Amber Helm Development L.C.

92723 Michigan Hwy-152 Sister Lakes, Michigan 49047 USA Tel: 888-847-8027

EMC Test Report

CSCU-WR1908TX Issued: March 25, 2019

regarding

USA: CFR Title 47, Part 15.231 (Emissions) Canada: ISED RSS-210v9/GENv5 (Emissions)

for

A2C16488500

Category: Keyless Entry Transmitter

Judgments: Compliant 15.231/RSS-210v9 Transmitter Testing Completed: March 22, 2019

TESTING NVLAP LAB CODE 200129-0

Prepared for:

Continental Automotive

4685 Investment Drive, Troy Michigan 48098 USA Phone: +1 (248) 764-6783, Fax: +1 (248) 764-7281 Contact: Charles Muma, Charles.Muma@continental-corporation.com

Brunett, EMC-002790-NE Joseph Brunett, EMC-002790-NE Dr.

Reviewed by: Gordon Helm, EMC-002401-NE

Date of Issue: March 25, 2019

Prepared by:

Data Recorded by:

Report No.: CSCU-WR1908TX

Revision History

Rev. No.	Date	Date Details Re						
r0	March 25, 2019	Initial Release.	J. Brunett					
$\operatorname{Content}$	s							
Revision	History		2					
Table of (Contents		2					
1.1 La 1.2 Re 1.3 Su 1.4 Te 1.5 Li: 1.6 Co 1.7 Er 1.8 Te	eport Retention		4					
$2 \text{ Test } S_1$	pecifications and Procedure	es	5 6 6					
3.1 De 3.1 3.1 3.1	escription and Declarations1.1EUT Configuration1.2Modes of Operation1.3Variants		7 7 7 8 <td< td=""></td<>					
4.1 4.1 4.2 In 4.2 4.2 4.2 4.2	 eneral Test Procedures 1.1 Radiated Test Setup and 1 1.2 Conducted Emissions Test 1.3 Power Supply Variation entional Emissions 2.1 Fundamental Emission Ba 2.3 Fundamental Emission Figure 1 entional Emissions	Procedures	9 9 11 11 11 11 12 12 14 16 17 18					
5 Measu	rement Uncertainty and A	ccreditation Documents	19					

List of Tables

1	Test Site List.
2	Equipment List.
3	EUT Declarations
4	Fundamental Emission Pulsed Operation
5	Fundamental Emission Bandwidth.
6	Fundamental Emission Field Strength
7	Transmit Chain Spurious Emissions
8	Measurement Uncertainty

List of Figures

1	Photos of EUT.	7
	EUT Test Configuration Diagram.	
	Radiated Emissions Diagram of the EUT.	
	Radiated Emissions Test Setup Photograph(s).	
	Fundamental Emission Pulsed Operation.	
6	Fundamental Emission Bandwidth.	15
7	Accreditation Documents	19

1 Test Report Scope and Limitations

1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: US0213). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until April 2029.

1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

1.4 Test Data

This test report contains data included within the laboratories scope of accreditation.

1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C.

1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Table 1: Test Site List.					
Description	Location	Quality Num.			
OATS (3 meter)	3615 E Grand River Rd., Williamston, Michigan 48895	OATSC			

1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 2. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards.

Table 2: Equipment List.

Description	Manufacturer/Model	\mathbf{SN}	Quality Num.	Last Cal By / Date Due		
Biconical	EMCO / 93110B	9802-3039	BICEMCO01	Keysight / Aug-2019		
Log Periodic Antenna	EMCO / 3146	9305 - 3614	LOGEMCO01	Keysight / Aug-2019		
BNC-BNC Coax	WRTL / $RG58/U$	001	CAB001-BLACK	AHD / Jul-2019		
3.5-3.5MM Coax	PhaseFlex / PhaseFlex	001	CAB015-PURP	AHD / Jul-2019		
Spectrum Analyzer	Rohde & Schwarz / FSV30	101660	RSFSV30001	RS / Apr-2019		
Quad Ridge Horn	Singer / A6100	C35200	HQR1TO18S01	Keysight / Aug-2019		

