Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

10899 AAD 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR 10900 AAD 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR 10901 AAD 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR 10902 AAD 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR 10903 AAD 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR 10904 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR 10905 AAD 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR 10906 AAD 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR	1 TDD 5 1 TDD 5 1 TDD 5	5.68 5.68	± 9.6 % ± 9.6 %
10901 AAD 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR 10902 AAD 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR 10903 AAD 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR 10904 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR 10905 AAD 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR	1 TDD 5		
10902 AAD 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR 10903 AAD 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR 10904 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR 10905 AAD 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR	1 TDD 5	ו ממו	. 0 6 0/
10903 AAD 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR 10904 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR 10905 AAD 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR			± 9.6 %
10904 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR 10905 AAD 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR	1 TOD E	6.68	± 9.6 %
10905 AAD 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR		5.68	± 9.6 %
		6.68	± 9.6 %
10906 AAD 5G NR (DFT-S-OFDM, 1 RB, 80 MHz, QPSK, 30 KHz) 1 3G NR FR		5.68	± 9.6 %
		5.68	± 9.6 % ± 9.6 %
10001		5.93	± 9.6 %
		5.96	± 9.6 %
		5.83	± 9.6 %
10910 AAD 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR 10911 AAD 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR		5.93	± 9.6 %
10912 AAD 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR		5.84	± 9.6 %
10913 AAD 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR		5.84	± 9.6 %
10914 AAD 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR		5.85	± 9.6 %
10915 AAD 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR		5.83	± 9.6 %
10916 AAD 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR		5.87	± 9.6 %
10917 AAD 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR		5.94	± 9.6 %
10918 AAD 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR		5.86	± 9.6 %
10919 AAD 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 KHz) 5G NR FR		5.86	± 9.6 %
10920 AAD 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR		5.87	± 9.6 %
10921 AAD 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR		5.84	± 9.6 %
10922 AAD 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR		5.82	± 9.6 %
10923 AAD 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR		5.84	± 9.6 %
10924 AAD 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR		5.84	± 9.6 %
10925 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR		5.95	± 9.6 %
10926 AAD 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR		5.84	± 9.6 %
10927 AAD 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR		5.94	± 9.6 %
10928 AAD 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) 5G NR FR		5.52	± 9.6 %
10929 AAD 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR FR		5.52	± 9.6 %
10930 AAD 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR FR		5.52	± 9.6 %
10931 AAD 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR		5.51	± 9.6 %
10932 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) 5G NR FR		5.51	± 9.6 %
10933 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FF		5.51	±9.6%
10934 AAA 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) 5G NR FF	R1 FDD	5.51	± 9.6 %
10935 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FF	R1 FDD	5.51	± 9.6 %
10936 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR FF	R1 FDD	5.90	± 9.6 %
10937 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FF	R1 FDD	5.77	± 9.6 %
10938 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) 5G NR FF	R1 FDD	5.90	± 9.6 %
10939 AAB 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FF	R1 FDD	5.82	± 9.6 %
10940 AAB 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR FF	R1 FDD	5.89	± 9.6 %
10941 AAB 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FF	R1 FDD	5.83	± 9.6 %
10942 AAB 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) 5G NR FF		5.85	± 9.6 %
10943 AAB 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FF		5.95	± 9.6 %
10944 AAB 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FF		5.81	± 9.6 %
10945 AAB 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FF		5.85	± 9.6 %
10946 AAC 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FF	R1 FDD	5.83	± 9.6 %
10947 AAB 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FF		5.87	± 9.6 %
10948 AAB 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FF		5.94	± 9.6 %
10949 AAB 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FF		5.87	± 9.6 %
10950 AAB 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FF		5.94	± 9.6 %
10951 AAB 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FF		5.92	± 9.6 %
10952 AAB 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR FF		8.25	± 9.6 %
10953 AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) 5G NR FF		8.15	± 9.6 %
10954 AAB 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) 5G NR FF	R1 FDD	8.23	± 9.6 %
10955 AAB 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) 5G NR FF	R1 FDD	8.42	± 9.6 %
10956 AAB 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) 5G NR FF		8.14	± 9.6 %
10957 AAC 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR FF	R1 FDD	8.31	± 9.6 %

