

FCC Measurement/Technical Report on

Hardware for enhanced remote-, mobility- and emergency services HERMES 2.1 LFT2

FCC ID: KR5HERMES2 IC: 7812D-HERMES2

Test Report Reference: MDE_CONTI_1732_FCCa_rev1

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1 1.1 1.2	Applied Standards and Test Summary Applied Standards FCC-IC Correlation Table	3 3 4
1.3	Measurement Summary / Signatures	5
2 2.1 2.2 2.3 2.4	Administrative Data Testing Laboratory Project Data Applicant Data Manufacturer Data	9 9 9 9
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Test object DataGeneral EUT DescriptionEUT Main componentsAncillary EquipmentAuxiliary EquipmentEUT SetupsOperating ModesProduct labelling	10 11 11 12 12 12 12 13
4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Test ResultsOccupied Bandwidth (6 dB)Occupied Bandwidth (99%)Power OutputSpurious RF Conducted EmissionsTransmitter Spurious Radiated EmissionsBand Edge Compliance ConductedBand Edge Compliance RadiatedPower Density	14 14 17 19 21 28 35 37 40
5	Test Equipment	43
6 6.1 6.2 6.3 6.4 6.5 6.6	Antenna Factors, Cable Loss and Sample Calculations LISN R&S ESH3-Z5 (150 kHz – 30 MHz) Antenna R&S HFH2-Z2 (9 kHz – 30 MHz) Antenna R&S HL562 (30 MHz – 1 GHz) Antenna R&S HF907 (1 GHz – 18 GHz) Antenna EMCO 3160-09 (18 GHz – 26.5 GHz) Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	46 47 48 49 50 51
7	Setup Drawings	52
8	Measurement Uncertainties	53
9	Photo Report	53

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-17 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note 1: (DTS Equipment)

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, 558074 D01 DTS Meas Guidance v04, 2017-04-05" and also comply with the newer version 558074 D01 15.247 Meas Guidance v05, 2018-08-24. ANSI C63.10-2013 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 2: 5.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 2: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 2: 5.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	-	-

Final Result

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (2) §15.247

Occupied Bandwidth (6 dB)

The measurement was performed according to ANSI C63.10

OP-Mode Radio Technology, Operating Frequency	Setup	FCC	IC
WLAN b, high	S01_AH02	Passed	Passed
WLAN b, low	S01_AH02	Passed	Passed
WLAN b, mid	S01_AH02	Passed	Passed
WLAN g, high	S01_AH02	Passed	Passed
WLAN g, low	S01_AH02	Passed	Passed
WLAN g, mid	S01_AH02	Passed	Passed
WLAN n 20 MHz, high	S01_AH02	Passed	Passed
WLAN n 20 MHz, low	S01_AH02	Passed	Passed
WLAN n 20 MHz, mid	S01_AH02	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

IC RSS-Gen & IC TRC; Ch. 6.6 & Ch. 8

Final Result

Final Result

Occupied Bandwidth (99%) The measurement was performed according to ANSI C63.10

OP-Mode Radio Technology, Operating Frequency	Setup	FCC	IC
WLAN b, high	S01_AG02	N/A	Performed
WLAN b, low	S01_AG02	N/A	Performed
WLAN b, mid	S01_AG02	N/A	Performed
WLAN g, high	S01_AG02	N/A	Performed
WLAN g, low	S01_AG02	N/A	Performed
WLAN g, mid	S01_AG02	N/A	Performed
WLAN n 20 MHz, high	S01_AG02	N/A	Performed
WLAN n 20 MHz, low	S01_AG02	N/A	Performed
WLAN n 20 MHz, mid	S01_AG02	N/A	Performed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (b) (3)

Peak Power Output The measurement was performed according to ANSI C63.10

OP-Mode Radio Technology, Operating Frequency, Measurement method	Setup	FCC	IC
WLAN b, high, conducted	S01_AH02	Passed	Passed
WLAN b, low, conducted	S01_AH02	Passed	Passed
WLAN b, mid, conducted	S01_AH02	Passed	Passed
WLAN g, high, conducted	S01_AH02	Passed	Passed
WLAN g, low, conducted	S01_AH02	Passed	Passed
WLAN g, mid, conducted	S01_AH02	Passed	Passed
WLAN n 20 MHz MIMO, high, conducted	S01_AH02	Passed	Passed

TEST REPORT REFERENCE: MDE_CONTI_1732_FCCa_rev1

Final Result

Final Result

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (b) (3) §15.247 Peak Power Output

The measurement was performed according to ANSI C63.10		Final Result		
OP-Mode Radio Technology, Operating Frequency, Measurement method	Setup	FCC	IC	
WLAN n 20 MHz MIMO, low, conducted	S01_AH02	Passed	Passed	
WLAN n 20 MHz MIMO, mid, conducted	S01_AH02	Passed	Passed	
WLAN n 20 MHz, high, conducted	S01_AH02	Passed	Passed	
WLAN n 20 MHz, low, conducted	S01_AH02	Passed	Passed	
WLAN n 20 MHz, mid, conducted	S01_AH02	Passed	Passed	

§ 15.247 (d)

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

Spurious RF Conducted Emissions

The measurement was performed according to ANSI C63.10

OP-Mode Radio Technology, Operating Frequency	Setup	FCC	IC
WLAN b, high	S01_AH02	Passed	Passed
WLAN b, low	S01_AH02	Passed	Passed
WLAN b, mid	S01_AH02	Passed	Passed
WLAN g, high	S01_AH02	Passed	Passed
WLAN g, low	S01_AH02	Passed	Passed
WLAN g, mid	S01_AH02	Passed	Passed
WLAN n 20 MHz, high	S01_AH02	Passed	Passed
WLAN n 20 MHz, low	S01_AH02	Passed	Passed
WLAN n 20 MHz, mid	S01_AH02	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d)

§15.247 Transmitter Spurious Radiated Emissions The measurement was performed according to ANSI C63.10

OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	FCC	IC
WLAN b, high, 1 GHz - 26 GHz	S01_AF02	Passed	Passed
WLAN b, high, 30 MHz - 1 GHz	S01_AF02	Passed	Passed
WLAN b, low, 1 GHz - 26 GHz	S01_AF02	Passed	Passed
WLAN b, low, 30 MHz - 1 GHz	S01_AF02	Passed	Passed
WLAN b, mid, 1 GHz - 26 GHz	S01_AF02	Passed	Passed
WLAN b, mid, 30 MHz - 1 GHz	S01_AF02	Passed	Passed
WLAN b, mid, 9 kHz - 30 MHz	S01_AF02	Passed	Passed
WLAN g, high, 1 GHz - 26 GHz Remark: tested 1-8GHz	S01_AF02	Passed	Passed
WLAN g, low, 1 GHz - 26 GHz Remark: tested 1-8GHz	S01_AF02	Passed	Passed
WLAN g, mid, 1 GHz - 26 GHz Remark: tested 1-8GHz	S01_AF02	Passed	Passed
WLAN n 20 MHz MIMO, high, 1 GHz - 26 GHz Remark: tested 1-8GHz	S01_AF02	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (d)