2 Test Specifications and Procedures

2.1 Test Specification and General Procedures

The ultimate goal of Continental Automotive is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Continental Automotive A2C16488500 for compliance to:

Country/Region	Rules or Directive	Referenced Section(s)
United States	Code of Federal Regulations	CFR Title 47, Part 15.231
Canada	ISED Canada	ISED RSS-210v9/GENv5

It has been determined that the equipment under test is subject to the rules and directives above at the date of this testing. In conjunction with these rules and directives, the following specifications and procedures are followed herein to demonstrate compliance (in whole or in part) with these regulations.

ANSI C63.4:2014	"Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" $$
ANSI C63.10:2013	"American National Standard of Procedures for Compliance Testing of Unli- censed Wireless Devices"
TP0102RA	"AHD Internal Document TP0102 - Radiated Emissions Test Procedure"
ISED Canada	"The Measurement of Occupied Bandwidth"
ICES-003; Issue 6 (2016)	"Information Technology Equipment (ITE) Limits and methods of measure- men"

Date: March 25, 2019

3 Configuration and Identification of the Equipment Under Test

3.1 Description and Declarations

The equipment under test is a remote keyless entry transmitter. The EUT is approximately $6.5 \ge 3.5 \ge 1$ cm in dimension, and is depicted in Figure 1. It is powered by 3 VDC Lithium cell battery. In use, this device is hand held. Table 3 outlines provider declared EUT specifications.

Figure 1: Photos of EUT.

Table 3: EUT Declarations.

General Declarations			
Equipment Type:	Keyless Entry Transmitter	Country of Origin:	Not Declared
Nominal Supply:	3 VDC	Oper. Temp Range:	Not Declared
Frequency Range:	433.92 MHz	Antenna Dimension:	Not Declared
Antenna Type:	PCB Trace	Antenna Gain:	-20 dBi (approx)
Number of Channels:	1	Channel Spacing:	Not Applicable
Alignment Range:	Not Declared	Type of Modulation:	FSK
United States			
FCC ID Number:	KR5A2C16488500	Classification:	DSC
Canada			
IC Number:	7812D-A2C16488500	Classification:	Remote Control Device, Ve-
			hicular Device

3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 2.

EUT

Model: A2C16488500 FCC ID: KR5A2C16488500 IC: 7812D-A2C16488500

Figure 2: EUT Test Configuration Diagram.

3.1.2 Modes of Operation

This device is capable of only a single mode of operation, as a manually activated dual channel FSK transmitter.

3.1.3 Variants

There is only a single variant of the EUT, as tested.

3.1.4 Test Samples

Two samples in total were provided; one sample capable of CW transmission, and one normal operating sample. Both samples were fully tested.

3.1.5 Functional Exerciser

Normal operating EUT functionality was verified by observation of transmitted signal.

3.1.6 Modifications Made

There were no modifications made to the EUT by this laboratory.

3.1.7 Production Intent

The EUT appears to be a production ready sample.

3.1.8 Declared Exemptions and Additional Product Notes

None.

4 Emissions

4.1 General Test Procedures

4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 3. All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

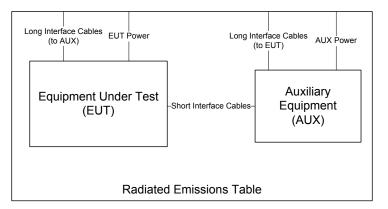


Figure 3: Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broadband probes are used depending on the regulations. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, the broadband probes employed are 10cm diameter single-axis shielded transducers and measurements are repeated and summed over three axes.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4×5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to $dB\mu V/m$ at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

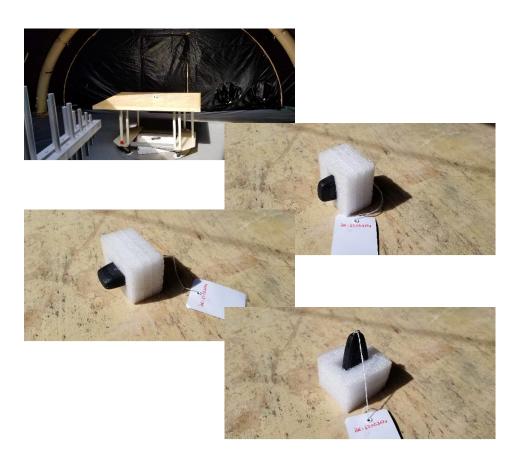


Figure 4: Radiated Emissions Test Setup Photograph(s).