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

10958	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	± 9.6 %
10959	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	±9.6 %
10960	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	± 9.6 %
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	± 9.6 %
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	±9.6%
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10964	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	± 9.6 %
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	± 9.6 %
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	± 9.6 %
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	± 9.6 %
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	± 9.6 %
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	± 9.6 %
10974	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	± 9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Certificate No:

Z21-60218

CALIBRATION CERTIFICATE

BTL Inc .

Object D835V2 - SN: 4d160

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

Client

June 1, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Reference Probe EX3DV4	SN 3846	26-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22
DAE4	SN 777	08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	多
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	2a

Issued: June 6, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.4 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.52 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.14 W/kg ± 18.7 % (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9Ω- 5.07jΩ	
Return Loss	- 25.8dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.350 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semingid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d160

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.894$ S/m; $\varepsilon_r = 41.44$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 2021-04-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062

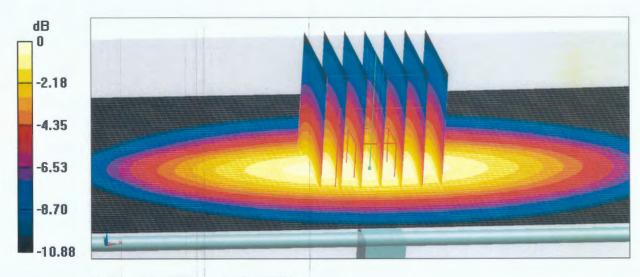
Date: 06.01.2021

 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

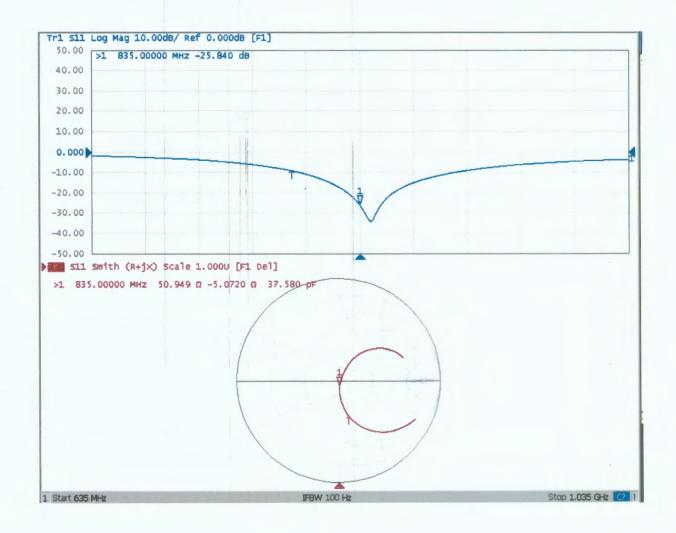
Reference Value = 56.07 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 3.79 W/kg

SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.53 W/kg

Smallest distance from peaks to all points 3 dB below = 20.6 mm

Ratio of SAR at M2 to SAR at M1 = 62.6%


Maximum value of SAR (measured) = 3.26 W/kg

0 dB = 3.26 W/kg = 5.13 dBW/kg

Impedance Measurement Plot for Head TSL

Client

BTL Inc .

Certificate No:

