

# FCC Measurement/Technical Report on

# CMBTRX1

# FCC ID: KR5CMBTRX1 IC: 7812D-CMBTRX1

Test Report Reference: MDE\_CONTI\_2135\_FCC\_02

**Test Laboratory:** 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany



Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

**7layers GmbH** Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF



| Tabl | le of Contents                                      |    |
|------|-----------------------------------------------------|----|
| 1.1  | Applied Standards                                   | 3  |
| 1.2  | FCC-IC Correlation Table                            | 4  |
| 1.3  | Measurement Summary / Signatures                    | 5  |
| 2    | Administrative Data                                 | 9  |
| 2.1  | Testing Laboratory                                  | 9  |
| 2.2  | Project Data                                        | 9  |
| 2.3  | Applicant Data                                      | 9  |
| 2.4  | Manufacturer Data                                   | 9  |
| 3    | Test object Data                                    | 10 |
| 3.1  | General EUT Description                             | 10 |
| 3.2  | EUT Main components                                 | 11 |
| 3.3  | Ancillary Equipment                                 | 12 |
| 3.4  | Auxiliary Equipment                                 | 12 |
| 3.5  | EUT Setups                                          | 12 |
| 3.6  | Operating Modes                                     | 13 |
| 3.7  | Product labelling                                   | 13 |
| 4    | Test Results                                        | 14 |
| 4.1  | -10 dB BANDWIDTH – 15.503(d)                        | 14 |
| 4.2  | PEAK EMISSION – 15.521(e)                           | 19 |
| 4.3  | Radiated Emissions                                  | 24 |
| 4.4  | Radiated Emissions in GNSS bands                    | 42 |
| 5    | Test Equipment                                      | 47 |
| 6    | Antenna Factors, Cable Loss and Sample Calculations | 49 |
| 6.1  | LISN R&S ESH3-Z5 (150 kHz – 30 MHz)                 | 49 |
| 6.2  | Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)                | 50 |
| 6.3  | Antenna R&S HL562 (30 MHz – 1 GHz)                  | 51 |
| 6.4  | Antenna R&S HF907 (1 GHz – 18 GHz)                  | 52 |
| 6.5  | Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)            | 53 |
| 6.6  | Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)            | 54 |
| 7    | Setup Drawings                                      | 55 |
| 8    | Measurement Uncertainties                           | 56 |
| 9    | Photo Report                                        | 57 |



# **Applied Standards and Test Summary**

# 1.1 APPLIED STANDARDS

#### Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-20 Edition). The following subparts are applicable to the results in this test report.

## Part 2, Subpart J - Equipment Authorization Procedures, Certification

# Part 15, Subpart F – Ultra Wideband Operation

- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.503 Definitions
- § 15.519 Technical Requirements for hand held UWB devices
- § 15.521 Technical requirements applicable for all UWB devices

Note: ANSI C63.10–2013 is applied.



#### Summary Test Results:

# The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

# 1.2 FCC-IC CORRELATION TABLE

| <b>Correlation of measurement requirements for</b> |
|----------------------------------------------------|
| handheld UWB equipment                             |
| from                                               |
| FCC and IC                                         |

| Measurement                                              | FCC reference                  | IC reference                                                                 |
|----------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------|
| Conducted emissions on AC<br>Mains                       | § 15.207                       | RSS-Gen Issue 5: 8.8                                                         |
| -10 dB Occupied bandwidth                                | § 15.503 (d);<br>§ 15.519 (b)  | RSS-220 Issue 1: 2;<br>RSS-220 Issue 1: 5.1 (a);<br>RSS-220 Issue 1: Annex 2 |
| Peak Emission                                            | § 15.519 (e);<br>§ 15.521 (e)  | RSS-220 Issue 1: 5.3.1 (g)<br>RSS-220 Issue 1: Annex 4                       |
| Transmitter spurious radiated emissions                  | § 15.209 (a);<br>§ 15.519 (c); | RSS-220 Issue 1: 3.4;<br>RSS-220 Issue 1: 5.3.1 (c), (d)                     |
| Transmitter spurious<br>radiated emissions GNSS<br>bands | § 15.519 (d)                   | RSS-220 Issue 1: 5.3.1 (e)                                                   |
| Transmission time                                        | § 15.519 (a) (1)               | RSS-220 Issue 1: 5.3.1 (b)                                                   |



# 1.3 MEASUREMENT SUMMARY / SIGNATURES

| 47 CFR CHAPTER I FCC PART 15 Subpart F                                                                | § 15.207     |          |        |  |
|-------------------------------------------------------------------------------------------------------|--------------|----------|--------|--|
| Conducted Emissions at AC mains<br>The measurement was performed according to ANSI C63<br>chapter 6.2 | 3.10,        | Final Re | sult   |  |
| <b>OP-Mode</b><br>AC mains connection, Test setup                                                     | Setup        | FCC      | IC     |  |
| -, -                                                                                                  | -            | N/A      | N/A    |  |
| 47 CFR CHAPTER I FCC PART 15 Subpart F                                                                | § 15.503 (d) |          |        |  |
| -10 dB Occupied Bandwidth<br>The measurement was performed according to ANSI C63<br>chapter 10.1      | 3.10,        | Final R  | esult  |  |
| <b>OP-Mode</b><br>Measurement method, Operating band, Channel, OP-Mode                                | Setup        | FCC      | IC     |  |
| radiated, 3100-10600 MHz, CH 5 ANT1, OP-Mode 1                                                        | S01 AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH 5 ANT2, OP-Mode 1                                                        | S01 AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_5_ANT1, OP-Mode 2                                                        |              | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_5_ANT2, OP-Mode 2                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_5_ANT1, OP-Mode 3                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_5_ANT2, OP-Mode 3                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_5_ANT1, OP-Mode 4                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_5_ANT2, OP-Mode 4                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_6_ANT1, OP-Mode 1                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_6_ANT2, OP-Mode 1                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_6_ANT1, OP-Mode 4                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_6_ANT2, OP-Mode 4                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_8_ANT1, OP-Mode 1                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_8_ANT2, OP-Mode 1                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_8_ANT1, OP-Mode 4                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_8_ANT2, OP-Mode 4                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_9_ANT1, OP-Mode 1                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_9_ANT2, OP-Mode 1                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_9_ANT1, OP-Mode 2                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_9_ANT2, OP-Mode 2                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_9_ANT1, OP-Mode 3                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_9_ANT2, OP-Mode 3                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_9_ANT1, OP-Mode 4                                                        | S01_AD01     | Passed   | Passed |  |
| radiated, 3100-10600 MHz, CH_9_ANT2, OP-Mode 4                                                        | S01_AD01     | Passed   | Passed |  |



# 47 CFR CHAPTER I FCC PART 15 Subpart F § 15.521 (e)

| Peak Emission                                          |          |         |        |
|--------------------------------------------------------|----------|---------|--------|
| The measurement was performed according to ANSI C63.10 | ,        | Final R | esult  |
| chapter 10.3.5, 10.3.6                                 |          |         |        |
| OB-Mode                                                | Setun    | FCC     | τc     |
| Measurement method, Operating band, Channel, OP-Mode   | Setup    |         | ю      |
| radiated, 3100-10600 MHz, CH_5_ANT1, OP-Mode 1         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH 5 ANT2, OP-Mode 1         | S01 AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_5_ANT1, OP-Mode 2         |          | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_5_ANT2, OP-Mode 2         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_5_ANT1, OP-Mode 3         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_5_ANT2, OP-Mode 3         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_5_ANT1, OP-Mode 4         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_5_ANT2, OP-Mode 4         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_6_ANT1, OP-Mode 1         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_6_ANT2, OP-Mode 1         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_6_ANT1, OP-Mode 4         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_6_ANT2, OP-Mode 4         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_8_ANT1, OP-Mode 1         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_8_ANT2, OP-Mode 1         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_8_ANT1, OP-Mode 4         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_8_ANT2, OP-Mode 4         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_9_ANT1, OP-Mode 1         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_9_ANT2, OP-Mode 1         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_9_ANT1, OP-Mode 2         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_9_ANT2, OP-Mode 2         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_9_ANT1, OP-Mode 3         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_9_ANT2, OP-Mode 3         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_9_ANT1, OP-Mode 4         | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, CH_9_ANT2, OP-Mode 4         | S01_AD01 | Passed  | Passed |



# 47 CFR CHAPTER I FCC PART 15 Subpart F § 15.209 (a) / § 15.519 (c)

| The measurement was performed according to ANSI C63.10, chapter 10.2, 10.3                   |          | Final I | Result |
|----------------------------------------------------------------------------------------------|----------|---------|--------|
| <b>OP-Mode</b><br>Measurement method, Operating band, Measurement range,<br>Channel, OP-Mode | Setup    | FCC     | IC     |
| radiated, 3100-10600 MHz, 9 kHz – 30 MHz, CH5_ANT1, OP-Mode 3                                | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 30 MHz – 960 MHz, CH5_ANT1, OP-Mode 3                              | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 960 MHz – 12.4 GHz, CH5_ANT1, OP-Mode 3                            | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 12.4 GHz - 18 GHz, CH5_ANT1, OP-Mode 3                             | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 18 GHz – 26 GHz, CH5_ANT1, OP-Mode 3                               | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 26 GHz - 40 GHz, CH5_ANT1, OP-Mode 3                               | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 9 kHz – 30 MHz, CH6_ANT2, OP-Mode 4                                | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 30 MHz – 960 MHz, CH6_ANT2, OP-Mode 4                              | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 960 MHz – 12.4 GHz, CH6_ANT2, OP-Mode 4                            | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 12.4 GHz - 18 GHz, CH6_ANT2, OP-Mode 4                             | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 18 GHz – 26 GHz, CH6_ANT2, OP-Mode 4                               | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 26 GHz - 40 GHz, CH6_ANT2, OP-Mode 4                               | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 9 kHz – 30 MHz, CH8_ANT2, OP-Mode 4                                | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 30 MHz – 960 MHz, CH8_ANT2, OP-Mode 4                              | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 960 MHz - 12.4 GHz, CH8_ANT2, OP-Mode 4                            | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 12.4 GHz - 18 GHz, CH8_ANT2, OP-Mode 4                             | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 18 GHz – 26 GHz, CH8_ANT2, OP-Mode 4                               | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 26 GHz - 40 GHz, CH8_ANT2, OP-Mode 4                               | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 9 kHz – 30 MHz, CH9_ANT2, OP-Mode 3                                | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 30 MHz – 960 MHz, CH9_ANT2, OP-Mode 3                              | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 960 MHz – 12.4 GHz, CH9_ANT2, OP-Mode 3                            | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 12.4 GHz – 18 GHz, CH9_ANT2, OP-Mode 3                             | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 18 GHz – 26 GHz, CH9_ANT2, OP-Mode 3                               | S01_AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 26 GHz – 40 GHz, CH9_ANT2, OP-Mode 3                               | S01_AD01 | Passed  | Passed |
| 47 CFR CHAPTER I FCC PART 15 Subpart F § 15                                                  | .519 (d) |         |        |
| The measurement was performed according to ANSI C63.10, chapter 10.3.10                      |          | Final I | Result |
| <b>OP-Mode</b><br>Measurement method, Operating band, Measurement range,<br>Channel, OP-Mode | Setup    | FCC     | IC     |
| radiated, 3100-10600 MHz, 1164 MHz – 1240 MHz, CH5 ANT1, OP-Mode 3                           | S01 AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 1164 MHz – 1240 MHz, CH6 ANT2, OP-Mode 4                           | S01 AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 1164 MHz – 1240 MHz, CH8 ANT2, OP-Mode 4                           | S01 AD01 | Passed  | Passed |
| radiated, 3100-10600 MHz, 1559 MHz – 1610 MHz, CH9 ANT2, OP-Mode 3                           | S01 AD01 | Passed  | Passed |
|                                                                                              |          |         |        |