Band Edge Compliance Conducted			
The measurement was performed according to AN	51 C63.10	Final Re	esuit
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Band Edge			
WLAN b, high, high	S01_AH02	Passed	Passed
WLAN b, low, low	S01_AH02	Passed	Passed
WLAN g, high, high	S01_AH02	Passed	Passed
WLAN g, low, low	S01_AH02	Passed	Passed
WLAN n 20 MHz, high, high	S01_AH02	Passed	Passed
WLAN n 20 MHz, low, low	S01_AH02	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d))	
Band Edge Compliance Radiated	CI CC2 10	Einel D.	
The measurement was performed according to AN	51 C03.10	Final Re	esuit
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Band Edge			
WLAN b, high, high	S01_AF02	Passed	Passed
WLAN g, high, high	S01_AF02	Passed	Passed
WLAN n 20 MHz MIMO, high, high	S01_AF02	Passed	Passed
WLAN n 20 MHz MIMO, high, high WLAN n 20 MHz, high, high	S01_AF02 S01_AF02	Passed Passed	Passed Passed
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C		Passed	
WLAN n 20 MHz, high, high	S01_AF02	Passed	
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	S01_AF02 § 15.247 (e)	Passed	Passed
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density	S01_AF02 § 15.247 (e)	Passed	Passed
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density The measurement was performed according to AN:	S01_AF02 § 15.247 (e) SI C63.10	Passed	Passed
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density The measurement was performed according to AN OP-Mode Radio Technology, Operating Frequency	S01_AF02 § 15.247 (e) SI C63.10	Passed	Passed esult IC
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density The measurement was performed according to AN OP-Mode	S01_AF02 § 15.247 (e) SI C63.10 Setup	Final Re FCC	Passed
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density The measurement was performed according to AN OP-Mode Radio Technology, Operating Frequency WLAN b, high	S01_AF02 § 15.247 (e) SI C63.10 Setup S01_AH02	Final Re FCC Passed	Passed esult IC Passed Passed
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density The measurement was performed according to AN: OP-Mode Radio Technology, Operating Frequency WLAN b, high WLAN b, low	S01_AF02 § 15.247 (e) SI C63.10 Setup S01_AH02 S01_AH02	Final Re FCC Passed Passed Passed	Passed esult IC Passed Passed Passed
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density The measurement was performed according to AN: OP-Mode Radio Technology, Operating Frequency WLAN b, high WLAN b, high WLAN b, nid	S01_AF02 § 15.247 (e) SI C63.10 Setup S01_AH02 S01_AH02 S01_AH02 S01_AH02	Passed Final Re FCC Passed Passed Passed	Passed Passed Passed Passed Passed Passed
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density The measurement was performed according to AN: OP-Mode Radio Technology, Operating Frequency WLAN b, high WLAN b, low WLAN b, mid WLAN g, high	S01_AF02 § 15.247 (e) SI C63.10 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02	Passed Final Re FCC Passed Passed Passed Passed Passed	Passed esult IC Passed Passed Passed Passed Passed
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density The measurement was performed according to AN OP-Mode Radio Technology, Operating Frequency WLAN b, high WLAN b, low WLAN b, mid WLAN g, high WLAN g, low WLAN g, mid	S01_AF02 § 15.247 (e) SI C63.10 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02	Passed Final Re FCC Passed Passed Passed Passed Passed Passed	Passed Passed IC Passed Passed Passed Passed Passed Passed
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density The measurement was performed according to AN OP-Mode Radio Technology, Operating Frequency WLAN b, high WLAN b, high WLAN b, mid WLAN g, high WLAN g, low	S01_AF02 § 15.247 (e) SI C63.10 So1_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02	Passed Final Re FCC Passed Passed Passed Passed Passed Passed Passed	Passed Passed IC Passed Passed Passed Passed Passed Passed Passed
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density The measurement was performed according to AN: OP-Mode Radio Technology, Operating Frequency WLAN b, high WLAN b, low WLAN b, low WLAN b, mid WLAN g, high WLAN g, low WLAN g, mid WLAN n 20 MHz MIMO, high	S01_AF02 § 15.247 (e) SI C63.10 So1_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02	Passed Final Re FCC Passed Passed Passed Passed Passed Passed Passed Passed Passed	Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density The measurement was performed according to AN OP-Mode Radio Technology, Operating Frequency WLAN b, high WLAN b, high WLAN b, mid WLAN g, high WLAN g, high WLAN g, mid WLAN n 20 MHz MIMO, high WLAN n 20 MHz MIMO, low	S01_AF02 § 15.247 (e) SI C63.10 SO1_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02	Passed Final Re FCC Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed	Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed
WLAN n 20 MHz, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density The measurement was performed according to AN: OP-Mode Radio Technology, Operating Frequency WLAN b, high WLAN b, low WLAN b, low WLAN b, mid WLAN g, high WLAN g, high WLAN g, low WLAN n 20 MHz MIMO, high WLAN n 20 MHz MIMO, low WLAN n 20 MHz MIMO, mid	S01_AF02 § 15.247 (e) SI C63.10 So1_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02 S01_AH02	Passed Final Re FCC Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed	Passed esult IC Passed

N/A: Not applicable N/P: Not performed

Revision History

Report version control						
Version	Release date	Change Description	Version validity			
initial	2018-10-15		invalid			
rev1	2018-11-05	Extended specific product description for supported channels	valid			

W. PAME

(responsible for accreditation scope) Dipl.-Ing. Wolfgang Richter

(responsible for testing and report) Dipl.-Ing. Daniel Gall

9

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name:

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

This facility has been fully described in a report submitted to the ISED and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-00
FCC Designation Number:	DE0015
FCC Test Firm Registration:	929146
Responsible for accreditation scope:	DiplIng. Wolfgang Richter
Report Template Version:	2018-01-10

2.2 PROJECT DATA

Responsible for testing and report:	DiplIng. Daniel Gall
Employees who performed the tests:	documented internally at 7Layers
Date of Report:	2018-11-05
Testing Period:	2018-05-13 to 2018-08-07

2.3 APPLICANT DATA

Company Name:	Continental Automotive GmbH	
Address:	Vahrenwalder Str. 9 30165 Hannover Germany	
Contact Person:	Mr. Frank Maurer	

please see applicant data

2.4 MANUFACTURER DATA

Company Name:

Address:

Contact Person:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Hardware for Enhanced Remote-, Mobility- & Emergency Services		
Product name	HERMES 2.1 LFT2		
Туре	HERMES 2.1 LFT2		
Declared EUT data by the supplier			
Voltage Type	DC		
Voltage Level	12 V		
Tested Modulation Type	DBPSK; OFDM:BPSK		
General product description	The EUT is a Hardware for Enhanced Remote-, Mobility- & Emergency Services. It provides different telematic services and is the interface between different types of Daimler car headunits and the public network. It supports WLAN in the 2.4 and 5 GHz band.		
Specific product description for the EUT	In the 2.4 GHz band the WLAN modes b/g/n are supported using 20 MHz bandwidth on channels 1 to 11. For n mode also MIMO is supported. Channels 12 and 13 are not supported.		
The EUT provides the following ports:	Cellular Main Cellular Diversity GNSS Cable Harness incl. DC		
Tested datarates	WLAN b 1 Mbps, WLAN g 6 Mbps, WLAN n MCS0 SISO and MCS 8 MIMO		
Special software used for testing	The ADB shell was used to start a local TX script on the EUT provided by the applicant. A software on a laptop was used to activate the EUT and keep it active (CAN simulation)		

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description	
EUT AF02	DE1260001af02	FCC_radiated_test_sample_#0	
		1	
Sample Parameter	Value		
Serial No.	10001948		
HW Version	D sample (HW 17/51)		
SW Version	E334.20A		
Comment	radiated sample North America/USA		
Integral Antenna	5.7 dBi in 2.4 GHz band, 4.4 dBi in 5 GHz band		

Sample Name	Sample Code	Description	
EUT AG02	DE1260001ag02	FCC_conducted_test_sample_ #01	
Sample Parameter	Value		
Serial No.	I0002027		
HW Version	D sample (HW 17/51)		
SW Version	E334.20A		
Comment	conducted sample North America/USA		
Integral Antenna	Replaced by temporary antenna connector		

Sample Name	Sample Code	Description	
EUT AH02	DE1260001ah02		
Sample Parameter	Value		
Serial No.	I0002481		
HW Version	D sample (HW 17/51)		
SW Version	E334.20A		
Comment	conducted sample North America/USA		
Integral Antenna	Replaced by temporary antenna connector		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

but nevertheless Auxiliary Equipment can innuence the test results.