Z21-60220

CALIBRATION CERTIFICATE

Object

D1750V2 - SN: 1101

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 1, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Power Meter NRP2 106277 23-Sep-20 (CTTL, No.J20X08336) Sep-21 Power sensor NRP8S 104291 23-Sep-20 (CTTL, No.J20X08336) Sep-21 Reference Probe EX3DV4 SN 3846 26-Apr-21(CTTL-SPEAG,No.Z21-60084) Apr-22 DAE4 SN 777 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Jan-22				10.00
Power sensor NRP8S 104291 23-Sep-20 (CTTL, No.J20X08336) Sep-21 Reference Probe EX3DV4 SN 3846 26-Apr-21(CTTL-SPEAG,No.Z21-60084) Apr-22 DAE4 SN 777 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Jan-22 Secondary Standards ID # Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 01-Feb-21 (CTTL, No.J21X00593) Jan-22	Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Reference Probe EX3DV4 SN 3846 26-Apr-21(CTTL-SPEAG,No.Z21-60084) Apr-22 DAE4 SN 777 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Jan-22 Secondary Standards ID # Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 01-Feb-21 (CTTL, No.J21X00593) Jan-22	Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
DAE4 SN 777 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Jan-22 Secondary Standards ID # Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 01-Feb-21 (CTTL, No.J21X00593) Jan-22	Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Secondary Standards ID # Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 01-Feb-21 (CTTL, No.J21X00593) Jan-22	Reference Probe EX3DV4	SN 3846	26-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22
Signal Generator E4438C MY49071430 01-Feb-21 (CTTL, No.J21X00593) Jan-22	DAE4	SN 777	08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
	Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
NetworkAnalyzer E5071C MY46110673 14-Jan-21 (CTTL, No.J21X00232) Jan-22	Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
	NetworkAnalyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

Calibrated by:

Name

Function

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: June 6, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60220

Page 1 of 6

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.5 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	18.9 W/kg ± 18.7 % (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com

http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.8Ω- 2.01jΩ	
Return Loss	- 30.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	Electrical Delay (one direction)	1.124 ns
----------------------------------	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured by	SPEAG

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1101

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.358$ S/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

 Probe: EX3DV4 - SN3846; ConvF(8.22, 8.22, 8.22) @ 1750 MHz; Calibrated: 2021-04-26

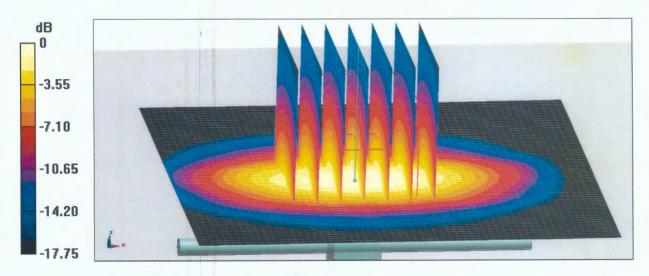
Date: 06.01.2021

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.22 V/m; Power Drift = -0.04 dB

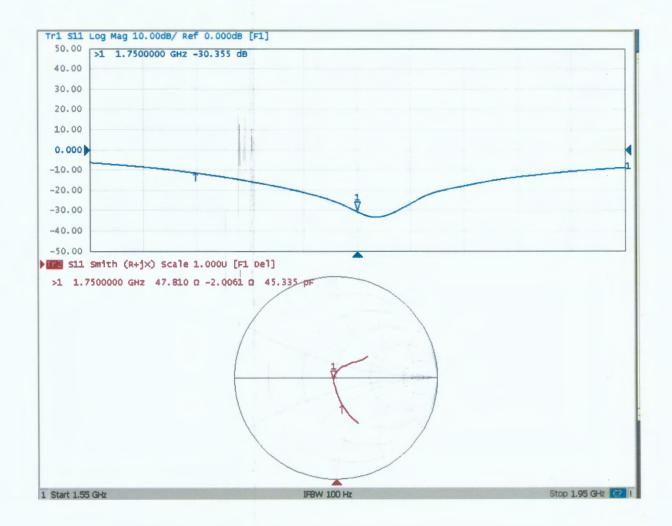

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.69 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

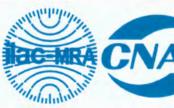
Ratio of SAR at M2 to SAR at M1 = 51.3%

Maximum value of SAR (measured) = 14.5 W/kg


0 dB = 14.5 W/kg = 11.61 dBW/kg

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn


Impedance Measurement Plot for Head TSL

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

BTL Inc .

