuV/m							
						Limit1: — Limit2: —		
4	0							
	mmmmm	na a se a Angelium	an marine and	- Contraction of the contraction		honor and	×	
-20		And and a second second						
	432.466 432.67 43	2.87 433.07	433.27 433.47	433.67 433.8	37 434.07	434.47	MHz	
No	Frequency	Reading	Correct	Result	Limit	Margin	Rema	
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
	433.8820	92.21	-49.17	43.04	100.14	-57.10	peak	

4.4 RADIATION UNWANTED EMISSION

4.4.1 Test Limit

According to §15.231(e) and §15.209

Unwanted emissions limit follow the table or the FCC Part 15.209, whichever limit permits higher field strength.

According to §15.231(b)

Fundamental frequency (MHz)	Field strength of Spurious emission (uv/m) at 3m	Field strength of Spurious emission (dBuv/m) at 3m				
40.66-40.70	225	47				
70-130	125	41.9				
*130-174	*125-375	41.9-51.5				
174-260	375	51.5				
*260-470	*375-1250	51.5-61.9				
Above 470	1250	61.9				

REMARK:

1. Linear interpolations

2. Based on the average value of the measured Field strength of fundamental.

Below 30MHz

	Field Strength								
Frequency (MHz)	(µV/m)	(dBµV/m)	Measurement Distance (meter)	(dBµV/m)	Measurement Distance (meter)				
0.009 - 0.490	2400/F(kHz)	48.52 – 13.80	300	128.52–104.84	3				
0.490 - 1.705	24000/F(kHz)	33.80 - 22.97	30	73.80– 62.97	3				
1.705 – 30.0	30	29.54	30	69.54	3				

Above 30MHz

Frequency	Field	l Strength	Measurement Distance
(MHz)	(µV/m)	(dBµV/m)	(meter)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

4.4.2 Test Procedure

Test method Refer as ANSI 63.10:2013

Inwanted Emission	 □ clause 4.1.4.2.2: Measurement Peak value. □ clause 4.1.4.2.3: Duty cycle ≥ 100%. □ clause 4.1.4.2.4: Measurement Average value.
-------------------	---

Radiated Emission	\boxtimes clause 6.4: below 30 MHz and test distance is 3m. \boxtimes clause 6.5: below 30 MHz -1 GHz and test distance
	is 3m. \bigcirc clause 6.6: Above 30 MHz and test distance is 3m.

- 1. The EUT is placed on a turntable, which is 0.8m for test below 1GHz and 1.5m for test above 1GHz, above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

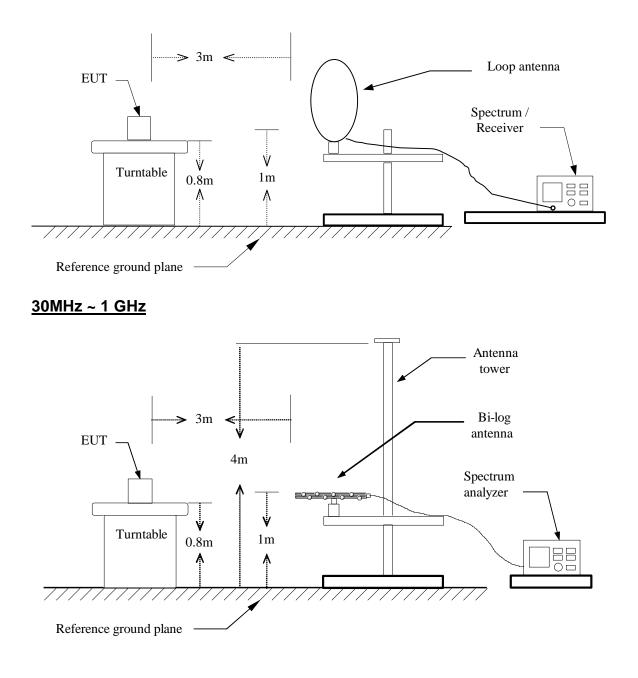
(a)PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO

(b)AVERAGE: RBW=1MHz,

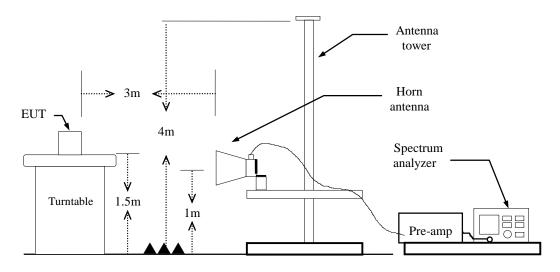
7. Repeat above procedures until the measurements for all frequencies are complete.

Remark.