Device	Details (Manufacturer, HW, SW, S/N)	Description
AUX 1	Mercedes-Benz A 156 905 09 02, 500110114217809278	Cellular Antenna
AUX 2	Mercedes-Benz A 156 905 09 02, 500110114217809176	Cellular Antenna
AUX 3	UBLOX ANN-MS-0-005, -, -, 410094	GNSS Antenna
AUX 4	USB HUB	USB HUB for communication to laptop

3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AG02	EUT AG02, AUX 4	Conducted Setup
S01_AF02	EUT AF02, AUX 1 to AUX 4	Radiated Setup
S01_AH02	EUT AH02, AUX 4	Conducted Setup

3.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

3.6.1 TEST CHANNELS

	2.4 GHz ISM			
WLAN	2400 - 2483.5 MHz			
20 MHz Test Channels:	low mid high			
Channel:	1	6	11	
Frequency [MHz]	2412 2437 2462			

3.7 PRODUCT LABELLING

3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

3.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 OCCUPIED BANDWIDTH (6 DB)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Span: 40 MHz
- Trace: Maxhold
- Sweeps: at least 500
- Sweeptime: auto
- Detector: Peak

4.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

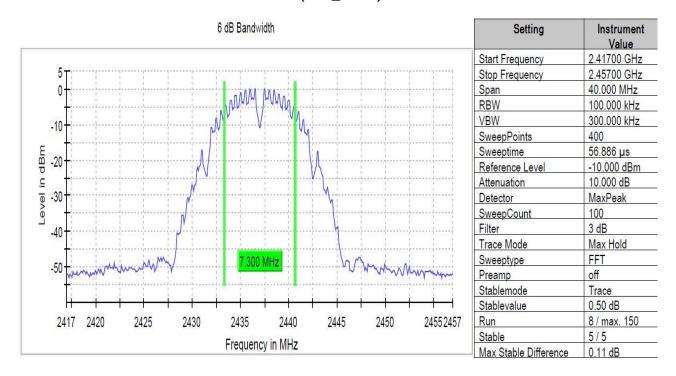
4.1.3 TEST PROTOCOL

Band	Channel No.	Frequency
WIAN b Modo	20 MHz; 1 Mbit/	~
Humidity:		49 %
Air Pressure:		1010 hPa
Ambient tempe	erature:	24 °C

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	7.3	0.5	6.8
	6	2437	7.3	0.5	6.8
	11	2462	7.3	0.5	6.8

WLAN g-Mode; 20 MHz; 6 Mbit/s

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	16.3	0.5	15.8
	6	2437	16.5	0.5	16.0
	11	2462	16.5	0.5	16.0


WLAN n-Mode; 20 MHz; MCS0

Band	Channel No.			Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	17.7	0.5	17.2
	6	2437	17.4	0.5	16.9
	11	2462	17.7	0.5	17.2

Remark: Please see next sub-clause for the measurement plot.

4.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = WLAN b, Operating Frequency = mid (S01_AH02)

- 4.1.5 TEST EQUIPMENT USED
 - R&S TS8997

4.2 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Resolution Bandwidth (RBW): 500 kHz
- Video Bandwidth (VBW): 2000 kHz
- Span: 50 MHz
- Trace: Maxhold
- Sweeps: 2000
- Sweeptime: 5 ms
- Detector: Sample

The 99 % measurement function of the spectrum analyser function was used to determine the 99 % bandwidth.

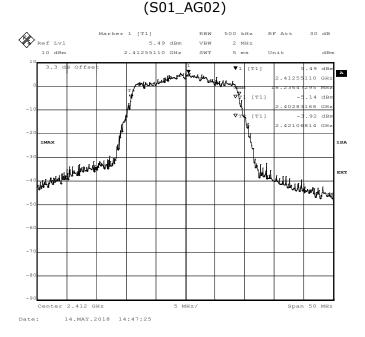
4.2.2 TEST REQUIREMENTS / LIMITS

No applicable limit:

4.2.3 TEST PROTOCOL

Ambient temperature: Air Pressure: Humidity: WLAN b-Mode; 20 MHz; 1 Mbit/s		24 °C 1010 hPa 49 %	
Band	Band Channel No.		99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	10.7
	6	2437	10.7
	11	2462	10.5

WLAN g-Mode; 20 MHz; 6 Mbit/s


Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	17.2
	6	2437	17.4
	11	2462	16.8

WLAN n-Mode; 20 MHz; MCS0

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	18.2
	6	2437	17.4
	11	2462	18.2

Remark: Please see next sub-clause for the measurement plot.

4.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = WLAN n 20 MHz, Operating Frequency = low

4.2.5 TEST EQUIPMENT USED

- Regulatory WLAN RF Test Solution

4.3 POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.3.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to a gated RF average-reading power meter via a short coax cable with a known loss.

The Power for MIMO mode was calculated by the WMS32 software by adding the measured power of the two antenna connectors.

4.3.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75

non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (\text{Limit (W)}/1\text{mW})$

4.3.3 TEST PROTOCOL

Ambient temperature:	24 °C
Air Pressure:	1010 hPa
Humidity:	49 %
WI AN n-Mode MIMO 2	0 MHz MCS8

Band	Ch. No.	Freq. [MHz]	• • • • • • • • • • • • • • • • • • • •		Margin to Limit [dB]
2.4 GHz ISM	1	2412	11.5	30.0	18.5
	6	2437	11.3	30.0	18.7
	11	2462	11.1	30.0	18.9

Ambient temperature:	24 °C
Air Pressure:	1010 hPa
Humidity:	49 %
WLAN b-Mode; 20 MHz;	1 Mbit/s

Band	Channel No.	Frequency [MHz]	RMS Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	7.8	30.0	22.2
	6	2437	7.7	30.0	22.3
	11	2462	7.7	30.0	22.3

WLAN g-Mode; 20 MHz; 6 Mbit/s

Band	Channel No.	Frequency [MHz]	RMS Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	10.5	30.0	19.5
	6	2437	9.9	30.0	20.1
	11	2462	9.6	30.0	20.4

WLAN n-Mode; 20 MHz; MCS0

Band	Channel No.	Frequency [MHz]	RMS Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	8.0	30.0	22.0
	6	2437	7.7	30.0	22.3
	11	2462	7.8	30.0	22.2

Remark: Please see next sub-clause for the measurement plot.

4.3.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Power meter measurement, no plot.