Certificate No:

Z21-60221

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d179

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 31, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards		ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NF	RP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor N	IRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Reference Probe	EX3DV4	SN 3846	26-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22
DAE4		SN 777	08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
Secondary Standa	ards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator	E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer	E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22
				•

Calibrated by:

Name

Function

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: June 6, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60221

Page 1 of 6

lossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	V52.10.4	
Extrapolation	Advanced Extrapolation		
Phantom	Triple Flat Phantom 5.1C		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	1900 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.6 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.97 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.0 W/kg ± 18.7 % (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8Ω+ 2.66jΩ	
Return Loss	- 28.4dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.105 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by		SPEAG
Manufactured by		SPEAG

Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d179

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ S/m; $\varepsilon_r = 40.25$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

 Probe: EX3DV4 - SN3846; ConvF(7.96, 7.96, 7.96) @ 1900 MHz; Calibrated: 2021-04-26

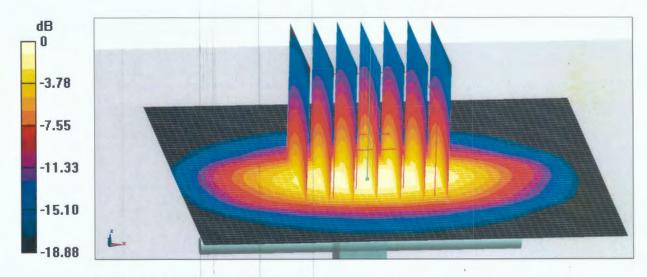
Date: 05.31.2021

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.89 V/m; Power Drift = -0.09 dB

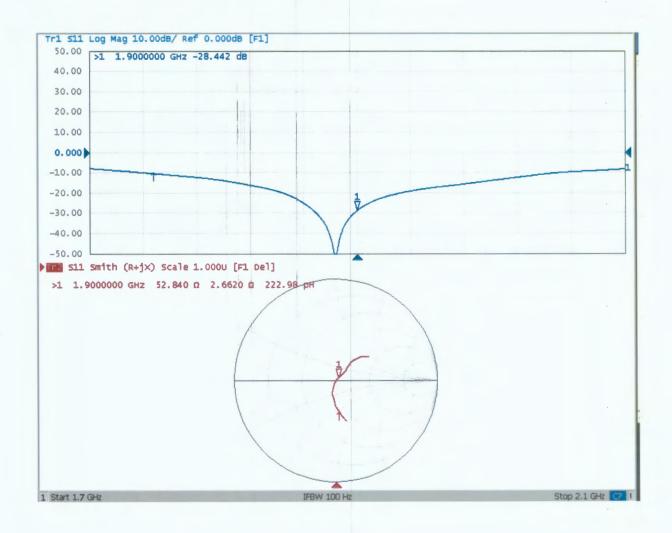

Peak SAR (extrapolated) = 19.3 W/kg

SAR(1 g) = 9.79 W/kg; SAR(10 g) = 4.97 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 50.5%

Maximum value of SAR (measured) = 15.7 W/kg


0 dB = 15.7 W/kg = 11.96 dBW/kg

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

BTL Inc . Client

Certificate No: Z21-60224

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 919

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 28, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Reference Probe EX3DV4	SN 3846	6-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22
DAE4	SN 777	8-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

Name **Function** Calibrated by: Zhao Jing **SAR Test Engineer** Reviewed by: Lin Hao **SAR Test Engineer** Approved by: Qi Dianyuan SAR Project Leader

Issued: June 2, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

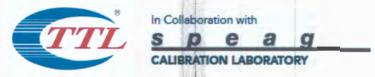
TSL

tissue simulating liquid

ConvF N/A sensitivity in T\$L / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz


Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.1 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 18.7 % (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.6Ω+ 2.17jΩ
Return Loss	- 24.8dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.070 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	

Certificate No: Z21-60224

H.