4.1.2 Conducted Emissions Test Setup and Procedures

The EUT is not subject to measurement of power line conducted emissions as it is powered solely by its internal battery.

4.1.3 Power Supply Variation

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

In the case the EUT is designed for operation from a battery power source, the extreme test voltages are evaluated over the range specified in the test standard; no less than $\pm 10\%$ of the nominal battery voltage declared by the manufacturer. For all battery operated equipment, worst case intentional and spurious emissions are re-checked employing a new (fully charged) battery.

R

R6 #

4.2 Intentional Emissions

4.2.1 Fundamental Emission Pulsed Operation

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Duty cycle is reported for all relevant modes of operation. The test equipment employed includes RSFSV30001, LOGEMCO01.

Measurement Results The details and results of testing the EUT are summarized in Table 4. Plots showing the measurements made to obtain these values are provided in Figure 5.

Table 4:	Fundamental	Emission	Pulsed	Operation.	
----------	-------------	----------	--------	------------	--

			Detector Pk	Span 0	IF Bandwidth 1 MHz		andwidth MHz	Test Date: Test Engineer: EUT: EUT Mode: Meas. Distance:	J. Co Norm	5-Mar-19 Brunett onti SCU al Operating 10 cm
			Ove	erall Transmi	ssion		Int	ernal Frame Characteristics		FCC/IC
R 0	Test Freq.		Min. Repetition	Max. No. of	Total	Max. Frame	Computed Dr		ted Duty Cycle	
	(MHz)	EUT Test Mode*	Rate (sec)	Frames	Length (sec)	Length (ms)	Period (ms)	Frame Encoding	(%)	(dB)
R 6	433.92	Manual Activated, FSK	single	6	0.57	50.33	100.2	In the worse case, the EUT transmits a short 4.275 ms FSK wake frame followed by a 50.33 ms FSK data frame in a 100.2 ms window.	54.6	-5.3
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10

Example Calculation: (4.275 ms + 50.33 ms) / 100 ms = 54.6 % on-time.