N/A: Not applicable N/P: Not performed



(responsible for testing and report)

B.Sc. Jens Dörwald

# **Revision History**

|         |                     | Report version control |                  |
|---------|---------------------|------------------------|------------------|
| Version | <b>Release date</b> | Change Description     | Version validity |
| initial | 2022-03-10          |                        | valid            |

(responsible for accreditation scope) Dipl.-Ing. Marco Kullik

ayers

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0



# 2 ADMINISTRATIVE DATA

# 2.1 TESTING LABORATORY

| Company Name:                              | 7layers GmbH                               |
|--------------------------------------------|--------------------------------------------|
| Address:                                   | Borsigstr. 11<br>40880 Ratingen<br>Germany |
| The test facility is accredited by the fol | lowing accreditation organisation:         |
| Laboratory accreditation not               |                                            |

| Laboratory accreditation no:         | DAkkS D-PL-12140-01-01  -02   -03 |
|--------------------------------------|-----------------------------------|
| FCC Designation Number:              | DE0015                            |
| FCC Test Firm Registration:          | 929146                            |
| ISED CAB Identifier                  | DE0007; ISED#: 3699A              |
| Responsible for accreditation scope: | DiplIng. Marco Kullik             |
| Report Template Version:             | 2019-03-11                        |

## 2.2 PROJECT DATA

| Responsible for testing and report: | B.Sc. Jens Dörwald               |
|-------------------------------------|----------------------------------|
| Employees who performed the tests:  | documented internally at 7Layers |
| Date of Report:                     | 2022-03-10                       |
| Testing Period:                     | 2021-12-02 to 2022-02-22         |

# 2.3 APPLICANT DATA

| Company Name:   | Continental Automotive GmbH                      |
|-----------------|--------------------------------------------------|
| Address:        | Siemensstrasse 12<br>93055 Regensburg<br>Germany |
| Contact Person: | Mrs. Alexandra Anisoreac                         |

# 2.4 MANUFACTURER DATA

| company Name. |
|---------------|
|---------------|

please see Applicant Data

Address: Contact Person:



# 3 TEST OBJECT DATA

# 3.1 GENERAL EUT DESCRIPTION

| Kind of Device<br>product description | UWB (Ultra Wide Band) and BLE (Bluetooth Low Energy) transceiver module for car access and user localization purposes.                                                                                                                                                                                                                                                           |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product name                          | CMBTRX1                                                                                                                                                                                                                                                                                                                                                                          |
| Туре                                  | -                                                                                                                                                                                                                                                                                                                                                                                |
| Declared EUT data by                  | the supplier                                                                                                                                                                                                                                                                                                                                                                     |
| Power Supply Type                     | DC                                                                                                                                                                                                                                                                                                                                                                               |
| Normal Voltage                        | 12 V                                                                                                                                                                                                                                                                                                                                                                             |
| Low Voltage                           | 8 V                                                                                                                                                                                                                                                                                                                                                                              |
| High Voltage                          | 16 V                                                                                                                                                                                                                                                                                                                                                                             |
| Normal Temperature                    | 20.0 °C                                                                                                                                                                                                                                                                                                                                                                          |
| Low Temperature                       | -40.0 °C                                                                                                                                                                                                                                                                                                                                                                         |
| High Temperature                      | +105.0 °C                                                                                                                                                                                                                                                                                                                                                                        |
| Antenna type / Gain                   | Integrated monopole antenna                                                                                                                                                                                                                                                                                                                                                      |
|                                       | CH5 / CH6 / CH8 / CH9<br>Ant1: 6.8 / 7.0 / 6.5 / 5.4 dBi<br>Ant2: 3.9 / 3.4 / 5.0 / 4.8 dBi                                                                                                                                                                                                                                                                                      |
| OP-Modes                              | OP-Mode 1: FC1T1ND_lin_C0_PC9 (CH5/9)<br>OP-Mode 2: FC1T1ND_min_C1_PC9 (CH5/9)<br>OP-Mode 3: FC1T2_min_C1_PC10 (CH5/9)<br>OP-Mode 4: ECO_FC1T1ND_min_C1_PC25 (CH5/6/8/9)<br>CHxy_ANT1: fixed on Antenna 1 on the selected channel<br>CHxy_ANT2: fixed on Antenna 2 on the selected channel<br>CHxy_ANT1_ANT2: toggles between Antenna 1 and Antenna 2 on<br>the selected channel |
| Occupied bandwidth                    | 500 MHz                                                                                                                                                                                                                                                                                                                                                                          |
| Highest internal<br>frequency         | 7987.2 MHz                                                                                                                                                                                                                                                                                                                                                                       |
| Ports                                 | Enclosure                                                                                                                                                                                                                                                                                                                                                                        |
| Special software used for testing     | test software                                                                                                                                                                                                                                                                                                                                                                    |

# The main components of the EUT are listed and described in chapter 3.2 EUT Main components.



# 3.2 EUT MAIN COMPONENTS

| Sample Name      | Sample Code   | Description         |
|------------------|---------------|---------------------|
| EUTĂ             | DE1439005ad01 | radiated UWB sample |
| Sample Parameter |               | Value               |
| HW Version       | C1            |                     |
| SW Version       | 06FF          |                     |
| Serial No.       | 20212861002   |                     |
| Comment          |               |                     |

NOTE: The short description is used to simplify the identification of the EUT in this test report.



# 3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

| Device | Details<br>(Manufacturer, Type Model, OUT<br>Code) | Description |
|--------|----------------------------------------------------|-------------|
| -      | -                                                  | -           |

# 3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

But nevertheless Auxiliary Equipment can influence the test results.

| Device | Details<br>(Manufacturer, HW, SW, S/N) | Description |
|--------|----------------------------------------|-------------|
| -      | -                                      | -           |

# 3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

| Setup    | Combination of EUTs | Description and Rationale |
|----------|---------------------|---------------------------|
| S01_AD01 | EUT A               | radiated setup            |



# 3.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

Series like UWB telegrams with dummy data (e.g. 0xCAFECAFECAFECAFE & postamble) with appr. 1.52 ms repetition rate

# 3.6.1 TEST CHANNELS

| Operating frequencies | Centre frequency |
|-----------------------|------------------|
|                       | CH5 6489.6 MHz   |
|                       | CH6 6988.8 MHz   |
|                       | CH8 7488.0 MHz   |
|                       | CH9 7987.2 MHz   |

# 3.7 PRODUCT LABELLING

# 3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

# 3.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.



# 4 TEST RESULTS

4.1 -10 dB BANDWIDTH - 15.503(d)

Standard FCC Part 15 Subpart F

#### The test was performed according to:

ANSI C63.10, chapter 10.1

#### **Definition:**

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (biggest) emission bandwidth.

#### **Test Procedure:**

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

The measurement was performed with one height (1.5 m) of the receiving antenna. The measurement distance was 3m.

A search for the direction of maximum output power level is not performed because this is a relative measurement.

The test procedure for "Evaluation of -10 dB bandwidth" of the ANSI C63.10, Chapter 10.1 was used with the following Spectrum Analyzer settings:

- Resolution Bandwidth (RBW): 1 MHz
- Video Bandwidth (VBW): 3 MHz
- Center Frequency: Nominal channel center frequency
- Span: 1 GHz
- Sweeptime: 1s
- Sweep points: 1001
- Sweeps: until trace stabilizes
- Trace: Maxhold
- Detector: Peak

The Test was performed radiated in a Fully Anechoic Chamber in the following setup:





# 4.1.1 TEST REQUIREMENTS / LIMITS

# FCC Part 15, Subpart F, §15.503 (d)

*Ultra-wideband (UWB) transmitter*. An intentional radiator that, at any point in time, has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth.

## RSS-220, 2.

A UWB device is an intentional radiator that has either a -10 dB bandwidth of at least 500 MHz or a -10 dB fractional bandwidth greater than 0.2.



# 4.1.2 TEST PROTOCOL

| Ambient       |          |
|---------------|----------|
| temperature:  | 24 °C    |
| Air Pressure: | 1019 hPa |
| Humidity:     | 31 %     |