4.3.5 TEST EQUIPMENT USED

- R&S TS8997

4.4 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Frequency range: 30 25000 MHz
- Resolution Bandwidth (RBW): 100 kHz (30 MHz-1 GHz), 1 MHz (1GHz-26 GHz)
- Video Bandwidth (VBW): 300 kHz (30 MHz 1 GHz), 3 MHz (1 GHz- 26 GHz)
- Trace: Maxhold
- Sweeps: 2
- Sweep Time: 330 s
- Detector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 30 dBc limit.

4.4.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

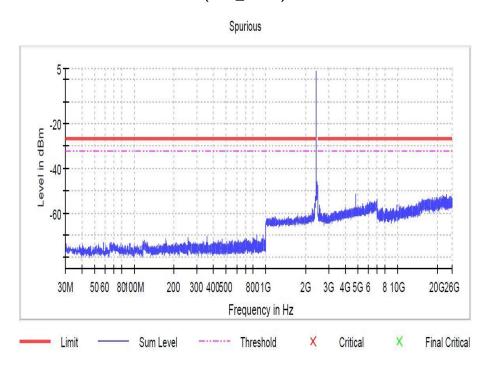
4.4.3 TEST PROTOCOL

Ambient temperature:	24 °C
Air Pressure:	1010 hPa
Humidity:	49 %
WLAN b-Mode; 20 MHz; 1 Mbit/s	

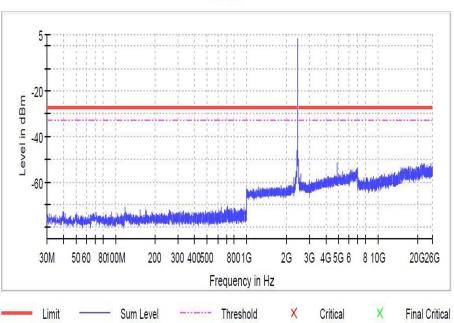
Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	-	-	PEAK	100	0.2	-29.8	>10
6	2437	-	-	PEAK	100	0.1	-29.9	>10
11	2462	-	-	PEAK	100	-0.4	-30.4	>10

WLAN g-Mode; 20 MHz; 6 Mbit/s

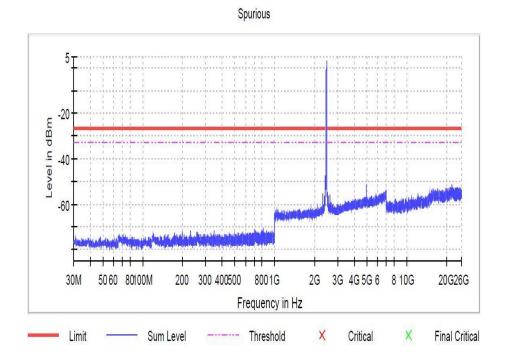
Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	-	-	PEAK	100	-1.1	-31.1	>10
6	2437	-	-	PEAK	100	-1.9	-31.9	>10
11	2462	-	-	PEAK	100	-2.8	-32.8	>10

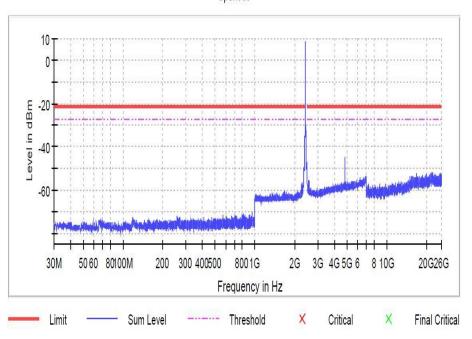

WLAN n-Mode; 20 MHz; MCS0

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	-	-	PEAK	100	-3.8	-33.8	>10
6	2437	-	-	PEAK	100	-4.1	-34.1	>10
11	2462	-	-	PEAK	100	-4.4	-34.4	>10

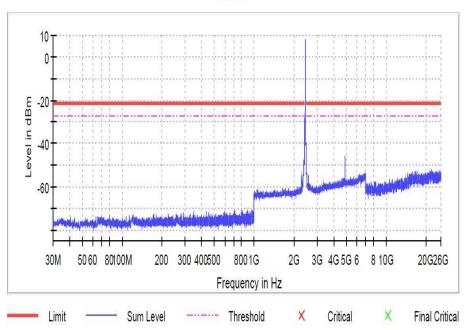

Remark: Please see next sub-clause for the measurement plot.

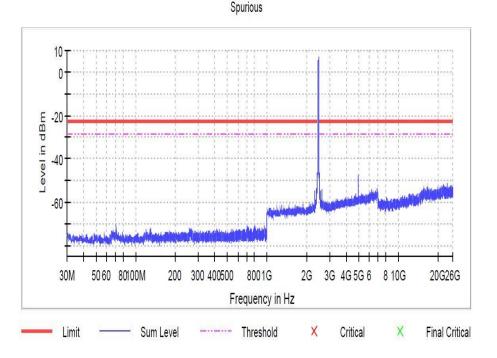
4.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = WLAN b, Operating Frequency = low (S01_AH02)


Radio Technology = WLAN b, Operating Frequency = mid (S01_AH02)

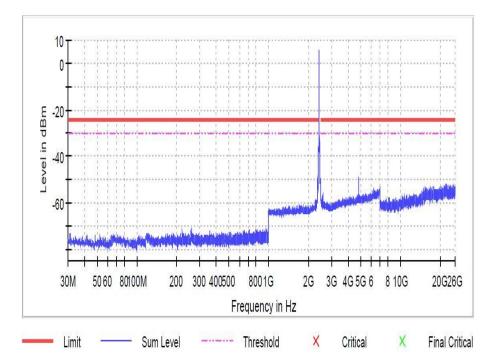

Spurious

Radio Technology = WLAN b, Operating Frequency = high $(S01_AH02)$

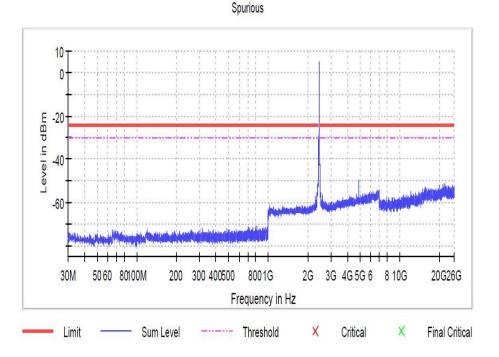

Radio Technology = WLAN g, Operating Frequency = low (S01_AH02)

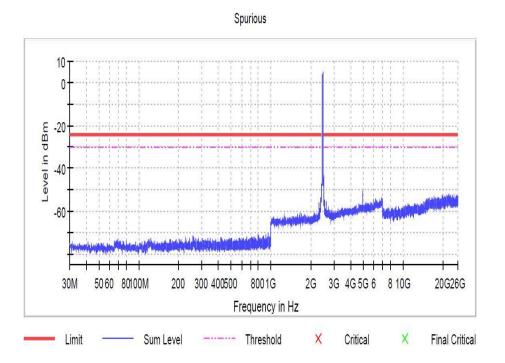

Spurious

Radio Technology = WLAN g, Operating Frequency = mid (S01_AH02)



Radio Technology = WLAN g, Operating Frequency = high (S01_AH02)


Spurious


Radio Technology = WLAN n 20 MHz, Operating Frequency = low (S01_AH02)

Radio Technology = WLAN n 20 MHz, Operating Frequency = mid (S01_AH02)