Spectrum Spectrum Of TO Of TO Ref Level -20.00 dBm • RBW 500 kHz Ref Level -20.00 dBm • RBW 500 kHz Att 0 dB • SWT 10 s • VBW 3 MHz SGL SGL TGG: VID • RBW 500 kHz • I'' Clrw -30 dBm M1[1] -42.46 dB -30 dBm M1[1]	
Ref Level -20:00 dBm RBW 500 kHz Att 0 dB SWT 10 s VBW 3 MHz SqL SqL SqL SqL SqL 91Pk Cirw 93(1) -42.46 dB 91Pk Cirw 93(1) -42.46 dB -30 dBm M1(1) -43.18 dBm M1(1) M1(1)	
SQL SQL TEG:VID @1Pk Clnw @1Pk Clnw -30 d8m M1[1] -40.19 d8m M1[1]	(
D3[1] -42.46 dB -30 dBm M1[1] -43.18 dBm M1[1] -43.18 dBm M1[1]	
D3[1] -42.46 dB 5.00000 D5[1] -30 d8m M1[1] -43.18 d8m M1[1]	<u> </u>
-30 dBm	-0.26 dB
M1[1] -43.18 dBm M1[1]	100.200 ms
	-40.94 dBm
40 dBm_M	0.000000 s
re to b	
-50 dBm	
-60 dBm	
70 dem TRG -70.000 dem	
-70 dBm	
90 d8m	
BD	Uninterview Marine
-90 d8m	
-100 dBm	
-100 dBm110 dBm CH1	
-110 dBm	
CF 434.25 MHz 1001 pts	60.0 ms/
CF 434.25 MHz 1001 pts 1.05 / Marker	
CF 494-25 MHZ 1001 pts 1.0 s/ Type Ref Trc X-value Y-value Function Marker Mil 1 -0.0 s -40.94 dBm -	Function Result
Type Ref Trc X-value Y-value Function Function Result D2 M1 1 4.8 ms 44.48 dB	
M1 1 950.0 ms -40.10 dBm D3 M1 1 15.0 ms -0.04 dB D2 M1 1 570.0 ms -44.52 dB D4 D3 D1 51.0 ms -44.52 dB	
D3 M1 1 5/0.0 ms -+4.05 00 D4 D5 1 31.0 ms -+4.05 00 D4 D5 1 10.0 ms -+4.05 00 D4 D5 D3 1 10.0 ms -+4.05 00 D4 D5 D3 1 10.0 ms -0.26 d8	
Spectrum Image: Constraint of the system of th	μ Δ
SGL TRG:VID SGL TRG:VID	
	-41.11 dBm
100 200 ms	0.0000000 s
-30 dBm -30 dB	-37.01 dB
	4.2750 ms
Control Control <t< td=""><td></td></t<>	
Air dem Air dem Call.dem <	
14/2 d8m 14/2	
Alighted m Alighte	D ⁴ al myllaneted
1000000000000000000000000000000000000	Dig al multi-auction
140 dBm 1 <t< td=""><td></td></t<>	
140 dem 1 1 1 1 1 150 dem 1	
147 ddm 1 <t< td=""><td></td></t<>	
140 dem 1 1 1 1 1 150 dem 1	
100 dBm	D_4
100 dBm	
110 dBm 1 1 1 100 dBm 1 1 1	7.5 ms/
Alf dem	
Alfreder Alfreder <th< td=""><td>7.5 ms/</td></th<>	7.5 ms/
All dBm All dBm C1 All dBm SD dBm	7.5 ms/

Figure 5: Fundamental Emission Pulsed Operation.

4.2.2 Fundamental Emission Bandwidth

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Emission bandwidth (EBW) of the EUT is measured with the device placed in the test mode(s) with the shortest available frame length and minimum frame spacing. The 20 dB EBW is measured as the max-held peak-detected signal when the IF bandwidth is greater than or equal to 1% of the receiver span. For complex modulations other than ASK and FSK, the 99% emission bandwidth per IC test procedures has a different result, and is also reported. The test equipment employed includes RSFSV30001, LOGEMCO01.

Measurement Results The details and results of testing the EUT are summarized in Table 5. Plots showing the measurements made to obtain these values are provided in Figure 6.

					Test Date:	15-Mar-1	9
	Detector	IF Bandwidth	Video Bandwidth		Test Engineer:	J. Brunet	t
	Pk	10 kHz	30 kHz		EUT:	Conti SC	U
					EUT Mode:	Normal Oper	ating
					Meas. Distance:	10 cm	
							FCC/IC
R0		Center Frequency	20 dB EBW	EBW Limit	99% OBW	Accum. 20dB OBW	Min EBW Limit
K0	Mode	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
R1	FSK	433.59	0.075	1.084	0.359	0.141	1.084
R2	FSK	434.25	0.066	1.086	0.089	0.141	1.064
#	C1	C2	C3	C4	C5	C7	C8
(DOUD)	(COLID OD	NOTE					

 Table 5: Fundamental Emission Bandwidth.

(ROW) (COLUMN) NOTE:

R0

C8 Per KDB 926416, for FCC 15.231 non-sweeping devices, total bandwidth is sum of the individual occupied 20 dB bandwidths. At most the manuf. uses 2 channels. Device bandwidth is restricted to 0.0025 (.25%) of the center frequency.