| Channel  | OP-Mode   | Lower<br>-10 dBc<br>Frequency fL<br>[MHz] | Upper<br>-10 dBc<br>Frequency fL<br>[MHz] | 10 dBc<br>OWB<br>[MHz] | Limit<br>[MHz] | Margin to<br>Limit<br>[MHz] |
|----------|-----------|-------------------------------------------|-------------------------------------------|------------------------|----------------|-----------------------------|
| CH5_ANT1 | OP-Mode 1 | 6225                                      | 6785                                      | 560                    | 500            | 60                          |
| CH5_ANT2 | OP-Mode 1 | 6278                                      | 6784                                      | 506                    | 500            | 6                           |
| CH5_ANT1 | OP-Mode 2 | 6225                                      | 6784                                      | 559                    | 500            | 59                          |
| CH5_ANT2 | OP-Mode 2 | 6278                                      | 6783                                      | 505                    | 500            | 5                           |
| CH5_ANT1 | OP-Mode 3 | 6224                                      | 6772                                      | 548                    | 500            | 48                          |
| CH5_ANT2 | OP-Mode 3 | 6283                                      | 6783                                      | 500                    | 500            | 0                           |
| CH5_ANT1 | OP-Mode 4 | 6224                                      | 6785                                      | 561                    | 500            | 61                          |
| CH5_ANT2 | OP-Mode 4 | 6275                                      | 6797                                      | 522                    | 500            | 22                          |
| CH6_ANT1 | OP-Mode 1 | 6696                                      | 7277                                      | 581                    | 500            | 81                          |
| CH6_ANT2 | OP-Mode 1 | 6697                                      | 7265                                      | 568                    | 500            | 68                          |
| CH6_ANT1 | OP-Mode 4 | 6689                                      | 7284                                      | 595                    | 500            | 95                          |
| CH6_ANT2 | OP-Mode 4 | 6673                                      | 7267                                      | 594                    | 500            | 94                          |
| CH8_ANT1 | OP-Mode 1 | 7168                                      | 7784                                      | 616                    | 500            | 116                         |
| CH8_ANT2 | OP-Mode 1 | 7210                                      | 7781                                      | 571                    | 500            | 71                          |
| CH8_ANT1 | OP-Mode 4 | 7161                                      | 7805                                      | 644                    | 500            | 144                         |
| CH8_ANT2 | OP-Mode 4 | 7210                                      | 7782                                      | 572                    | 500            | 72                          |
| CH9_ANT1 | OP-Mode 1 | 7691                                      | 8272                                      | 581                    | 500            | 81                          |
| CH9_ANT2 | OP-Mode 1 | 7695                                      | 8262                                      | 567                    | 500            | 67                          |
| CH9_ANT1 | OP-Mode 2 | 7692                                      | 8266                                      | 574                    | 500            | 74                          |
| CH9_ANT2 | OP-Mode 2 | 7700                                      | 8256                                      | 556                    | 500            | 56                          |
| CH9_ANT1 | OP-Mode 3 | 7705                                      | 8259                                      | 554                    | 500            | 54                          |
| CH9_ANT2 | OP-Mode 3 | 7708                                      | 8257                                      | 549                    | 500            | 49                          |
| CH9_ANT1 | OP-Mode 4 | 7671                                      | 8276                                      | 605                    | 500            | 105                         |
| CH9_ANT2 | OP-Mode 4 | 7694                                      | 8265                                      | 571                    | 500            | 71                          |





# 4.1.3 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Measurement method = radiated, Channel = 5, Antenna 2, OP-mode 3

Measurement method = radiated, Channel = 6, Antenna 2, OP-mode 1







#### Measurement method = radiated, Channel = 8, Antenna 2, OP-mode 1





#### TEST EQUIPMENT USED: - Radiated Emissions



# 4.2 PEAK EMISSION – 15.521(e)

# Standard FCC Part 15 Subpart F

#### The test was performed according to:

ANSI C63.10, chapter 10.3.5, 10.3.6

## **Definition:**

The maximum peak power specified as e.i.r.p. contained within a 50 MHz bandwidth at the frequency at which the highest mean radiated power occurs, radiated in the direction of the maximum level under the specified conditions of measurement.

## **Test Procedure:**

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only. The measurement distance for all steps was 3m.

#### Step 1: Preliminary scan

This is a preliminary test to identify the direction of maximum output power level of the EUT. Spectrum analyser settings for step 1:

- Resolution Bandwidth (RBW): 1 MHz
- Video Bandwidth (VBW): 3 MHz
- Detector: RMS
- Center Frequency: Nominal channel center frequency
- Span: 1 GHz
- Sweeptime: 1s
- Sweep points: 1001
- Sweeps: 10
- Trace: Maxhold

Turn table and antenna settings

- Turntable angle range: -180° to 90°
- Turntable step size (azimuth): 45°
- Elevation angle range: 0° 90°
- Elevation step size: 90°
- Antenna polarisation: Horizontal + Vertical

#### **Step 2:** Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For the frequency with the highest power, the turntable azimuth and EUT elevation will be adjusted. The turntable azimuth will slowly vary by  $\pm$  22.5°. The elevation angle will slowly vary by  $\pm$  45°. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the elevation angle will also slowly vary by  $\pm$  22.5° around the elevation angle determined in step one. During this action, the value of emission is also continuously measured. The elevation angle of the highest emission will also be recorded and adjusted.



- Measured frequencies: in step 1 determined frequencies
- Resolution Bandwidth (RBW): 1 MHz
- Video Bandwidth (VBW): 3 MHz
- Detector: RMS
- Sweep time: 100 ms
- Turntable angle range: ± 22.5° around the determined value of step 1
- EUT elevation angle: ± 45° around the determined value of step 1
- Antenna Polarisation: max. value determined in step 1

**Step 3:** Final measurement with the following analyser settings Analyzer settings:

- Resolution Bandwidth (RBW): 50 MHz
- Video Bandwidth (VBW): 50 MHz
- Center Frequency: Nominal channel center frequency
- Span: 1 GHz
- Sweeptime: 1s
- Sweep points: 1001
- Trace: Maxhold
- Sweeps: until trace stabilizes
- Sweeptime: 1 s
- Detector: Peak

After the measurement, a plot will be generated which contains a diagram with the results of the final measurement. A marker shows the highest emission.

The radiated test was performed with the following setup:



Test Setup; Spurious Emission Radiated (FAC), 30 MHz -26.5 GHz



# 4.2.1 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart F, §15.221 (e)

The frequency at which the highest radiated emission occurs,  $f_M$ , must be contained within the UWB bandwidth.

# 4.2.2 TEST PROTOCOL

| Ambient       |          |
|---------------|----------|
| temperature:  | 24 °C    |
| Air Pressure: | 1019 hPa |
| Humidity:     | 31 %     |

| Channel  | OP-Mode   | Highest Peak<br>Emission Power<br>Pmeas [dBm] | Highest Peak<br>Emission<br>Frequency<br>[MHz] | Limit<br>Maximum<br>Power<br>[dBm] | Margin<br>to Limit<br>[dB] | Lower -10<br>dB<br>Frequency<br>fl [MHz | Upper -10<br>dB<br>Frequency<br>fu [MHz | Highest Peak<br>Emission<br>within UWB<br>Bandwidth |
|----------|-----------|-----------------------------------------------|------------------------------------------------|------------------------------------|----------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------------|
| CH5_ANT1 | OP-Mode 1 | -13.34                                        | 6551                                           | 0                                  | 13.34                      | 6225                                    | 6785                                    | yes                                                 |
| CH5_ANT1 | OP-Mode 2 | -13.44                                        | 6545                                           | 0                                  | 13.44                      | 6225                                    | 6784                                    | yes                                                 |
| CH5_ANT1 | OP-Mode 3 | -5.92                                         | 6489                                           | 0                                  | 5.92                       | 6224                                    | 6772                                    | yes                                                 |
| CH5_ANT1 | OP-Mode 4 | -11.58                                        | 6551                                           | 0                                  | 11.58                      | 6224                                    | 6785                                    | yes                                                 |
| CH5_ANT2 | OP-Mode 1 | -14.06                                        | 6678                                           | 0                                  | 14.06                      | 6278                                    | 6784                                    | yes                                                 |
| CH5_ANT2 | OP-Mode 2 | -14.24                                        | 6679                                           | 0                                  | 14.24                      | 6225                                    | 6784                                    | yes                                                 |
| CH5_ANT2 | OP-Mode 3 | -7.60                                         | 6492                                           | 0                                  | 7.60                       | 6283                                    | 6783                                    | yes                                                 |
| CH5_ANT2 | OP-Mode 4 | -12.59                                        | 6678                                           | 0                                  | 12.59                      | 6275                                    | 6797                                    | yes                                                 |
| CH6_ANT1 | OP-Mode 1 | -12.29                                        | 7052                                           | 0                                  | 12.29                      | 6696                                    | 7277                                    | yes                                                 |
| CH6_ANT1 | OP-Mode 4 | -10.44                                        | 7050                                           | 0                                  | 10.44                      | 6689                                    | 7284                                    | yes                                                 |
| CH6_ANT2 | OP-Mode 1 | -11.49                                        | 6926                                           | 0                                  | 11.49                      | 6697                                    | 7265                                    | yes                                                 |
| CH6_ANT2 | OP-Mode 4 | -8.97                                         | 6926                                           | 0                                  | 8.97                       | 6673                                    | 7267                                    | yes                                                 |
| CH8_ANT1 | OP-Mode 1 | -13.45                                        | 7550                                           | 0                                  | 13.45                      | 7168                                    | 7784                                    | yes                                                 |
| CH8_ANT1 | OP-Mode 4 | -11.46                                        | 7551                                           | 0                                  | 11.46                      | 7161                                    | 7805                                    | yes                                                 |
| CH8_ANT2 | OP-Mode 1 | -10.02                                        | 7549                                           | 0                                  | 10.02                      | 7210                                    | 7781                                    | yes                                                 |
| CH8_ANT2 | OP-Mode 4 | -7.26                                         | 7488                                           | 0                                  | 7.26                       | 7210                                    | 7782                                    | yes                                                 |
| CH9_ANT1 | OP-Mode 1 | -12.36                                        | 7933                                           | 0                                  | 12.36                      | 7691                                    | 8272                                    | yes                                                 |
| CH9_ANT1 | OP-Mode 2 | -12.51                                        | 7990                                           | 0                                  | 12.51                      | 7692                                    | 8266                                    | yes                                                 |
| CH9_ANT1 | OP-Mode 3 | -4.19                                         | 7988                                           | 0                                  | 4.19                       | 7705                                    | 8259                                    | yes                                                 |
| CH9_ANT1 | OP-Mode 4 | -10.61                                        | 7987                                           | 0                                  | 10.61                      | 7671                                    | 8276                                    | yes                                                 |
| CH9_ANT2 | OP-Mode 1 | -12.35                                        | 7990                                           | 0                                  | 12.35                      | 7695                                    | 8262                                    | yes                                                 |
| CH9_ANT2 | OP-Mode 2 | -12.50                                        | 7989                                           | 0                                  | 12.50                      | 7700                                    | 8256                                    | yes                                                 |
| CH9_ANT2 | OP-Mode 3 | -3.69                                         | 7989                                           | 0                                  | 3.69                       | 7708                                    | 8257                                    | yes                                                 |
| CH9_ANT2 | OP-Mode 4 | -10.50                                        | 7987                                           | 0                                  | 10.50                      | 7694                                    | 8265                                    | yes                                                 |





# 4.2.3 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Measurement method = radiated, Channel = 5, Antenna 1, OP-mode 3

Measurement method = radiated, Channel = 6, Antenna 2, OP-mode 4







## Measurement method = radiated, Channel = 8, Antenna 2, OP-mode 4





TEST EQUIPMENT USED: - Radiated Emissions



## 4.3 RADIATED EMISSIONS

## Standard FCC Part 15 Subpart F FCC Part 15 Subpart C

#### The test was performed according to:

ANSI C63.10, chapter 10.2, 10.3

# 4.3.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table  $1.0 \times 2.0 \text{ m}^2$  in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

#### 1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

#### Step 1: pre measurement

Settings for step 1:

- Anechoic chamber
- Antenna distance: 3 m
- Antenna height: 1 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

#### Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Detector: Quasi-Peak (9 kHz 150 kHz, Peak / Average 150 kHz- 30 MHz)
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF–Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

#### 2. Measurement above 30 MHz and up to 960 MHz

#### **Step 1:** Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Measurement distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz



- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

## Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by  $\pm$  45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by  $\pm$  100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range:  $\pm$  45 ° around the determined value
- Height variation range: ± 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

#### Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed: EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

# 3. Measurement 960 MHz – 18 GHz

The following modifications apply to the measurement procedure for the frequency range 960 MHz – 18 GHz GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The following spectrum analyser setting are used for all steps:

- Measurement distance: 1 m
- Detector: RMS
- RBW: 1 MHz
- VBW: 3 MHz
- Measuring time: 1 ms / Sweep point
- Sweep Points: 1 / MHz [Span]



Step 1: Preliminary scan

- Settings for step 1:
- Turntable angle range: -180° to 90°
- Turntable step size: 45°
- Elevation step size: 90°
- Polarisation: Horizontal + Vertical

#### Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth elevation will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and elevation angle will be adjusted. The turntable azimuth will slowly vary by  $\pm$  22.5° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the elevation angle will also slowly vary by  $\pm$  45°. During this action, the value of emission is also continuously measured. The elevation angle of the highest emission will also be recorded and adjusted.