1. The EUT has a oscillator operating at 27.6 MHz, harmonic/spurious was verified. And didn't catch any emission at 27.6MHz.


2. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

3. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).


4.4.3 Test Setup

<u>9kHz ~ 30MHz</u>

Above 1 GHz

4.4.4 Test Result Pass.

Test Data

Below 1GHz

Test Mode	e:	ТХ	,	Ter	np/Hum	27(°C)/ ∶	53%RH	
Test Item	1	Below 1	IGHz	Те	st Date	2017/5/2		
Polarize		Vertio			Engineer	Kevir		
Detector		Pea	lk	Test	Voltage:	3V	dc	
100.0 dBuV/m						Limit1: Margin:		
0.0	2	3	4	5		6 X		
30.000 127.	DO 224.00	321.00 418	3.00 515.00	612.00	709.00 806.0	0 1000	.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correc Fact (dB/r	or (c	Result IBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
113.4200	46.78	-16.6	66	30.12	43.50	-13.38	peak	
167.7400	47.93	-16.7	74	31.19	43.50	-12.31	peak	
315.1800	23.94	-13.8	33	10.11	46.00	-35.89	QP	
	38.51	-9.2	0	29.31	46.00	-16.69	peak	
502.3900	30.01	_						
502.3900 613.9400	38.56	-7.4	.3	31.13	46.00	-14.87	peak	

	t Mode	:		ΤX			Temp/Hum			27(°∁)/ 53%RH		
	st Item			elow 10			Test Date		2017/5/2			
	olarize			Horizon			Engine		ł	Kevin		
De	etector			Peak		lest	t Voltage	e:		3Vd	С	
50									Limit Mar <u>c</u>			
0.0		1 X	2	3X	4 X	5						
30.0	00 127.0	0 224.0	00 321.0	0 418.0	0 515.00	612.00	709.00	806.00		1000.0	0 MHz	
			_	Correct	-	Result	Lim	it	Mar		Remark	
Freque (MH		Readi (dBu		Facto (dB/m	r (d	BuV/m)	(dBuV	//m)	(dE	3)		
	z)		V)		r (d			-	(dE -23.		peak	
(MH	z) 400	(dBu	4	(dB/m	r (di 1) (di 4	BuV/m)	(dBuV	60		.80	peak peak	
(MH 167.74	z) 400 800	(dBu 36.4	4 66	(dB/m -16.74	r (d 1) 4 3	BuV/m) 19.70	(dBuV 43.5	i0 00	-23.	80 .17	-	
(MH 167.74 315.18	z) 400 800 600	(dBu 36.4 40.6	V) 44 66 60	(dB/m -16.74 -13.83	r (d) (d 4	BuV/m) 19.70 26.83	(dBu) 43.5 46.0	50 10 10	-23. -19.	80 17 71	peak	
(MH 167.74 315.13 406.30	z) 400 800 600 500	(dBu 36.4 40.6 34.8	V)	(dB/m -16.74 -13.83 -11.51	r (d 4 3 2	BuV/m) 19.70 26.83 23.29	(dBuV 43.5 46.0 46.0	50 00 00 00	-23. -19. -22.	80 17 71 09	peak peak	


Above 1GHz

Test N	/lode:	TX				Temp/Hum			27(°∁)/ 53%RH		
Test	ltem		Above 1			Test Date			2017/7/14		
Pola	rize		Vertic				Engin		ł	Kevin	
Dete	ector		Pea	k		Test	t Volta	ge:		3Vc	lc
110.0 dB	uV/m										
									Limi Limi		
											_
70											_
-											-
1	2		3								_
30.0 X											
1000.00	0 1400.00 180	0.00 220	0.00 260	0.00 30	00.00 3	3400.00	3800.00	4200.	00	5000.0	0 MHz
Frequenc (MHz)	cy Read (dB		Correc Facto (dB/r	or	Res (dBu\			mit ıV/m)	Mar (dl		Remark
1172.000	0 41.	.50	-7.34		34.′	16	74	.00	-39.	84	peak
1580.00			-5.78		35.8			.00	-38.		peak
2416.00	0 38.	51	-2.3	9	36.1	12	74	.00	-37.	88	peak

Remark:

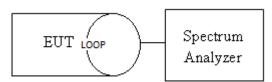
1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

4.5 OPERATION RESTRICTION

4.5.1 Test Limit


15.231(a)(1), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

4.5.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 7.4

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=1MHz, VBW \ge 3 x RBW, Detector = Peak, Trace mode = Max hold, Sweep = 200s.Measure

4.5.3 Test Setup

4.5.4 Test Result

Dwell Time							
Operation condition Burst Duration Limits							
Automatically Operated	340.58 ms	5 sec					

Test Data