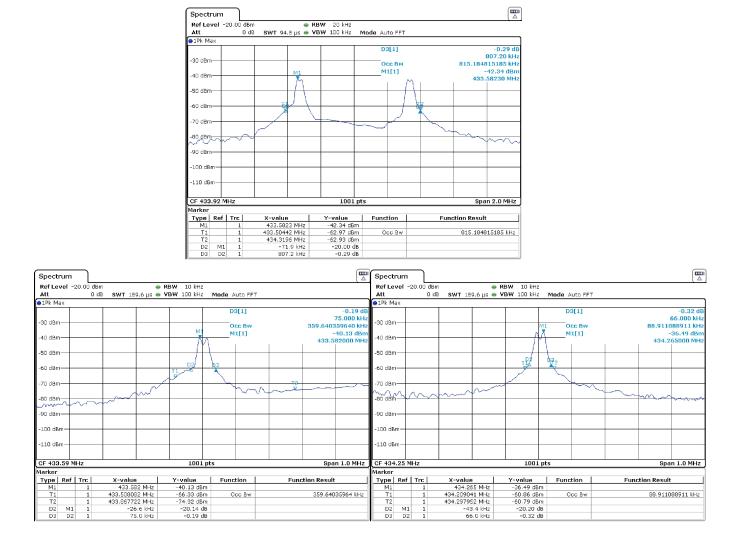


Figure 6: Fundamental Emission Bandwidth.

R0

4.2.3Fundamental Emission Field Strength

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Fundamental emissions are measured at the regulatory distance on our OATS. The test equipment employed includes RSFSV30001, LOGEMCO01.

Measurement Results The details and results of testing the EUT are summarized in Table 6.

Table 6: Fundamental Emission Field Strength.

	EUT Modes:	al	CW - KEY IN	a5
		a2	CW - KEY OUT	a6
Test Date(s):	03/15/19	a3		a7
Test Engineer:	J. Brunett	a4		a8

	Freq	luency	Site EUT								Test A	ntenna		Cable	Receiver			Field Strength @ DR						EIRP		Details			
	Start	Stop	Temp.	Table	MR	DR	N/F	CF				Pol.	Ant.	Dim.	Ka	Kg	Rx F	ower	Band	lwidth		Pk		Qp	ok / Av	g	Pk		
R0			(C)	Angle					Mode	Volt.	Dim		Height				Pk	Avg	RBW	VBW	Meas.	Lim	it	Calc.	Lin	nit	Calc.		Pass
			Hum.						see													USA (CAN		USA	CAN			Fail
	MHz	MHz	%	deg		m		dB	table	(V)	cm	H/V	m	cm	dB/m	dB	dł	3m	M	Hz			dBuV	//m			dB	m	dB
R1	SE	TUP			OAT	SC			CC	ONTI S	CU		EMCC	DLOG		CAB001		RSFSV	V30001		NOTE	S: H-PO	DL - F	LAT, V	/-POL	END	Worst C	Case Ori	ent
R2	433.3	433.3	7 / 58	220.0	3.0	3.0		0.0	al	3.0	4.0	Н	1.0	100.0	16.3	-0.1			0.12	0.30	82.3	100.8 1	100.8	77.0	80.8	80.8	-12.8		3.8
R3	433.3	433.3	7 / 58	90.0	3.0	3.0		0.0	al	3.0	4.0	v	1.3	100.0	16.3	-0.1			0.12	0.30	82.4	100.8 1	100.8	77.1	80.8	80.8	-12.7		3.7
R4	433.3	433.3	7 / 58	90.0	3.0	3.0		0.0	al	3.5	4.0	v	1.3	100.0	16.3	-0.1			0.12	0.30	82.4	100.8 1	100.8	77.1	80.8	80.8	-12.7		3.7
R5	433.3	433.3	7 / 58	90.0	3.0	3.0		0.0	al	3.0	4.0	v	1.3	100.0	16.3	-0.1			0.12	0.30	82.4	100.8 1	100.8	77.1	80.8	80.8	-12.7		3.7
R6	433.3	433.3	7 / 58	90.0	3.0	3.0		0.0	al	2.7	4.0	v	1.3	100.0	16.3	-0.1			0.12	0.30	82.4	100.8 1	100.8	77.1	80.8	80.8	-12.7		3.7
R7	433.3	433.3	7 / 58	90.0	3.0	3.0		0.0	al	2.6	4.0	v	1.3	100.0	16.3	-0.1			0.12	0.30	82.4	100.8 1	100.8	77.1	80.8	80.8	-12.7		3.7
R8	433.3	433.3	7 / 58	90.0	3.0	3.0		0.0	al	2.5	4.0	v	1.3	100.0	16.3	-0.1			0.12	0.30		100.8 1	100.8		80.8	80.8			off
R9																													
R10	433.3	433.3	7 / 58	220.0	3.0	3.0		0.0	a2	3.0	4.0	Н	1.0	100.0	16.3	-0.1			0.12	0.30	82.2	100.8 1	100.8	76.9	80.8	80.8	-12.9		3.9
R11	433.3	433.3	7 / 58	90.0	3.0	3.0		0.0	a2	3.0	4.0	v	1.3	100.0	16.3	-0.1			0.12	0.30	82.3	100.8 1	100.8	77.0	80.8	80.8	-12.8		3.8
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	C29
(F	OW)	(COLU	JMN)		NOT	E:																							
	R0 C5 MR is Measurement Range, which is reduced from DR to achieve necessary SNR.																												