- Turntable angle range:  $\pm$  22.5° around the determined value
- Elevation angle range:  $\pm$  45° around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with RMS detector

With the settings determined in step 2, the final measurement will be performed:

#### 4. Measurement 18 GHz – 26 GHz

The only difference to measurement procedure in the frequency range 960 MHz – 18 GHz, is the reduced measurement distance of 0.5 m. The measurement procedure is identical.

#### 5. Measurement 26 GHz – 40 GHz

The measurement settings and procedure for this frequency range are identical to the frequency range 960 MHz to 18 GHz.

The Test was performed radiated in a Semi and Fully Anechoic Chamber in the following setups:



Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz





Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz



Test Setup; Spurious Emission Radiated (FAC), 26.5 - 40 GHz

# 4.3.2 TEST REQUIREMENTS / LIMITS

#### FCC Part 15, Subpart F, §15.519 (c)

The radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in §15.209. The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz:

| Frequency in MHz | EIRP in dBm |
|------------------|-------------|
| 960 - 1610       | -75.3       |
| 1610 - 1990      | -63.3       |
| 1990 - 3100      | -61-3       |
| 3100 - 10600     | -41.3       |
| Above 10600      | -61.3       |



# FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

| Frequency in MHz | Limit (µV/m)     | Measurement<br>distance (m) | Limits (dBµV/m)    |
|------------------|------------------|-----------------------------|--------------------|
| 0.009 - 0.49     | 2400/F(kHz)@300m | 3                           | (48.5 – 13.8)@300m |
| 0.49 - 1.705     | 24000/F(kHz)@30m | 3                           | (33.8 – 23.0)@30m  |
| 1.705 - 30       | 30@30m           | 3                           | 29.5@30m           |

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

| Frequency in MHz | Limit (µV/m) | Measurement<br>distance (m) | Limits (dBµV/m) |
|------------------|--------------|-----------------------------|-----------------|
| 30 - 88          | 100@3m       | 3                           | 40.0@3m         |
| 88 - 216         | 150@3m       | 3                           | 43.5@3m         |
| 216 - 960        | 200@3m       | 3                           | 46.0@3m         |

RSS-220, 5.3.1 (c)

Radiated emissions at or below 960 MHz from a device shall not exceed the limits in section 3.4.

RSS-220, 3.4

Radiated emissions at or below 960 MHz for all subclasses of UWB device shall not exceed the following limits. Measurements of radiated emissions at and below 960 MHz are to be made using a CISPR quasi-peak detector. CISPR measurement bandwidth specifications are to be used.

| Frequency in MHz | Limit (µV/m)     | Measurement<br>distance (m) | Limits (dBµV/m)    |
|------------------|------------------|-----------------------------|--------------------|
| 0.009 - 0.49     | 2400/F(kHz)@300m | 3                           | (48.5 – 13.8)@300m |
| 0.49 - 1.705     | 24000/F(kHz)@30m | 3                           | (33.8 – 23.0)@30m  |
| 1.705 - 30       | 30@30m           | 3                           | 29.5@30m           |

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

| Frequency in MHz | Limit (µV/m) | Measurement<br>distance (m) | Limits (dBµV/m) |
|------------------|--------------|-----------------------------|-----------------|
| 30 - 88          | 100@3m       | 3                           | 40.0@3m         |
| 88 - 216         | 150@3m       | 3                           | 43.5@3m         |
| 216 - 960        | 200@3m       | 3                           | 46.0@3m         |

RSS-220, 5.3.1 (d)

Radiated emissions above 960 MHz from a device shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz.

| Frequency in MHz | EIRP in dBm |
|------------------|-------------|
| 960 - 1610       | -75.3       |
| 1610 - 4.750     | -70.0       |
| 4750 - 10600     | -41.3       |
| Above 10600      | -61.3       |



# 4.3.3 TEST PROTOCOL

Ambient

| temperature:  | 23-24 °C      |
|---------------|---------------|
| Air Pressure: | 1000–1016 hPa |
| Humidity:     | 38–41 %       |

Operating Band: 3100 - 10600 MHz [FCC]

| Operating<br>Mode  | Spurious<br>Freq.<br>[MHz] | Spurious<br>Level<br>[dBm] | Detector | RBW<br>[kHz] | Limit<br>[dBm] | Margin<br>to<br>Limit<br>[dB] |
|--------------------|----------------------------|----------------------------|----------|--------------|----------------|-------------------------------|
| CH5_ANT1 OP-Mode 3 | -                          | -                          | -        | -            | -61.3          | -                             |
| CH6_ANT2 OP-Mode 4 | -                          | -                          | -        | -            | -61.3          | -                             |
| CH8_ANT2 OP-Mode 4 | -                          | -                          | -        | -            | -61.3          | -                             |
| CH9_ANT2 OP-Mode 3 | -                          | -                          | -        | -            | -61.3          | -                             |

| Operating Band: 3100 - | 10600 MHz                  | [ISED RSS-                 | ·220]    |              |                |                            |
|------------------------|----------------------------|----------------------------|----------|--------------|----------------|----------------------------|
| Operating<br>Frequency | Spurious<br>Freq.<br>[MHz] | Spurious<br>Level<br>[dBm] | Detector | RBW<br>[kHz] | Limit<br>[dBm] | Margin<br>to Limit<br>[dB] |
| CH5_ANT1 OP-Mode 3     | -                          | -                          | -        | -            | -70.0          | -                          |
| CH6_ANT2 OP-Mode 4     | -                          | -                          | -        | -            | -70.0          | -                          |
| CH8_ANT2 OP-Mode 4     | -                          | -                          | -        | -            | -70.0          | -                          |
| CH9_ANT2 OP-Mode 3     | -                          | -                          | -        | -            | -70.0          | -                          |

| Operating Band: 3100 - | 10600 MHz                  | [ISED RSS-                 | Gen]     |              |                  |                            |
|------------------------|----------------------------|----------------------------|----------|--------------|------------------|----------------------------|
| Operating<br>Frequency | Spurious<br>Freq.<br>[MHz] | Spurious<br>Level<br>[dBm] | Detector | RBW<br>[kHz] | Limit<br>[dBm]*) | Margin<br>to Limit<br>[dB] |
| CH5_ANT1 OP-Mode 3     | -                          | -                          | -        | -            | -31.7            | -                          |
| CH6_ANT2 OP-Mode 4     | -                          | -                          | -        | -            | -31.7            | -                          |
| CH8_ANT2 OP-Mode 4     | -                          | -                          | -        | -            | -31.7            | -                          |
| CH9_ANT2 OP-Mode 3     | -                          | -                          | _        | -            | -31.7            | -                          |

\*) Limit calculation RSS-Gen:

- Above 906 MHz → 500  $\mu$ V/m@3m → 54 dB $\mu$ V/m@3m - P(EIRP)[dBm] = E[dB $\mu$ V/m@3m] - 95.2 → Limit: P(EIRP) = -41.2 dBm - Correction due to different measurement distance: 3m → 1m: +9.5 dB → Limit: -31.7 dBm

Remark: Please see next sub-clause for the measurement plot.



# 4.3.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Measurement method = radiated, Channel = 5, Antenna 1, OP-mode 3 Frequency range 9 kHz - 30 MHz



Measurement method = radiated, Channel = 6, Antenna 2, OP-mode 4 Frequency range 9 kHz – 30 MHz







Measurement method = radiated, Channel = 8, Antenna 2, OP-mode 4 Frequency range 9 kHz - 30 MHz

Measurement method = radiated, Channel = 9, Antenna 2, OP-mode 3 Frequency range 9 kHz – 30 MHz







Measurement method = radiated, Channel = 5, Antenna 1, OP-mode 3 Frequency range 30 MHz – 960 MHz

Measurement method = radiated, Channel = 6, Antenna 2, OP-mode 4 Frequency range 30 MHz – 960 MHz







Measurement method = radiated, Channel = 8, Antenna 2, OP-mode 4 Frequency range 30 MHz – 960 MHz

Measurement method = radiated, Channel = 9, Antenna 2, OP-mode 3 Frequency range 30 MHz - 960 MHz



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Corr.<br>(dB/m) |
|--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|-----------------|
| 882.210000         | 15.43                 | 46.00             | 30.57          | 1000.0                | 120.000            | 395.0          | V   | 129.0            | 24.6            |





Measurement method = radiated, Channel = 5, Antenna 1, OP-mode 3 Frequency range 960 MHz - 12.4 GHz

Measurement method = radiated, Channel = 6, Antenna 2, OP-mode 4 Frequency range 960 MHz – 12.4 GHz







Measurement method = radiated, Channel = 8, Antenna 2, OP-mode 4 Frequency range 960 MHz – 12.4 GHz

Measurement method = radiated, Channel = 9, Antenna 2, OP-mode 3 Frequency range 960 MHz – 12.4 GHz







Measurement method = radiated, Channel = 5, Antenna 1, OP-mode 3 Frequency range 12.4 GHz - 18 GHz

Measurement method = radiated, Channel = 6, Antenna 2, OP-mode 4 Frequency range 12.4 GHz – 18 GHz







#### Measurement method = radiated, Channel = 8, Antenna 2, OP-mode 4 Frequency range 12.4 GHz - 18 GHz

Measurement method = radiated, Channel = 9, Antenna 2, OP-mode 3 Frequency range 12.4 GHz - 18 GHz







Measurement method = radiated, Channel = 5, Antenna 1, OP-mode 3 Frequency range 18 GHz - 26 GHz

Measurement method = radiated, Channel = 6, Antenna 2, OP-mode 4 Frequency range 18 GHz – 26 GHz