Radio Technology = WLAN n 20 MHz, Operating Frequency = high (S01_AH02)

4.4.5 TEST EQUIPMENT USED

- R&S TS8997

4.5 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.5.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz

- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: \pm 45 ° around the determined value
- Height variation range: \pm 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$. The elevation angle will slowly vary by $\pm 45^{\circ}$ EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

- Spectrum analyser settings for step 3:
- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s

4.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

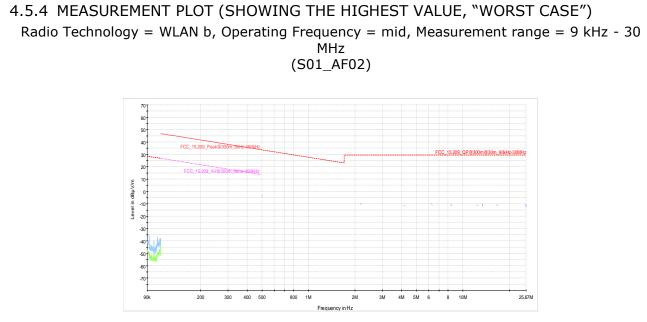
4.5.3 TEST PROTOCOL

Ambient temperature:
Air Pressure:
Humidity:
WLAN b-Mode; 20 MHz; 1 Mbit/s
A secold and shows a second a second attack (A) ().

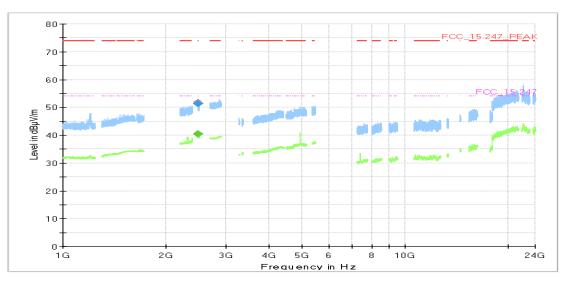
24 - 27 °C 1003 - 1017 hPa 30 - 33 %

Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	112.0	28.7	QP	120	43.5	14.8	RB
1	2412	156.9	29.3	QP	120	43.5	14.2	RB
1	2412	164.7	30.9	QP	120	43.5	12.6	RB
1	2412	240.1	33.7	QP	120	46.0	12.3	RB
1	2412	266.7	39.2	QP	120	46.0	6.8	RB
6	2437	110.1	25.9	QP	120	43.5	17.6	RB
6	2437	156.9	30.1	QP	120	43.5	13.4	RB
6	2437	163.7	31.3	QP	120	43.5	12.2	RB
6	2437	240.1	32.1	QP	120	46.0	13.9	RB
6	2437	266.7	39.3	QP	120	46.0	6.7	RB
11	2462	111.7	26.5	QP	120	43.5	17.0	RB
11	2462	156.9	29.0	QP	120	43.5	14.5	RB
11	2462	163.6	29.4	QP	120	43.5	14.1	RB
11	2462	241.4	35.9	QP	120	46.0	10.1	RB
11	2462	266.7	38.8	QP	120	46.0	7.2	RB
11	2462	276.7	22.1	QP	120	46.0	23.9	RB


WLAN g-Mode; 20 MHz; 6 Mbit/s

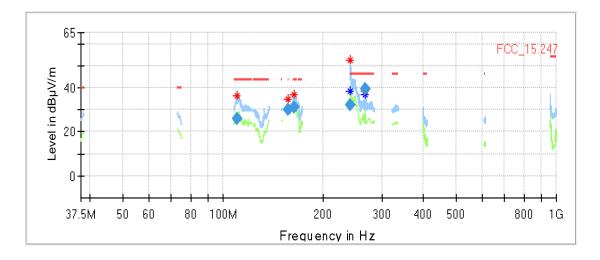
Applied duty cycle correction (AV): 0 dB


Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	2390.0	62.6	PEAK	1000	74.0	11.4	RB
1	2412	2390.0	48.9	AV	1000	54.0	5.1	RB
6	2437	-	-	PEAK	1000	74.0	-	RB
11	2462	-	-	PEAK	1000	74.0	-	RB

Remark: Please see next sub-clause for the measurement plot.

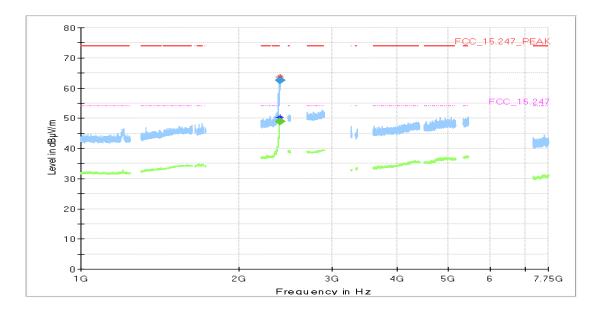
Radio Technology = WLAN b, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_AF02)

Critical_Freqs


Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)
2483.500		40.6	54.00	13.35			150.0	Н	52.0	-4.0
2484.078	52.1		74.00	21.88			150.0	Н	114.0	3.0

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)
2483.500		40.4	54.00	13.62	1000.0	1000.000	150.0	Н	52.0	-4.0
2484.078	51.4		74.00	22.60	1000.0	1000.000	150.0	Н	114.0	3.0


Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S01_AF02)

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Corr. (dB/m)	Comment
110.070000	25.86	43.50	17.64	1000.0	120.000	105.0	V	87.0	11.2	
156.880000	30.06	43.50	13.44	1000.0	120.000	105.0	V	7.0	8.9	
163.692500	31.33	43.50	12.17	1000.0	120.000	105.0	V	-19.0	8.8	
240.120000	32.08	46.00	13.92	1000.0	120.000	205.0	V	68.0	10.9	
266.670000	39.30	46.00	6.70	1000.0	120.000	109.0	Н	61.0	11.8	

Radio Technology = WLAN g, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S01_AF02)

Critical_Freqs

uency IHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)
2390.000	63.6		74.00	10.41			150.0	V	20.0	89.0
2390.000		50.3	54.00	3.67			150.0	V	31.0	85.0

Final_Result

	Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)
	2390.000		48.9	54.00	5.06	1000.0	1000.000	150.0	V	31.0	85.0
[2390.000	62.6		74.00	11.36	1000.0	1000.000	150.0	V	20.0	89.0

4.5.5 TEST EQUIPMENT USED

- Radiated Emissions

4.6 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.6.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions". The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Lower Band Edge: Frequency range: 2310.0 MHz – 2483.5 MHz Upper Band Edge Frequency range: 2400.0 MHz – 2500.0 MHz
- Detector: Peak
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweeptime: auto
- Sweeps: at least 300
- Trace: Maxhold

4.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

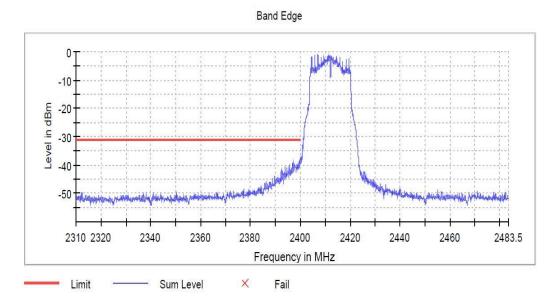
4.6.3 TEST PROTOCOL

Ambient temperature:	24 °C
Air Pressure:	1010 hPa
Humidity:	49 %
WLAN b-Mode; 20 MHz; 1 N	1bit/s

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-50.0	PEAK	100	0.2	-29.8	20.2
11	2462	2483.5	-49.8	PEAK	100	-0.4	-30.4	19.4

WLAN g-Mode; 20 MHz; 6 Mbit/s

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-38.4	PEAK	100	-1.1	-31.1	7.3
11	2462	2483.5	-48.3	PEAK	100	-2.8	-32.8	15.5


WLAN n-Mode; 20 MHz; MCS0

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-41.1	PEAK	100	-3.8	-33.8	7.3
11	2462	2483.5	-49.5	PEAK	100	-4.4	-34.4	15.1

Remark: Please see next sub-clause for the measurement plot.