C5 MR is Measurement Range, which is reduced from DR to achieve necessary SNR. R0

C6 DR is the regulatory Desired Range measurement distance.

N/F is Near-Field / Far-Field distance computed for max of EUT Antenna Dimension (C10) computed above 1 GHz. C7

R0 C8 CF is computed using a 20 dB/decade Decay Rate. R0

When E-field or EIRP is reported directly from Spectrum Analyzer, Antenna Factors and Cable losses are included directly in SA settings and Pr is not reported. C17/18

4.3 Unintentional Emissions

4.3.1 Transmit Chain Spurious Emissions

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Spurious radiated emissions measurements are performed to 10 times the highest fundamental operating frequency. The test equipment employed includes RSFSV30001, LOGEMCO01, HQR1TO18S01.

Measurement Results The details and results of testing the EUT are summarized in Table 7.

Table 7: Transmit Chain Spurious Emissions.

	EUT Modes:	a1	CW - KEY IN	a5
		a2	CW - KEY OUT	a6
Test Date(s):	03/15/19	a3		a7
Test Engineer:	J. Brunett	a4		a8

	Frea	uency			Site	e				EUT			Test Antenna				Receiver					Field	Stren	eth @	DR		EI	RP	Details
	Start	Stop	Temp.	Table	MR	DR	N/F	CF			l	Pol.	Ant.	Dim.	Ka	Cable Kg	Rx F	ower	Band	width		Pk		e	ok / A	ve			Detuns
R0			(C)	Angle					Mode	Volt.	Dim		Height			0	Pk	Avg	RBW	VBW	Meas.	Li	mit	Calc.		mit	Calc.		Pass
			Hum.	0					see													USA	CAN		USA	CAN			Fail
	MHz	MHz	%	deg		m		dB	table	(V)	cm	H/V	m	cm	dB/m	dB	d	Bm	М	Hz			dBu	V/m			dF	Bm	dB
R1	SE	TUP			OAT	SC			CC	ONTI S	CU		EMCC	LOG		CAB001		RSFS	V30001		NOTE	S: H-	POL -	FLAT	, V-P	OL E	ND Wor	st Case	Orient
R2	867.2	867.2	7 / 58	110.0	3.0	3.0		0.0	a1	3.0	8.0	Н	1.0	100.0	15.3	-0.2			0.12	0.30	25.4	80.8	80.8	20.1	60.8	60.8	-69.8		40.7
R3	867.2	867.2	7 / 58	90.0	3.0	3.0		0.0	a1	3.0	8.0	v	1.1	100.0	15.3	-0.2			0.12	0.30	22.0	80.8	80.8	16.7	60.8	60.8	-73.2		44.1
R4	SE	TUP			OAT	SC			CC	ONTI S	CU		HRNSI	NGQR		CAB015		RSFS	V30001		NOTE	S: ma	x all o	rientati	ions o	of EUT			
R5	1300.8	1300.8	7 / 58	all	3.0	3.0	0.2	0.0	a1	3.0	8.0	H/V	all	15.0	22.0	-2.9			1.00	3.00	40.1		74.0				-55.1		19.2
R6	1734.4	1734.4	7 / 58	all	3.0	3.0	0.3	0.0	a1	3.0	8.0	H/V	all	15.0	26.7	-3.4			1.00	3.00			74.0				-59.1		23.2