Measurement method = radiated, Channel = 8, Antenna 2, OP-mode 4 Frequency range 18 GHz - 26 GHz

Measurement method = radiated, Channel = 9, Antenna 2, OP-mode 3 Frequency range 18 GHz – 26 GHz







Measurement method = radiated, Channel = 5, Antenna 1, OP-mode 3 26 GHz - 40 GHz

Measurement method = radiated, Channel = 6, Antenna 2, OP-mode 4 26 GHz - 40 GHz







Measurement method = radiated, Channel = 8, Antenna 2, OP-mode 4 26 GHz - 40 GHz

Measurement method = radiated, Channel = 9, Antenna 2, OP-mode 3 26 GHz - 40 GHz



# 4.3.5 TEST EQUIPMENT USED

Radiated Emissions



# 4.4 RADIATED EMISSIONS IN GNSS BANDS

# Standard FCC Part 15 Subpart F FCC Part 15 Subpart C

#### The test was performed according to:

ANSI C63.10, chapter 10.3.10

# 4.4.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

## 1. Measurement 1164 MHz – 1240 MHz, 1559 MHz – 1610 MHz

The following spectrum analyser setting are used for all steps:

- Measurement distance: 1 m
- Detector: RMS
- RBW: 1 kHz
- VBW: 3 kHz
- Measuring time: 1 ms / Sweep point
- Sweep Points: 1 / MHz [Span]
- Step 1: Preliminary scan

Settings for step 1:

- Turntable angle range: -180° to 90°
- Turntable step size: 45°
- Elevation step size: 90°
- Polarisation: Horizontal + Vertical

#### Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth elevation will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and elevation angle will be adjusted. The turntable azimuth will slowly vary by  $\pm$  22.5° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the elevation angle will also slowly vary by  $\pm$  45°. During this action, the value of emission is also continuously measured. The elevation angle of the highest emission will also be recorded and adjusted.

- Turntable angle range:  $\pm$  22.5° around the determined value
- Elevation angle range: ± 45° around the determined value
- Antenna Polarisation: max. value determined in step 1



## **Step 3:** Final measurement with RMS detector

With the settings determined in step 2, the final measurement will be performed.

The Test was performed radiated in a Fully Anechoic Chamber in the following setup:



Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

# 4.4.2 TEST REQUIREMENTS / LIMITS

# FCC Part 15, Subpart F, §15.519 (d)

In addition to the radiated emission limits specified in the table in paragraph (c) of this section, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz:

| Frequency in MHz | EIRP in dBm |
|------------------|-------------|
| 1164 - 1240      | -85.3       |
| 1559 - 1610      | -85.3       |

#### RSS-220, 5.3.1 (e)

In addition to the limits specified in paragraph (d) of this section, radiated emissions shall not exceed the following average limits when measured using a resolution bandwidth greater than or equal to 1 kHz. The measurements shall demonstrate compliance with the stated limits at whatever resolution bandwidth is used.

| Frequency in MHz | EIRP in dBm |
|------------------|-------------|
| 1164 - 1240      | -85.3       |
| 1559 - 1610      | -85.3       |



# 4.4.3 TEST PROTOCOL

#### Ambient temperature:

| temperature:   | 25 °C              |
|----------------|--------------------|
| Air Pressure:  | 1023 hPa           |
| Humidity:      | 28 %               |
| Operating Band | · 3100 - 10600 MHz |

| Operating Band: 3100 - 10600 MHz |                            |                            |          |              |                |                            |  |  |  |
|----------------------------------|----------------------------|----------------------------|----------|--------------|----------------|----------------------------|--|--|--|
| Operating<br>Frequency           | Spurious<br>Freq.<br>[MHz] | Spurious<br>Level<br>[dBm] | Detector | RBW<br>[kHz] | Limit<br>[dBm] | Margin to<br>Limit<br>[dB] |  |  |  |
| CH5_ANT1 OP-Mode 3               | -                          | -                          | -        | -            | -85.3          | -                          |  |  |  |
| CH6_ANT2 OP-Mode 4               | -                          | -                          | -        | -            | -85.3          | -                          |  |  |  |
| CH8_ANT2 OP-Mode 4               | _                          | -                          | _        | -            | -85.3          | -                          |  |  |  |
| CH9 ANT2 OP-Mode 3               | -                          | -                          | -        | -            | -85.3          | -                          |  |  |  |



# 4.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Measurement method = radiated, Channel = 5, Antenna 1, OP-mode 3 Frequency range 1164 MHz -1240 MHz & 1559 MHz - 1610 MHz



Measurement method = radiated, Channel = 6, Antenna 2, OP-mode 4 Frequency range 1164 MHz -1240 MHz & 1559 MHz - 1610 MHz







## Measurement method = radiated, Channel = 8, Antenna 2, OP-mode 4 Frequency range 1164 MHz -1240 MHz & 1559 MHz - 1610 MHz

Measurement method = radiated, Channel = 9, Antenna 2, OP-mode 3 Frequency range 1164 MHz -1240 MHz & 1559 MHz - 1610 MHz



# 4.4.5 TEST EQUIPMENT USED

• Radiated Emissions



# 5 TEST EQUIPMENT

## 1 Radiated Emissions Lab to perform radiated emission tests

| Ref.No. | <b>Device Name</b>                 | Description                                                                        | Manufacturer                              | Serial Number          | Last        | Calibration |
|---------|------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------|------------------------|-------------|-------------|
|         |                                    | -                                                                                  |                                           |                        | Calibration | Due         |
| 1.1     | N5000/NP                           | Filter for EUT,<br>2 Lines, 250 V,<br>16 A                                         | ETS-LINDGREN                              | 241515                 |             |             |
| 1.2     | HL 562<br>ULTRALOG                 | Biconical-log-<br>per antenna<br>(30 MHz - 3<br>GHz) with HL<br>562E<br>biconicals | Rohde & Schwarz<br>GmbH & Co. KG          | 830547/003             | 2021-09     | 2024-09     |
| 1.3     | AMF-<br>7D00101800-<br>30-10P-R    | Broadband<br>Amplifier 100<br>MHz - 18 GHz                                         | Miteq                                     |                        |             |             |
| 1.4     | 5HC2700/12750<br>-1.5-KK           | High Pass<br>Filter                                                                | Trilithic                                 | 9942012                |             |             |
| 1.5     | ASP 1.2/1.8-10<br>kg               | Antenna Mast                                                                       | Maturo GmbH                               | -                      |             |             |
| 1.6     | Anechoic<br>Chamber 03             | FAR, 8.80m x<br>4.60m x<br>4.05m (l x w x<br>h)                                    | Albatross Projects                        | P26971-647-001-<br>PRB | 2021-04     | 2023-04     |
| 1.7     | Fluke 177                          | Digital<br>Multimeter 03<br>(Multimeter)                                           | Fluke Europe B.V.                         | 86670383               | 2020-04     | 2022-04     |
| 1.8     | Opus10 THI<br>(8152.00)            | T/H Logger 10                                                                      | Lufft Mess- und<br>Regeltechnik GmbH      | 12488                  | 2021-08     | 2023-08     |
| 1.9     | PONTIS<br>Con4101                  | PONTIS<br>Camera<br>Controller                                                     |                                           | 6061510370             |             |             |
| 1.10    | NRVD                               | Power Meter                                                                        | Rohde & Schwarz<br>GmbH & Co. KG          | 828110/016             | 2021-09     | 2022-09     |
| 1.11    | JS4-18002600-<br>32-5P             | Broadband<br>Amplifier 18<br>GHz - 26 GHz                                          | Miteq                                     | 849785                 |             |             |
| 1.12    | FSW 43                             | Spectrum<br>Analyzer                                                               | Rohde & Schwarz                           | 103779                 | 2021-06     | 2023-06     |
| 1.13    | EP 1200/B,<br>NA/B1                | AC Source,<br>Amplifier with<br>integrated<br>variable<br>Oscillator               | Spitzenberger &<br>Spies GmbH & Co.<br>KG | B6278                  |             |             |
| 1.14    | 3160-09                            | Standard Gain<br>/ Pyramidal<br>Horn Antenna<br>26.5 GHz                           | EMCO Elektronic<br>GmbH                   | 00083069               |             |             |
| 1.15    | WHKX 7.0/18G-<br>8SS               | High Pass<br>Filter                                                                | Wainwright<br>Instruments GmbH            | 09                     |             |             |
| 1.16    | DS 420S                            | Turn Table 2<br>m diameter                                                         | HD GmbH                                   | 420/573/99             |             |             |
| 1.17    | 4НС1600/12750<br>-1.5-КК           | High Pass<br>Filter                                                                | Trilithic                                 | 9942011                |             |             |
| 1.18    | JS4-00102 <del>600-</del><br>42-5A | Broadband<br>Amplifier 30<br>MHz - 26 GHz                                          | Miteq                                     | 619368                 |             |             |



| Ref.No. Device Name                                                 |                                                  | Description                                          | Manufacturer                                       | Serial Number                  | Last        | Calibration |  |
|---------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|----------------------------------------------------|--------------------------------|-------------|-------------|--|
|                                                                     |                                                  | _                                                    |                                                    |                                | Calibration | Due         |  |
| 1.19                                                                | TT 1.5 WI                                        | Turn Table                                           | Maturo GmbH                                        | -                              |             |             |  |
| 1.20                                                                | HL 562<br>ULTRALOG                               | Biconical-log-<br>per Antenna<br>(30 MHz - 3<br>GHz) | Rohde & Schwarz<br>GmbH & Co. KG                   | 100609                         | 2019-05     | 2022-05     |  |
| 1.21                                                                | HF 906                                           | Double-ridged<br>horn                                | Rohde & Schwarz                                    | 357357/001                     | 2021-08     | 2024-08     |  |
| 1.22 3160-10 Standard Gain<br>/ Pyramidal<br>Horn Antenna<br>40 GHz |                                                  | EMCO Elektronic<br>GmbH                              | 00086675                                           |                                |             |             |  |
| 1.23                                                                | VLFX-650+                                        | Low Pass Filter<br>DC650 MHz                         | Mini-Circuits                                      | 15542                          |             |             |  |
| 1.24                                                                | JUN-AIR Mod. 6-<br>15                            | Air<br>Compressor                                    | JUN-AIR<br>Deutschland GmbH                        | 612582                         |             |             |  |
| 1.25                                                                | 5HC3500/18000<br>-1.2-KK                         | High Pass<br>Filter                                  | Trilithic                                          | 200035008                      |             |             |  |
| 1.26                                                                | SB4-<br>100.OLD20-<br>3T/10 Airwin 2 x<br>1.5 kW | Air compressor<br>(oil-free)                         | airWin<br>Kompressoren UG                          | 901/00503                      |             |             |  |
| 1.27                                                                | UNI-T UT195E                                     | True RMS<br>Digital<br>Multimeter                    | UNI-T UNI-TREND<br>TECHNOLOGY<br>(CHINA) CO., LTD. | C190729561                     |             |             |  |
| 1.28                                                                | JS4-00101800-<br>35-5P                           | Broadband<br>Amplifier 30<br>MHz - 18 GHz            | Miteq                                              | 896037                         |             |             |  |
| 1.29                                                                | AS 620 P                                         | Antenna Mast<br>(pneumatic<br>polarisation)          | HD GmbH                                            | 620/37                         |             |             |  |
| 1.30                                                                | TD1.5-10kg                                       | EUT Tilt Device<br>(Rohacell)                        | Maturo GmbH                                        | TD1.5-<br>10kg/024/37907<br>09 |             |             |  |
| 1.31                                                                | NRV-Z1                                           | Sensor Head B                                        | Rohde & Schwarz<br>GmbH & Co. KG                   | 827753/006                     | 2021-09     | 2022-09     |  |
| 1.32                                                                | HF 907-2                                         | Double-ridged<br>horn                                | Rohde & Schwarz                                    | 102817                         | 2019-04     | 2022-04     |  |
| 1.33                                                                | PAS 2.5 - 10 kg                                  | Antenna Mast                                         | Maturo GmbH                                        | -                              |             |             |  |
| 1.34                                                                | AFS42-<br>00101800-25-S-<br>42                   | Broadband<br>Amplifier 25<br>MHz - 18 GHz            | Miteq                                              | 2035324                        |             |             |  |
| 1.35                                                                | AM 4.0                                           | Antenna Mast<br>4 m                                  | Maturo GmbH                                        | AM4.0/180/1192<br>0513         |             |             |  |
| 1.36                                                                | HF 907                                           | Double-ridged<br>horn                                | Rohde & Schwarz                                    | 102444                         | 2021-09     | 2024-09     |  |