4.6.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = WLAN g, Operating Frequency = low, Band Edge = low

(S01_AH02)

4.6.5 TEST EQUIPMENT USED

- R&S TS8997

4.7 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.7.1 TEST DESCRIPTION

Please see test description for the test case "Spurious Radiated Emissions"

4.7.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

4.7.3 TEST PROTOCOL

Ambient temperature:24 - 27 °CAir Pressure:1003 - 1017 hPaHumidity:30 - 33 %WLAN b-Mode; 20 MHz; 1 Mbit/sApplied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	51.4	PEAK	1000	74.0	22.6	BE
11	2462	2483.5	40.4	AV	1000	54.0	13.6	BE

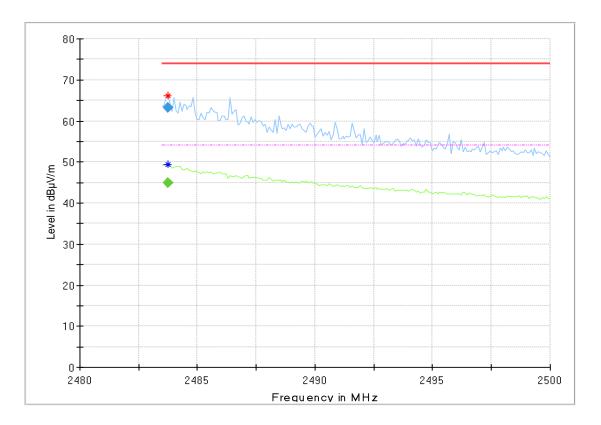
WLAN g-Mode; 20 MHz; 6 Mbit/s

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	58.6	PEAK	1000	74.0	15.4	BE
11	2462	2483.5	42.6	AV	1000	54.0	11.4	BE

WLAN n-Mode; 20 MHz; MCS0

Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	63.1	PEAK	1000	74.0	10.9	BE
11	2462	2483.5	43.3	AV	1000	54.0	10.7	BE


WLAN n-Mode; 20 MHz; MCS8 Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	63.2	PEAK	1000	74.0	10.8	BE
11	2462	2483.5	45.0	AV	1000	54.0	9.0	BE

Remark: Please see next sub-clause for the measurement plot.

4.7.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = WLAN n 20 MHz MIMO, Operating Frequency = high, Band Edge = high (S01_AF02)

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)
2483.748	66.0		74.00	7.96			150.0	Н	19.0	1.0
2483.748		49.4	54.00	4.61			150.0	Н	-71.0	-15.0

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)
2483.748		45.0	54.00	9.00	1000.0	1000.000	150.0	Н	-71.0	-15.0
2483.748	63.2		74.00	10.82	1000.0	1000.000	150.0	Н	19.0	1.0

4.7.5 TEST EQUIPMENT USED

- Radiated Emissions

4.8 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.8.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Trace: Maxhold
- Sweeps: till stable
- Sweeptime: 3 s
- Detector: RMS

4.8.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

The same method of determining the conducted output power shall be used to determine the power spectral density.

4.8.3 TEST PROTOCOL

Ambient temperat Air Pressure: Humidity: WLAN n-Mode; 20		258	24 °C 1010 hPa 49 %		
Band	Ch. No.	Freq. [MHz]	Power Density [dBm/ 100kHz]	Limit [dBm/ 3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-6.6	8.0	14.6
	6	2437	-6.7	8.0	14.7
	11	2462	-7.1	8.0	15.1

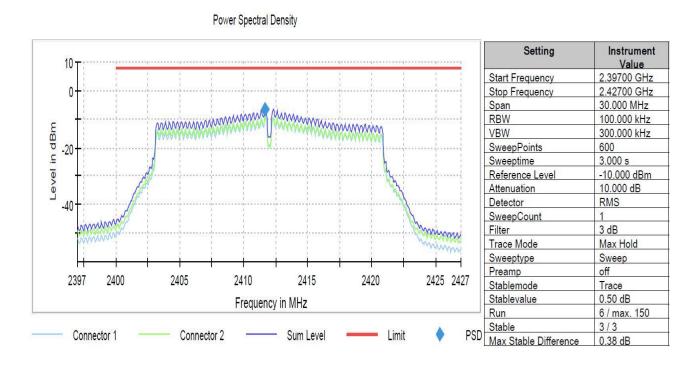
Ambient temperature:	24 °C
Air Pressure:	1010 hPa
Humidity:	49 %

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm/100kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-8.4	8.0	16.4
	6	2437	-8.6	8.0	16.6
	11	2462	-8.4	8.0	16.4

WLAN g-Mode; 20 MHz; 6 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm/100kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-7.2	8.0	15.2
	6	2437	-8.0	8.0	16.0
	11	2462	-8.6	8.0	16.6


WLAN n-Mode; 20 MHz; MCS0

Band	Channel No.	Frequency [MHz]	Power Density [dBm/100kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-10.2	8.0	18.2
	6	2437	-10.3	8.0	18.3
	11	2462	-10.5	8.0	18.5

Remark: Please see next sub-clause for the measurement plot.

4.8.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = WLAN n 20 MHz MIMO, Operating Frequency = low (S01_AH02)

- 4.8.5 TEST EQUIPMENT USED
 - R&S TS8997

5 TEST EQUIPMENT

1 R&S TS8997 EN300328/301893 Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2017-07	2020-07
1.2	MFS	Rubidium Frequency Standard	Datum-Beverly	5489/001	2018-07	2019-07
1.3	1515 / 93459	Broadband Power Divider SMA (Aux)	Weinschel Associates	LN673		
1.4	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2018-04	2020-04
1.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
1.6	VT 4002	Temperature Chamber	Vötsch	58566002150 010	2018-04	2020-04
1.7	A8455-4	4 Way Power Divider (SMA)		-		
1.8	Opus10 THI (8152.00)	ThermoHygro Datalogger 03 (Environ)	Lufft Mess- und Regeltechnik GmbH	7482	2017-03	2019-03
1.9	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2016-10	2019-10
1.10	OSP120	Switching Unit with integrated power meter	Rohde & Schwarz	101158	2018-05	2021-05