R7	2167.9	2167.9	7 / 58	all	3.0	3.0	0.3	0.0	al	3.0	8.0	H/V	all	15.0	29.5	-3.9			1.00	3.00			74.0		54.0		-56.6		20.7
R8	2601.5	2601.5	7 / 58	all	3.0	3.0	0.4	0.0	a1	3.0	8.0	H/V	all	15.0	31.1	-4.4			1.00	3.00			74.0		54.0		-56.6		20.7
R9	3035.1	3035.1	7 / 58	all	3.0	3.0	0.5	0.0	a1	3.0	8.0	H/V	all	15.0	31.8	-4.9			1.00	3.00	37.5	74.0					-57.7		21.8
R10	3468.7	3468.7	7 / 58	all	3.0	3.0	0.5	0.0	a1	3.0	8.0	H/V	all	15.0	31.9	-5.4			1.00	3.00	38.6		74.0		54.0		-56.6		20.7
R11	3902.3	3902.3	7 / 58	all	3.0	3.0	0.6	0.0	a1	3.0	8.0	H/V	all	15.0	32.0	-5.9			1.00	3.00			74.0		54.0		-55.9		20.0
R12	4335.9	4335.9	7 / 58	all	3.0	3.0	0.7	0.0	al	4.0	8.0	H/V	all	15.0	32.3	-6.3			1.00	3.00	40.7	74.0	74.0	35.4	54.0	54.0	-54.5		18.6
R13																													
R14		TUP			OAT					0			EMCC		r	CAB001		RSFS	V30001	r —	NOTES: H-POL - FLAT, V-POL I 25.8 80.8 80.8 20.5 60.8 60.8							st Case	
R15	867.2	867.2	7 / 58	110.0	3.0	3.0		0.0	a2	3.0	8.0	Н	1.0	100.0	15.3	-0.2			0.12	0.30							-69.4		40.3
R16	867.2	867.2	7 / 58	90.0	3.0	3.0		0.0	a2	3.0	8.0	V	1.1	100.0	15.3	-0.2		DODO	0.12	0.30			80.8				-74.3		45.2
R17 R18	1300.8	TUP 1300.8	7/58	all	OAT:	3.0	0.2	0.0	-2	0	8.0	H/V	HRNSI		22.0	CAB015 -2.9		KSFS	V30001 1.00	3.00	NOTE 39.4		x all of 74.0				-55.8		19.9
R18 R19	1734.4	1734.4	7/58	all	3.0	3.0	0.2	0.0	a2 a2	3.0	8.0	H/V H/V	all	15.0 15.0	22.0 26.7	-2.9			1.00	3.00			74.0				-55.8		21.9
R19 R20	2167.9	2167.9	7/58	all	3.0	3.0	0.3	0.0	a2 a2	3.0	8.0	H/V H/V	all	15.0	20.7	-3.4			1.00	3.00	36.2		74.0		54.0 54.0		-57.8		21.9
R20 R21	2601.5	2601.5	7/58	all	3.0	3.0	0.3	0.0	a2 a2	3.0	8.0	H/V H/V	all	15.0	29.5	-3.9			1.00	3.00	30.2		74.0		54.0 54.0		-59.0		23.1
R21 R22	3035.1	3035.1	7/58	all	3.0	3.0	0.4	0.0	a2 a2	3.0	8.0	H/V H/V	all	15.0	31.1	-4.4			1.00	3.00	37.4		74.0		54.0		-57.8		21.4
R22 R23	3468.7	3468.7	7/58	all	3.0	3.0	0.5	0.0	a2 a2	3.0	8.0	H/V	all	15.0	31.8	-5.4			1.00	3.00			74.0		54.0		-56.9		21.9
R24	3902.3	3902.3	7/58	all	3.0	3.0	0.5	0.0	a2 a2	3.0	8.0	H/V	all	15.0	32.0	-5.9		-	1.00	3.00	39.5		74.0				-55.7		19.8
R25	4335.9	4335.9	7/58	all	3.0	3.0	0.7	0.0	a2	4.0	8.0	H/V	all	15.0	32.3	-6.3			1.00	3.00			74.0				-55.5		19.6
R26															52.5														
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	C29
	OWD		0.00		NOT																-	-	-		1.00				