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"



# 6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

|           |       |           | cable     |
|-----------|-------|-----------|-----------|
|           |       | LISN      | loss      |
|           |       | insertion | (incl. 10 |
|           |       | loss      | dB        |
|           |       | ESH3-     | atten-    |
| Frequency | Corr. | Z5        | uator)    |
| MHz       | dB    | dB        | dB        |
| 0.15      | 10.1  | 0.1       | 10.0      |
| 5         | 10.3  | 0.1       | 10.2      |
| 7         | 10.5  | 0.2       | 10.3      |
| 10        | 10.5  | 0.2       | 10.3      |
| 12        | 10.7  | 0.3       | 10.4      |
| 14        | 10.7  | 0.3       | 10.4      |
| 16        | 10.8  | 0.4       | 10.4      |
| 18        | 10.9  | 0.4       | 10.5      |
| 20        | 10.9  | 0.4       | 10.5      |
| 22        | 11.1  | 0.5       | 10.6      |
| 24        | 11.1  | 0.5       | 10.6      |
| 26        | 11.2  | 0.5       | 10.7      |
| 28        | 11.2  | 0.5       | 10.7      |
| 30        | 11.3  | 0.5       | 10.8      |

# 6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

#### Sample calculation

 $U_{LISN}$  (dB  $\mu$ V) = U (dB  $\mu$ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.



|           |          |       | r        |          |         |           |          |                             |                   |
|-----------|----------|-------|----------|----------|---------|-----------|----------|-----------------------------|-------------------|
|           |          |       | cable    | cable    | cable   | cable     | distance | d <sub>Limit</sub><br>(meas | d <sub>used</sub> |
|           | ΔF       |       | (inside  | (outside | (switch | (to       | (-40 dB/ | distance                    | distance          |
| Frequency | HFH-72)  | Corr. | chamber) | chamber) | unit)   | receiver) | ( 40 dB) | (limit)                     | (used)            |
| MHz       | dB (1/m) | dB    | dB       | dB       | dB      | dB        | dB       | m                           | m                 |
| 0.009     | 20.50    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                         | 3                 |
| 0.01      | 20.45    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                         | 3                 |
| 0.015     | 20.37    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                         | 3                 |
| 0.02      | 20.36    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                         | 3                 |
| 0.025     | 20.38    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                         | 3                 |
| 0.03      | 20.32    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                         | 3                 |
| 0.05      | 20.35    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                         | 3                 |
| 0.08      | 20.30    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                         | 3                 |
| 0.1       | 20.20    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                         | 3                 |
| 0.2       | 20.17    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                         | 3                 |
| 0.3       | 20.14    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                         | 3                 |
| 0.49      | 20.12    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                         | 3                 |
| 0.490001  | 20.12    | -39.6 | 0.1      | 0.1      | 0.1     | 0.1       | -40      | 30                          | 3                 |
| 0.5       | 20.11    | -39.6 | 0.1      | 0.1      | 0.1     | 0.1       | -40      | 30                          | 3                 |
| 0.8       | 20.10    | -39.6 | 0.1      | 0.1      | 0.1     | 0.1       | -40      | 30                          | 3                 |
| 1         | 20.09    | -39.6 | 0.1      | 0.1      | 0.1     | 0.1       | -40      | 30                          | 3                 |
| 2         | 20.08    | -39.6 | 0.1      | 0.1      | 0.1     | 0.1       | -40      | 30                          | 3                 |
| 3         | 20.06    | -39.6 | 0.1      | 0.1      | 0.1     | 0.1       | -40      | 30                          | 3                 |
| 4         | 20.05    | -39.5 | 0.2      | 0.1      | 0.1     | 0.1       | -40      | 30                          | 3                 |
| 5         | 20.05    | -39.5 | 0.2      | 0.1      | 0.1     | 0.1       | -40      | 30                          | 3                 |
| 6         | 20.02    | -39.5 | 0.2      | 0.1      | 0.1     | 0.1       | -40      | 30                          | 3                 |
| 8         | 19.95    | -39.5 | 0.2      | 0.1      | 0.1     | 0.1       | -40      | 30                          | 3                 |
| 10        | 19.83    | -39.4 | 0.2      | 0.1      | 0.2     | 0.1       | -40      | 30                          | 3                 |
| 12        | 19.71    | -39.4 | 0.2      | 0.1      | 0.2     | 0.1       | -40      | 30                          | 3                 |
| 14        | 19.54    | -39.4 | 0.2      | 0.1      | 0.2     | 0.1       | -40      | 30                          | 3                 |
| 16        | 19.53    | -39.3 | 0.3      | 0.1      | 0.2     | 0.1       | -40      | 30                          | 3                 |
| 18        | 19.50    | -39.3 | 0.3      | 0.1      | 0.2     | 0.1       | -40      | 30                          | 3                 |
| 20        | 19.57    | -39.3 | 0.3      | 0.1      | 0.2     | 0.1       | -40      | 30                          | 3                 |
| 22        | 19.61    | -39.3 | 0.3      | 0.1      | 0.2     | 0.1       | -40      | 30                          | 3                 |
| 24        | 19.61    | -39.3 | 0.3      | 0.1      | 0.2     | 0.1       | -40      | 30                          | 3                 |
| 26        | 19.54    | -39.3 | 0.3      | 0.1      | 0.2     | 0.1       | -40      | 30                          | 3                 |
| 28        | 19.46    | -39.2 | 0.3      | 0.1      | 0.3     | 0.1       | -40      | 30                          | 3                 |
| 30        | 19.73    | -39.1 | 0.4      | 0.1      | 0.3     | 0.1       | -40      | 30                          | 3                 |

# 6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

#### Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$ 

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction =  $-40 * LOG (d_{Limit} / d_{used})$ 

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values



| 6.3 | ANTENNA R&S HL562 | (30 MHZ - 1 GHZ) |
|-----|-------------------|------------------|
|-----|-------------------|------------------|

|     |      |   |   | -  |  |
|-----|------|---|---|----|--|
| (dı | imit | = | 3 | m) |  |

| Frequency | AF<br>R&S<br>HL562 | Corr. |
|-----------|--------------------|-------|
| MHz       | dB (1/m)           | dB    |
| 30        | 18.6               | 0.6   |
| 50        | 6.0                | 0.9   |
| 100       | 9.7                | 1.2   |
| 150       | 7.9                | 1.6   |
| 200       | 7.6                | 1.9   |
| 250       | 9.5                | 2.1   |
| 300       | 11.0               | 2.3   |
| 350       | 12.4               | 2.6   |
| 400       | 13.6               | 2.9   |
| 450       | 14.7               | 3.1   |
| 500       | 15.6               | 3.2   |
| 550       | 16.3               | 3.5   |
| 600       | 17.2               | 3.5   |
| 650       | 18.1               | 3.6   |
| 700       | 18.5               | 3.6   |
| 750       | 19.1               | 4.1   |
| 800       | 19.6               | 4.1   |
| 850       | 20.1               | 4.4   |
| 900       | 20.8               | 4.7   |
| 950       | 21.1               | 4.8   |
| 1000      | 21.6               | 4.9   |

| cable<br>loss 1 | cable<br>loss 2 | cable<br>loss 3 | cable<br>loss 4 | distance<br>corr. | d <sub>Limit</sub><br>(meas. | d <sub>used</sub><br>(meas. |
|-----------------|-----------------|-----------------|-----------------|-------------------|------------------------------|-----------------------------|
| (inside         | (outside        | (switch         | (to             | (-20 dB/          | distance                     | distance                    |
| chamber)        | chamber)        | unit)           | receiver)       | decade)           | (limit)                      | (used)                      |
| dB              | dB              | dB              | dB              | dB                | m                            | m                           |
| 0.29            | 0.04            | 0.23            | 0.02            | 0.0               | 3                            | 3                           |
| 0.39            | 0.09            | 0.32            | 0.08            | 0.0               | 3                            | 3                           |
| 0.56            | 0.14            | 0.47            | 0.08            | 0.0               | 3                            | 3                           |
| 0.73            | 0.20            | 0.59            | 0.12            | 0.0               | 3                            | 3                           |
| 0.84            | 0.21            | 0.70            | 0.11            | 0.0               | 3                            | 3                           |
| 0.98            | 0.24            | 0.80            | 0.13            | 0.0               | 3                            | 3                           |
| 1.04            | 0.26            | 0.89            | 0.15            | 0.0               | 3                            | 3                           |
| 1.18            | 0.31            | 0.96            | 0.13            | 0.0               | 3                            | 3                           |
| 1.28            | 0.35            | 1.03            | 0.19            | 0.0               | 3                            | 3                           |
| 1.39            | 0.38            | 1.11            | 0.22            | 0.0               | 3                            | 3                           |
| 1.44            | 0.39            | 1.20            | 0.19            | 0.0               | 3                            | 3                           |
| 1.55            | 0.46            | 1.24            | 0.23            | 0.0               | 3                            | 3                           |
| 1.59            | 0.43            | 1.29            | 0.23            | 0.0               | 3                            | 3                           |
| 1.67            | 0.34            | 1.35            | 0.22            | 0.0               | 3                            | 3                           |
| 1.67            | 0.42            | 1.41            | 0.15            | 0.0               | 3                            | 3                           |
| 1.87            | 0.54            | 1.46            | 0.25            | 0.0               | 3                            | 3                           |
| 1.90            | 0.46            | 1.51            | 0.25            | 0.0               | 3                            | 3                           |
| 1.99            | 0.60            | 1.56            | 0.27            | 0.0               | 3                            | 3                           |
| 2.14            | 0.60            | 1.63            | 0.29            | 0.0               | 3                            | 3                           |
| 2.22            | 0.60            | 1.66            | 0.33            | 0.0               | 3                            | 3                           |
| 2.23            | 0.61            | 1.71            | 0.30            | 0.0               | 3                            | 3                           |