2 Radiated Emissions

Lab to perform radiated emission tests

Ref.No.		Description	Manufacturer	Serial	Last	Calibration
2.1	Name MFS	Rubidium Frequency Normal MFS	Datum GmbH	Number 002	Calibration 2017-10	Due 2018-10
2.2	Opus10 TPR (8253.00)	ThermoAirpressure Datalogger 13 (Environ)	Lufft Mess- und Regeltechnik GmbH	13936	2017-04	2019-04
2.3	ESW44	EMI Test Receiver	Rohde & Schwarz GmbH & Co. KG	101603	2018-05	2019-05
2.4	Anechoic Chamber	10.58 x 6.38 x 6.00 m³	Frankonia	none		
2.5	FS-Z60	Harmonic Mixer 40 - 60 GHz	Rohde & Schwarz Messgerätebau GmbH	100178	2016-12	2019-12
2.6	FS-Z220	Harmonic Mixer 140 - 220 GHz	Rohde & Schwarz Messgerätebau GmbH	101005	2017-03	2020-03
2.7	HL 562	Ultralog new biconicals	Rohde & Schwarz	830547/003	2015-06 2018-07	2018-06 2021-07
2.8	5HC2700/12 750-1.5-KK	High Pass Filter	Trilithic	9942012		
2.9	ASP 1.2/1.8- 10 kg	Antenna Mast	Maturo GmbH	-		
2.10	Fully	8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647- 001-PRB	2015-06 2018-06	2018-06 2021-06

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.11	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
2.12	JS4- 18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.13	FSW 43		Rohde & Schwarz	103779	2016-12	2018-12
2.14	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
2.15	SGH-19	Standard Gain / Pyramidal Horn Antenna (40 - 60 GHz)		093		
2.16	WHKX 7.0/18G-8SS	High Pass Filter	Wainwright	09		
2.17	750-1.5-KK	High Pass Filter	Trilithic	9942011		
2.18		AC Power Source	Chroma ATE INC.	64040001304		
2.19	JS4- 00102600- 42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.20	TT 1.5 WI	Turn Table	Maturo GmbH	-		
2.21	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
2.22	HF 906		Rohde & Schwarz	357357/001	2018-03	2021-03
2.23	FS-Z325	Harmonic Mixer 220 - 325 GHz	Rohde & Schwarz Messgerätebau GmbH	101006	2017-03	2020-03
2.24	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
2.25	5HC3500/18 000-1.2-KK	High Pass Filter	Trilithic	200035008		
2.26	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2018-01	2021-01
2.27	Opus10 THI (8152.00)	ThermoHygro Datalogger 12 (Environ)	Lufft Mess- und Regeltechnik GmbH	12482	2017-03	2019-03
2.28	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2016-11	2018-11
2.29	JS4- 00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
2.30	AS 620 P	Antenna mast	HD GmbH	620/37		
2.31	Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	Maturo GmbH	TD1.5- 10kg/024/379 0709		
2.32	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2018-01	2020-01
2.33	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
2.34	AFS42- 00101800- 25-S-42	Broadband Amplifier 25 MHz - 18 GHz	Miteq	2035324		
2.35	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/11 920513		
2.36	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07

3 Regulatory WLAN RF Test Solution Regulatory WLAN RF Tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
		-			Calibration	Due
3.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2017-10	2018-10
3.2	TGA12101	Arbitrary Waveform Generator	Aim and Thurlby Thandar Instruments	284482		
3.3	EX520	Digital Multimeter 12 (Multimeter)	Extech Instruments Corp	05157876	2018-04	2020-04
3.4	NRV Z1 A	Power Sensor	Rohde & Schwarz	832279/013	2017-09	2018-09
3.5	Opus10 THI (8152.00)	T/H Logger 15	Lufft Mess- und Regeltechnik GmbH	13985	2017-04	2019-04
3.6	TOCT Switching Unit		7layers, Inc.	040107		
3.7	KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2018-04	2020-04
3.8	NRVD	Power Meter	Rohde & Schwarz	832025/059	2017-09	2018-09
3.9	FSIQ26	Signal Analyser	Rohde & Schwarz	832695/007	2016-09	2018-09
3.10	FSU26	Spectrum Analyser	Rohde & Schwarz GmbH & Co. KG	100136	2018-01	2019-01
3.11	Shielded Room 07	Shielded Room 4m x 6m				
3.12	SMIQ 03B	Signal Generator	Rohde & Schwarz GmbH & Co. KG	832870/017	2016-06	2019-06
3.13	NGSM 32/10	Power Supply	Rohde & Schwarz	2725	2017-06	2019-06

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

		LISN insertion loss ESH3-	cable loss (incl. 10 dB atten-
Frequency	Corr.	Z5	uator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	11.2	0.5	10.7
28	11.2	0.5	10.7
30	11.3	0.5	10.8

6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

						-				
				cable	cable	cable	cable	distance	dLimit	dused
				loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
_	AF	~		(inside	(outside	(switch	(to	(-40 dB/	distance	distance
Frequency	HFH-Z2)	Corr.	C	<u>amber)</u>	chamber)	unit)	receiver)	decade)	(limit)	(used)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6		0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6		0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6		0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6		0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6		0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6		0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5		0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5		0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5		0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5		0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4		0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4		0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4		0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3		0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3		0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3		0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3		0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3		0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3		0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2		0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1		0.4	0.1	0.3	0.1	-40	30	3

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

(<u>d_{Limit} = 3 m)</u>

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

(switch	loss 4 (to	corr. (-20 dB/	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance
				(used)
				m 3
				3
				3
				3
				3
	-			3
				3
				3
				3
				3
	-			3
				3
				3
				3
				3
				3
				3
				3
				3
				3
(outside chamber) dB 0.04 0.09 0.14 0.20 0.21 0.24 0.24 0.26 0.31 0.35 0.38 0.39 0.46 0.43 0.43 0.42 0.44 0.42 0.54 0.54 0.54 0.60 0.60 0.60	chamber) unit) dB dB 0.04 0.23 0.09 0.32 0.14 0.47 0.20 0.59 0.21 0.70 0.22 0.59 0.21 0.70 0.22 0.89 0.23 0.89 0.31 0.96 0.35 1.03 0.36 1.11 0.39 1.20 0.46 1.24 0.43 1.29 0.34 1.35 0.42 1.41 0.54 1.46 0.46 1.51 0.60 1.56 0.60 1.63	chamber) unit) receiver) dB dB dB 0.04 0.23 0.02 0.09 0.32 0.08 0.14 0.47 0.08 0.20 0.59 0.12 0.21 0.70 0.11 0.22 0.89 0.13 0.24 0.80 0.13 0.25 0.89 0.15 0.31 0.96 0.13 0.35 1.03 0.19 0.35 1.03 0.19 0.38 1.11 0.22 0.39 1.20 0.19 0.46 1.24 0.23 0.43 1.29 0.23 0.43 1.29 0.23 0.43 1.46 0.25 0.42 1.41 0.15 0.54 1.46 0.25 0.46 1.51 0.25 0.46 1.54 0.27 0.60 1.63 0.29	chamber) unit) receiver) decade) dB dB dB dB 0.04 0.23 0.02 0.0 0.09 0.32 0.08 0.0 0.14 0.47 0.08 0.0 0.20 0.59 0.12 0.0 0.21 0.70 0.11 0.0 0.22 0.79 0.11 0.0 0.21 0.70 0.11 0.0 0.24 0.80 0.13 0.0 0.24 0.80 0.13 0.0 0.24 0.80 0.13 0.0 0.31 0.96 0.13 0.0 0.33 1.03 0.19 0.0 0.38 1.11 0.22 0.0 0.34 1.29 0.23 0.0 0.43 1.29 0.23 0.0 0.43 1.29 0.23 0.0 0.44 1.46 0.25 0.0 0.	chamber)unit)receiver)decade)(limit)dBdBdBdBm0.040.230.020.00330.090.320.080.00330.140.470.080.00330.200.590.120.00330.210.700.110.00330.240.800.130.00330.250.890.150.00330.310.960.130.00330.351.030.190.00330.381.110.220.00330.391.200.190.00330.461.240.230.00330.431.290.230.00330.441.410.150.00330.451.460.250.00330.461.510.250.00330.601.630.290.00330.601.660.330.0033