 m
 C1
 C2
 C3
 C4
 C3
 <thC4</th>
 C3
 C4
 C3
 <thC4</th>
 C3
 C4
 C3</th

R0

R0

R0

C5 MR is Measurement Range, which is reduced from DR to achieve necessary SNR.

C6 DR is the regulatory Desired Range measurement distance.

C7 N/F is Near-Field / Far-Field distance computed for max of EUT Antenna Dimension (C10) computed above 1 GHz.

C8 CF is computed using a 20 dB/decade Decay Rate.

C18/19 When E-field or EIRP is reported directly from Spectrum Analyzer, Antenna Factors and Cable losses are included directly in SA settings and Pr is not reported.

4.3.2 Radiated Digital Spurious

The results for the measurement of digital spurious emissions are not reported herein as all digital emissions were greater than 20 dB below the regulatory limit. Radiation from digital components was measured to 4 GHz, or to five times the maximum digital component operating frequency, whichever is greater.

5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of k = 2.

Table 8: Measurement Uncertainty.

${\bf Measurement} ~ {\bf Uncertainty}^{\dagger}$
$\pm (f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \mathrm{Hz})$
$\pm 1.9\mathrm{dB}$
$\pm 4.0\mathrm{dB}$
$\pm 5.2\mathrm{dB}$
$\pm 3.7\mathrm{dB}$

[†]Ref: CISPR 16-4-2:2011+A1:2014

United States Department of Commerce National Institute of Standards and Technology	FEDERAL COMMUNICATIONS COMMISSION Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046 July 06, 2018
Certificate of Accreditation to ISO/IEC 17025:2005	National You'umany Laboratory Accreditation Program 100 Bureau Drive, Galithersburg, MD 20899-2140
NVLAP LAB CODE: 200129-0 AHD (Amber Helm Development, L.C.) Sister Lakes, MI	Attention: Timothy Rasinski Re: Accreditation of AHD (Anther Helm Devolopment, L.C.) Designation Number: US3345 Tens-Firm Registration # 6.39064
is accoredited by the National Voluciary Laboratory Accoreditation Program for specific services, Island on the Scope of Accoreditation for. Electromagnetic Compatibility & Telecommunications This laboratory is accredited in accordance with the recognized international Standard (7005.0005 This laboratory is accredited in accordance used the recognized international Standard (7005.0005 This accorditation devices a companies for a device accession of a laboratory quality management system (refer to joint ISC-LAC-AF Communicae dated January 2009). 20.6-07-02 (Ecoryta 2019-07-02) Presente Tutes	Dear Sir or Madam: We have been notified by hational Voluntary Laboratory Accreditation Program that AHD (Amber Helm Development, L.C.) has been accredited as a testing laboratory. At this time AHD (Amber Helm Development, L.C.) is hereby recognized to perform compliance testing or equipment subject to Declaration Of Conformity (DOC) and Certification of the Commission's Rules. This recognition will expire upon expiration of the accreditation or notification of withdrawal of recognition Ary questions about this recognition should be submitted as an inquiry to the FCC Knowledge Database at trave decemption.
	George Tannahill Electronics Engineer

Figure 7: Accreditation Documents