(<u>d<sub>Limit</sub> = 10 m)</u>

| 30   | 18.6 | -9.9 | 0.29 | 0.04 | 0.23 | 0.02 | -10.5 | 10 | 3 |
|------|------|------|------|------|------|------|-------|----|---|
| 50   | 6.0  | -9.6 | 0.39 | 0.09 | 0.32 | 0.08 | -10.5 | 10 | 3 |
| 100  | 9.7  | -9.2 | 0.56 | 0.14 | 0.47 | 0.08 | -10.5 | 10 | 3 |
| 150  | 7.9  | -8.8 | 0.73 | 0.20 | 0.59 | 0.12 | -10.5 | 10 | 3 |
| 200  | 7.6  | -8.6 | 0.84 | 0.21 | 0.70 | 0.11 | -10.5 | 10 | 3 |
| 250  | 9.5  | -8.3 | 0.98 | 0.24 | 0.80 | 0.13 | -10.5 | 10 | 3 |
| 300  | 11.0 | -8.1 | 1.04 | 0.26 | 0.89 | 0.15 | -10.5 | 10 | 3 |
| 350  | 12.4 | -7.9 | 1.18 | 0.31 | 0.96 | 0.13 | -10.5 | 10 | 3 |
| 400  | 13.6 | -7.6 | 1.28 | 0.35 | 1.03 | 0.19 | -10.5 | 10 | 3 |
| 450  | 14.7 | -7.4 | 1.39 | 0.38 | 1.11 | 0.22 | -10.5 | 10 | 3 |
| 500  | 15.6 | -7.2 | 1.44 | 0.39 | 1.20 | 0.19 | -10.5 | 10 | 3 |
| 550  | 16.3 | -7.0 | 1.55 | 0.46 | 1.24 | 0.23 | -10.5 | 10 | 3 |
| 600  | 17.2 | -6.9 | 1.59 | 0.43 | 1.29 | 0.23 | -10.5 | 10 | 3 |
| 650  | 18.1 | -6.9 | 1.67 | 0.34 | 1.35 | 0.22 | -10.5 | 10 | 3 |
| 700  | 18.5 | -6.8 | 1.67 | 0.42 | 1.41 | 0.15 | -10.5 | 10 | 3 |
| 750  | 19.1 | -6.3 | 1.87 | 0.54 | 1.46 | 0.25 | -10.5 | 10 | 3 |
| 800  | 19.6 | -6.3 | 1.90 | 0.46 | 1.51 | 0.25 | -10.5 | 10 | 3 |
| 850  | 20.1 | -6.0 | 1.99 | 0.60 | 1.56 | 0.27 | -10.5 | 10 | 3 |
| 900  | 20.8 | -5.8 | 2.14 | 0.60 | 1.63 | 0.29 | -10.5 | 10 | 3 |
| 950  | 21.1 | -5.6 | 2.22 | 0.60 | 1.66 | 0.33 | -10.5 | 10 | 3 |
| 1000 | 21.6 | -5.6 | 2.23 | 0.61 | 1.71 | 0.30 | -10.5 | 10 | 3 |

#### Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$ 

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction =  $-20 * LOG (d_{Limit}/d_{used})$ 

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.



| AF         cable         loss 3           Frequency         HF907         Corr.           MHz         dB (1/m)         dB           1000         24.4         -19.4           2000         28.5         -17.4           3000         31.0         -16.1           4000         33.1         -14.7           5000         34.4         -12.7           7000         35.6         -11.0           Kass         cable         cable           cable         0.99         0.31         -21.51           0.99         0.31         -21.51         0.79           1.44         0.44         -20.63         1.38           2.74         0.67         -19.13         1.31           2.74         0.90         -17.83         1.47           2.82         0.86         -16.19         1.46           Cable         cable         loss 4         (switch           unit,         atten-         cable         for           (relay         loss 2         loss 3         atten-           Cable         cable         (outside         unit,           used         (nside         (n                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AF         (relay +<br>cable         (cable<br>loss 2         (switch<br>unit,<br>atten-         unit,<br>cable           Frequency         HF907         Corr.         (relay +<br>cable         (cable<br>loss 2         unit,<br>atten-         cable         loss 4 (to<br>pre-amp)           MHz         dB (1/m)         dB         dB         dB         dB         dB           1000         24.4         -19.4         0.99         0.31         -21.51         0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4000       33.1       -14.7         5000       34.4       -13.7         5000       34.4       -13.7         6000       34.7       -12.7         7000       35.6       -11.0         2.82       0.86       -16.19       1.47         2.82       0.86       -16.19       1.46         0.85       -11.0       2.82       0.86       -16.19       1.46         0.85       -11.0       2.82       0.86       -16.19       1.46       0         0.85       -11.0       2.82       0.86       -16.19       1.46       0         0.85       -11.0       2.82       0.86       -16.19       1.46       0         0.85       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       -11.0       <                                                                                                                                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7000       35.6       -11.0       2.82       0.86       -16.19       1.46         2.82       0.86       -16.19       1.46       1.46         2.82       0.86       -16.19       1.46       1.46         2.82       0.86       -16.19       1.46       1.46         2.82       0.86       -16.19       1.46       1.46         2.82       0.86       -16.19       1.46       1.46         2.82       0.86       -16.19       1.46       1.46         2.82       0.86       -16.19       1.46       1.46         2.82       0.86       -16.19       1.46       1.46         2.82       0.86       -16.19       1.46       1.65         2.82       0.86       1.61       1.87       0.53       1.52         MHz       dB (1/m)       dB       dB       dB       dB       dB         MHz       dB (1/m)       dB       0.47       1.87       0.53       -27.58       1.33         3000       31.0       -23.4       0.61       2.78       0.86       -27.35       1.40         4000       33.1       -23.3       0.56       2.74       0.90                                                                                                                                                                                           |
| AF         cable         loss 4         used           AF         (switch         unit,         used           R&S         (relay         loss 2         loss 3         atten-         cable         for           MHz         dB (1/m)         dB         dB <td< td=""></td<>                                                                    |
| AF       cable       loss 4       loss 4         AF       (switch       unit,       used         R&S       (relay       loss 2       loss 3       atten-       cable       for         Frequency       HF907       Corr.       (nside       (outside       uator &       loss 5 (to       FCC         MHz       dB (1/m)       dB       dB       dB       dB       dB       dB       dB         3000       31.0       -23.4       0.47       1.87       0.53       -27.58       1.33         4000       33.1       -23.3       0.56       2.41       0.67       -28.23       1.31         5000       34.4       -21.7       0.61       2.78       0.86       -27.35       1.40         6000       34.7       -21.2       0.56       2.74       0.90       -26.89       1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AF       cable       cable       (switch       used         AF       (switch       used       (switch       used         R&S       (relay       loss 2       loss 3       atten-       cable       for         MHz       dB (1/m)       dB                                                                                                                                                                                  |
| AF         Cable         Cable         Cable         Cable         Unit,         used           AF         R&S         Ioss 1         Cable         Ioss 2         Ioss 3         atten-         Cable         for           R&S         R&S         Inside         (inside         (outside         uator &         Ioss 5 (to         FCC           MHz         dB (1/m)         dB         Ioss 3         -27.58         1.33         -27.58         1.33         -27.58         1.33         -27.35         1.40         -28.23         1.31         -28.23         1.31         -28.23         1.40         -28.23         1.40         -27.35         1.40         -27.35         1.40         -27.35         1.40         -27.35         1.40         -27.35         1.47         -27.35         1.47         -27.35         1.47         -27.35         1.47         -27.35         1.47         -27.35         1.47         -27.35         1.47         -27.35         1.47         -27.35         1.47         -27.35         -27.45         -27.35         1.47         -27.35         -27.45 |
| AF         Cable         Cable         Cable         Unit,         Used           AF         R&S         Ioss 1         Ioss 2         Ioss 3         atten-         cable         for           R&S         R&S         Inside         Ioss 2         Ioss 3         atten-         cable         for           MHz         dB (1/m)         dB                                                                     |
| AF       (relay       loss 2       loss 3       atten-       cable       for         R&S       inside       (inside       (outside       uator &       loss 5 (to       FCC         MHz       dB (1/m)       dB                                                                                                                                                                         |
| R&S         inside         (inside         (outside         uator &         loss 5 (to         FCC           Frequency         HF907         Corr.         chamber)         chamber)         chamber)         chamber)         pre-amp)         receiver)         15.247           MHz         dB (1/m)         dB         dA                                                       |
| Frequency         HF907         Corr.         chamber)         chamber)         chamber)         pre-amp)         receiver)         15.247           MHz         dB (1/m)         dB                                                            |
| MHz         dB (1/m)         dB                                                                             |
| 3000         31.0         -23.4         0.47         1.87         0.53         -27.58         1.33           4000         33.1         -23.3         0.56         2.41         0.67         -28.23         1.31           5000         34.4         -21.7         0.61         2.78         0.86         -27.35         1.40           6000         34.7         -21.2         0.58         2.74         0.90         -26.89         1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4000         33.1         -23.3         0.56         2.41         0.67         -28.23         1.31           5000         34.4         -21.7         0.61         2.78         0.86         -27.35         1.40           6000         34.7         -21.2         0.58         2.74         0.90         -26.89         1.47           7000         -25.6         -21.2         0.56         2.02         0.90         -26.89         1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5000         34.4         -21.7         0.61         2.78         0.86         -27.35         1.40           6000         34.7         -21.2         0.58         2.74         0.90         -26.89         1.47           7000         35.6         -0.61         2.78         0.90         -26.89         1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6000         34.7         -21.2         0.58         2.74         0.90         -26.89         1.47           7000         35.6         10.2         0.58         2.74         0.90         -26.89         1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| loss 1 cable cable cable cable cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AF (relay loss 2 loss 3 loss 4 loss 5 loss 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| R&S inside (High (pre- (inside (outside (to )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Frequency HE907 Corr chamber) Pase) amp) chamber) receiver)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MHz dB (1/m) dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9000 37.1 -55.3 0.68 0.65 -60.80 3.06 1.09 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10000 37.5 -56.2 0.70 0.54 -61.91 3.28 1.20 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <u>11000</u> <u>37.5</u> <u>-55.3</u> <u>0.80</u> <u>0.61</u> <u>-61.40</u> <u>3.43</u> <u>1.27</u> <u>1.70</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u>12000</u> <u>37.6</u> <u>-53.7</u> <u>0.84</u> <u>0.42</u> <u>-59.70</u> <u>3.53</u> <u>1.26</u> <u>1.73</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13000         38.2         -53.5         0.83         0.44         -59.81         3.75         1.32         1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14000 39.9 -56.3 0.91 0.53 -63.03 3.91 1.40 1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15000 40.9 -54.1 0.98 0.54 -61.05 4.02 1.44 1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16000 41.3 -54.1 1.23 0.49 -61.51 4.17 1.51 1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 17000 42.8 -54.4 1.36 0.76 -62.36 4.34 1.53 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 18000 44.2 -54.7 1.70 0.53 -62.88 4.41 1.55 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## 6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