(<u>d_{Limit} = 10 m)</u>

30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

			`		,				
						cable			
				cable		loss 3			
				loss 1		(switch			
				(relay +	cable	unit,			
	AF			cable	loss 2	atten-	cable		
	R&S			inside	(outside	uator &	loss 4 (to		
Frequency	HF907	Corr.		chamber)	chamber)	pre-amp)	receiver)		
MHz	dB (1/m)	dB		dB	dB	dB	dB		
1000	24.4	-19.4		0.99	0.31	-21.51	0.79		
2000	24.4								
		-17.4		1.44	0.44	-20.63	1.38		
3000	31.0	-16.1		1.87	0.53	-19.85	1.33		
4000	33.1	-14.7		2.41	0.67	-19.13	1.31		
5000	34.4	-13.7		2.78	0.86	-18.71	1.40		
6000	34.7	-12.7		2.74	0.90	-17.83	1.47		
7000	35.6	-11.0		2.82	0.86	-16.19	1.46		
.									1
							cable		
							loss 4		
				cable			(switch		
				loss 1	cable	cable	unit,		used
	AF			(relay	loss 2	loss 3	atten-	cable	for
	R&S			inside	(inside	(outside	uator &	loss 5 (to	FCC
Frequency	HF907	Corr.		chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	13.247
3000	31.0				-			-	
		-23.4		0.47	1.87	0.53	-27.58	1.33	
4000	33.1	-23.3		0.56	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7		0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.2		0.58	2.74	0.90	-26.89	1.47	
7000	35.6	-19.8		0.66	2.82	0.86	-25.58	1.46	
				cable					
				loss 1	cable	cable	cable	cable	cable
	AF			(relay	loss 2	loss 3	loss 4	loss 5	loss 6
	R&S			inside	(High	(pre-	(inside	(outside	(to
Frequency	HF907	Corr.		chamber)	Pass)	amp)	chamber)	chamber)	receiver)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	dB
7000	35.6	-57.3		0.56	1.28	-62.72	2.66	0.94	1.46
8000	36.3	-56.3		0.69	0.71	-61.49	2.84	1.00	1.53
9000	37.1	-55.3		0.68	0.65	-60.80	3.06	1.09	1.60
10000	37.5	-56.2		0.70	0.54	-61.91	3.28	1.20	1.67
11000	37.5	-55.3		0.70	0.54	-61.40	3.43	1.20	1.70
12000	37.6	-53.7		0.84	0.42	-59.70	3.53	1.26	1.73
13000	38.2	-53.5		0.83	0.44	-59.81	3.75	1.32	1.83
14000	39.9	-56.3		0.91	0.53	-63.03	3.91	1.40	1.77
15000	40.9	-54.1		0.98	0.54	-61.05	4.02	1.44	1.83
16000	41.3	-54.1		1.23	0.49	-61.51	4.17	1.51	1.85
17000	42.8	-54.4		1.36	0.76	-62.36	4.34	1.53	2.00
18000	44.2	-54.7		1.70	0.53	-62.88	4.41	1.55	1.91
10000	2.דד	JT./		1.70	0.55	02.00	7.71	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

			•				
			cable	cable	cable	cable	cable
	AF		loss 1	loss 2	loss 3	loss 4	loss 5
	EMCO		(inside	(pre-	(inside	(switch	(to
Frequency	3160-09	Corr.	chamber)	amp)	chamber)	unit)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB
18000	40.2	-23.5	0.72	-35.85	6.20	2.81	2.65
18500	40.2	-23.2	0.69	-35.71	6.46	2.76	2.59
19000	40.2	-22.0	0.76	-35.44	6.69	3.15	2.79
19500	40.3	-21.3	0.74	-35.07	7.04	3.11	2.91
20000	40.3	-20.3	0.72	-34.49	7.30	3.07	3.05
20500	40.3	-19.9	0.78	-34.46	7.48	3.12	3.15
21000	40.3	-19.1	0.87	-34.07	7.61	3.20	3.33
21500	40.3	-19.1	0.90	-33.96	7.47	3.28	3.19
22000	40.3	-18.7	0.89	-33.57	7.34	3.35	3.28
22500	40.4	-19.0	0.87	-33.66	7.06	3.75	2.94
23000	40.4	-19.5	0.88	-33.75	6.92	3.77	2.70
23500	40.4	-19.3	0.90	-33.35	6.99	3.52	2.66
24000	40.4	-19.8	0.88	-33.99	6.88	3.88	2.58
24500	40.4	-19.5	0.91	-33.89	7.01	3.93	2.51
25000	40.4	-19.3	0.88	-33.00	6.72	3.96	2.14
25500	40.5	-20.4	0.89	-34.07	6.90	3.66	2.22
26000	40.5	-21.3	0.86	-35.11	7.02	3.69	2.28
26500	40.5	-21.1	0.90	-35.20	7.15	3.91	2.36

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

	AF EMCO		cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4				-15.6	3	0.5
27.0	43.4	-11.2	4.4				-15.6	3	0.5
28.0	43.4	-11.1	4.5				-15.6	3	0.5
29.0	43.5	-11.0	4.6				-15.6	3	0.5
30.0	43.5	-10.9	4.7				-15.6	3	0.5
31.0	43.5	-10.8	4.7				-15.6	3	0.5
32.0	43.5	-10.7	4.8				-15.6	3	0.5
33.0	43.6	-10.7	4.9				-15.6	3	0.5
34.0	43.6	-10.6	5.0				-15.6	3	0.5
35.0	43.6	-10.5	5.1				-15.6	3	0.5
36.0	43.6	-10.4	5.1				-15.6	3	0.5
37.0	43.7	-10.3	5.2				-15.6	3	0.5
38.0	43.7	-10.2	5.3				-15.6	3	0.5
39.0	43.7	-10.2	5.4				-15.6	3	0.5
40.0	43.8	-10.1	5.5				-15.6	3	0.5

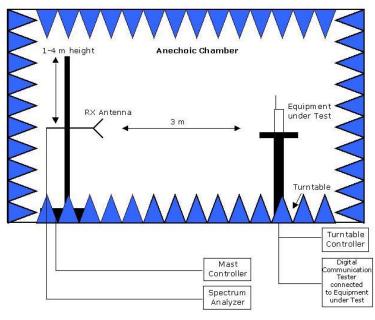
6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Sample calculation

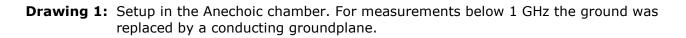
 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

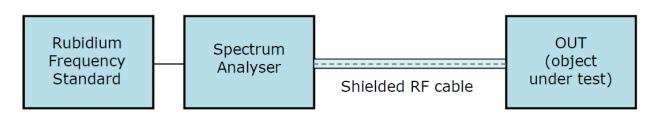
U = Receiver reading

AF = Antenna factor


Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG ($d_{\text{Limit}}/d_{\text{used}}$) Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.



7 SETUP DRAWINGS

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 2: Setup for conducted radio tests.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

9 PHOTO REPORT

Please see separate photo report.