#### Sample calculation

E (dB  $\mu$ V/m) = U (dB  $\mu$ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.



|          |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cable                                                                                                                                                                            | cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AF       |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | loss 1                                                                                                                                                                           | loss 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | loss 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | loss 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | loss 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EMCO     |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (inside                                                                                                                                                                          | (pre-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (inside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (switch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3160-09  | Corr.                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chamber)                                                                                                                                                                         | amp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | chamber)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | unit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | receiver)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| dB (1/m) | dB                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dB                                                                                                                                                                               | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40.2     | -23.5                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.72                                                                                                                                                                             | -35.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.2     | -23.2                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.69                                                                                                                                                                             | -35.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.2     | -22.0                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.76                                                                                                                                                                             | -35.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.3     | -21.3                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.74                                                                                                                                                                             | -35.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.3     | -20.3                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.72                                                                                                                                                                             | -34.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.3     | -19.9                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.78                                                                                                                                                                             | -34.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.3     | -19.1                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.87                                                                                                                                                                             | -34.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.3     | -19.1                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.90                                                                                                                                                                             | -33.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.3     | -18.7                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.89                                                                                                                                                                             | -33.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.4     | -19.0                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.87                                                                                                                                                                             | -33.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.4     | -19.5                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.88                                                                                                                                                                             | -33.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.4     | -19.3                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.90                                                                                                                                                                             | -33.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.4     | -19.8                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.88                                                                                                                                                                             | -33.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.4     | -19.5                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.91                                                                                                                                                                             | -33.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.4     | -19.3                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.88                                                                                                                                                                             | -33.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.5     | -20.4                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.89                                                                                                                                                                             | -34.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.5     | -21.3                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.86                                                                                                                                                                             | -35.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40.5     | -21.1                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.90                                                                                                                                                                             | -35.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | AF<br>EMCO<br>3160-09<br>dB (1/m)<br>40.2<br>40.2<br>40.2<br>40.3<br>40.3<br>40.3<br>40.3<br>40.3<br>40.3<br>40.3<br>40.3 | AF<br>EMCO           3160-09         Corr.           dB (1/m)         dB           40.2         -23.5           40.2         -23.2           40.2         -23.2           40.2         -23.2           40.3         -21.3           40.3         -20.3           40.3         -19.9           40.3         -19.1           40.3         -19.1           40.3         -19.1           40.3         -19.1           40.4         -19.0           40.4         -19.3           40.4         -19.3           40.4         -19.3           40.4         -19.3           40.4         -19.3           40.4         -19.3           40.5         -20.4           40.5         -21.3 | AF<br>EMCO3160-09Corr.dB (1/m)dB40.2-23.540.2-23.240.2-22.040.3-21.340.3-20.340.3-19.940.3-19.140.3-19.140.4-19.540.4-19.340.4-19.840.4-19.540.4-19.540.4-19.340.5-20.440.5-21.3 | AF         cable           EMCO         loss 1           3160-09         Corr.         chamber)           dB (1/m)         dB         dB           40.2         -23.5         0.72           40.2         -23.2         0.69           40.2         -22.0         0.76           40.3         -21.3         0.74           40.3         -20.3         0.72           40.3         -19.9         0.78           40.3         -19.1         0.87           40.3         -19.1         0.90           40.3         -19.1         0.90           40.3         -19.1         0.90           40.4         -19.0         0.87           40.4         -19.3         0.90           40.4         -19.3         0.90           40.4         -19.3         0.88           40.4         -19.3         0.88           40.4         -19.3         0.88           40.4         -19.3         0.88           40.4         -19.3         0.88           40.5         -20.4         0.89           40.5         -21.3         0.86 | AF         Cable         Cable           EMCO         Ioss 1         Ioss 2           3160-09         Corr.         Ioss 1         Ioss 2           MCO         Ioss 1         Ioss 2         Ioss 1           MCO         MB         MB         MB         MB           40.2         -23.5         0.72         -35.85           40.2         -22.0         0.69         -35.71           40.3         -21.3         0.74         -35.07           40.3         -20.3         0.72         -34.49           40.3         -19.9         0.78         -34.46           40.3         -19.1         0.807         -34.07           40.3         -19.1         0.90         -33.96           40.4         -19.0         0.87         -33.66           40.4         -19.5         0.88         -33.75           40.4         -19.3         0.90         -33.35           40.4         -19.3         0.88         -33.99           40.4         -19.3         0.88         -33.00           40.4         -19.3         0.88         -33.00           40.5         -20.4         0.89         -34. | AF         cable         cable         cable           BMCO         loss 1         loss 2         loss 3           inside         (pre-         (inside           3160-09         Corr.         dB         dB         dB           dB (1/m)         dB         dB         dB         dB           40.2         -23.5         0.72         -35.85         6.20           40.2         -23.2         0.69         -35.71         6.46           40.3         -21.3         0.74         -35.07         7.04           40.3         -20.3         0.72         -34.49         7.30           40.3         -19.9         0.78         -34.46         7.48           40.3         -19.1         0.90         -33.57         7.34           40.3         -19.1         0.90         -33.57         7.34           40.3         -19.1         0.88         -33.75         6.92           40.4         -19.0         0.87         -33.66         7.06           40.4         -19.3         0.90         -33.35         6.99           40.4         -19.3         0.88         -33.99         6.88           40.4 <td>AF         cable         ca</td> | AF         cable         ca |

## 6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

#### Sample calculation

E (dB  $\mu$ V/m) = U (dB  $\mu$ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.



| Frequency | AF<br>EMCO<br>3160-10 | Corr. | cable<br>loss 1<br>(inside<br>chamber) | cable<br>loss 2<br>(outside<br>chamber) | cable<br>loss 3<br>(switch<br>unit) | cable<br>loss 4<br>(to<br>receiver) | distance<br>corr.<br>(-20 dB/<br>decade) | d <sub>Limit</sub><br>(meas.<br>distance<br>(limit) | d <sub>used</sub><br>(meas.<br>distance<br>(used) |
|-----------|-----------------------|-------|----------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|------------------------------------------|-----------------------------------------------------|---------------------------------------------------|
| GHz       | dB (1/m)              | dB    | dB                                     | dB                                      | dB                                  | dB                                  | dB                                       | m                                                   | m                                                 |
| 26.5      | 43.4                  | -11.2 | 4.4                                    |                                         | 42                                  |                                     | -15.6                                    | 3                                                   | 0.5                                               |
| 27.0      | 43.4                  | -11.2 | 4.4                                    |                                         |                                     |                                     | -15.6                                    | 3                                                   | 0.5                                               |
| 28.0      | 43.4                  | -11.1 | 4.5                                    |                                         |                                     |                                     | -15.6                                    | 3                                                   | 0.5                                               |
| 29.0      | 43.5                  | -11.0 | 4.6                                    |                                         |                                     |                                     | -15.6                                    | 3                                                   | 0.5                                               |
| 30.0      | 43.5                  | -10.9 | 4.7                                    |                                         |                                     |                                     | -15.6                                    | 3                                                   | 0.5                                               |
| 31.0      | 43.5                  | -10.8 | 4.7                                    |                                         |                                     |                                     | -15.6                                    | 3                                                   | 0.5                                               |
| 32.0      | 43.5                  | -10.7 | 4.8                                    |                                         |                                     |                                     | -15.6                                    | 3                                                   | 0.5                                               |
| 33.0      | 43.6                  | -10.7 | 4.9                                    |                                         |                                     |                                     | -15.6                                    | 3                                                   | 0.5                                               |
| 34.0      | 43.6                  | -10.6 | 5.0                                    |                                         |                                     |                                     | -15.6                                    | 3                                                   | 0.5                                               |
| 35.0      | 43.6                  | -10.5 | 5.1                                    |                                         |                                     |                                     | -15.6                                    | 3                                                   | 0.5                                               |
| 36.0      | 43.6                  | -10.4 | 5.1                                    |                                         |                                     |                                     | -15.6                                    | 3                                                   | 0.5                                               |
| 37.0      | 43.7                  | -10.3 | 5.2                                    |                                         |                                     |                                     | -15.6                                    | 3                                                   | 0.5                                               |
| 38.0      | 43.7                  | -10.2 | 5.3                                    |                                         |                                     |                                     | -15.6                                    | 3                                                   | 0.5                                               |
| 39.0      | 43.7                  | -10.2 | 5.4                                    |                                         |                                     |                                     | -15.6                                    | 3                                                   | 0.5                                               |
| 40.0      | 43.8                  | -10.1 | 5.5                                    |                                         |                                     |                                     | -15.6                                    | 3                                                   | 0.5                                               |

# 6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

#### Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$ 

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 \* LOG ( $d_{\text{Limit}}/d_{\text{used}}$ ) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.



# 7 SETUP DRAWINGS

Setup Drawings



<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.



Setup in the shielded room for conducted measurements at AC mains port



# 8 MEASUREMENT UNCERTAINTIES

| Test Case                       | Parameter      | Uncertainty |
|---------------------------------|----------------|-------------|
| Conducted Emissions at AC mains | Voltage        | ± 3.4 dB    |
| Radiated Emissions              | Field Strength | ± 5.5 dB    |

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.



The verdicts in this test report are given according the above diagram:

| Case | Measured Value  | Uncertainty Range | Verdict |
|------|-----------------|-------------------|---------|
| 1    | below pass mark | below pass mark   | Passed  |
| 2    | below pass mark | within pass mark  | Passed  |
| 3    | above pass mark | within pass mark  | Failed  |
| 4    | above pass mark | above pass mark   | Failed  |

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.



# 9 PHOTO REPORT

Please see separate photo report.