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 919

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ S/m; $\varepsilon_r = 38.82$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

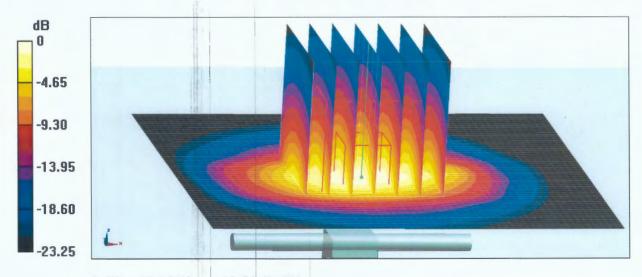
 Probe: EX3DV4 - SN3846; ConvF(7.45, 7.45, 7.45) @ 2450 MHz; Calibrated: 2021-04-26

Date: 05.28.2021

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.10 V/m; Power Drift = -0.09 dB

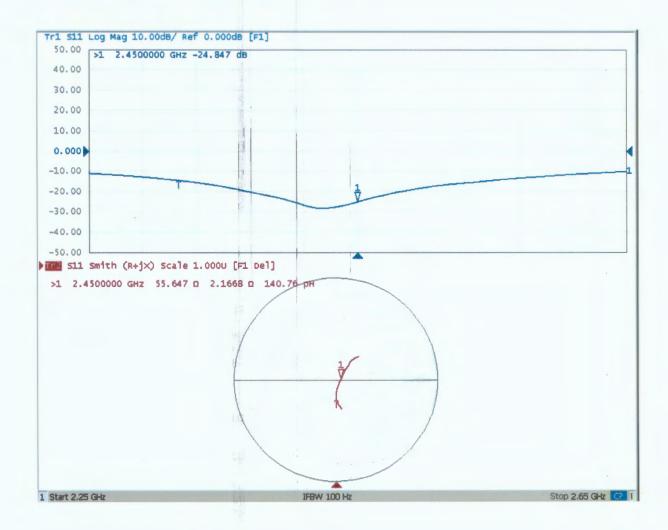

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 5.95 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 45.9%

Maximum value of SAR (measured) = 22.6 W/kg


0 dB = 22.6 W/kg = 13.54 dBW/kg

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Tel: +86-10-62304633-2079

E-mail: cttl@chinattl.com

Impedance Measurement Plot for Head TSL

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Fax: +86-10-62304633-2504 http://www.chinattl.cn

BTL Inc . Client

Z21-60225 **Certificate No:**

CALIBRATION CERTIFICATE

Object D2600V2 - SN: 1067

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 28, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Reference Probe EX3DV4	SN 3846	26-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22
DAE4	SN 777	08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
Network Analyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	装置1
Reviewed by:	Lin Hao	SAR Test Engineer	THE STATE OF THE S
Approved by:	Qi Dianyuan	SAR Project Leader	Sia

Issued: June 2, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

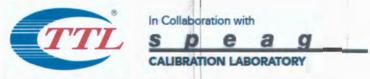
- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	


Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.96 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.9 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 18.7 % (k=2)

Appendix(Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9Ω- 6.74jΩ
Return Loss	- 23.2dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.057 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	13-1		
Manufactured by		SPEAG	

Sign

the

In Collaboration with

S P E A G

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1067

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.957$ S/m; $\varepsilon_r = 39.33$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

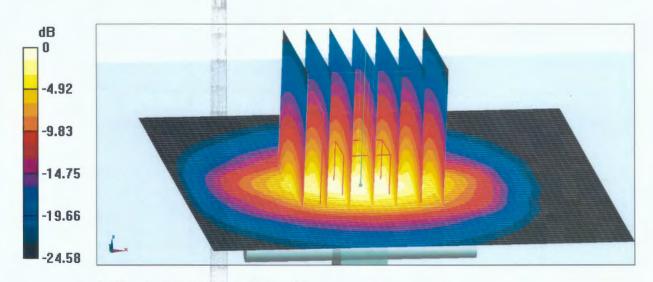
 Probe: EX3DV4 - SN3846; ConvF(7.3, 7.3, 7.3) @ 2600 MHz; Calibrated: 2021-04-26

Date: 05.28.2021

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY 52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.7 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 31.6 W/kg

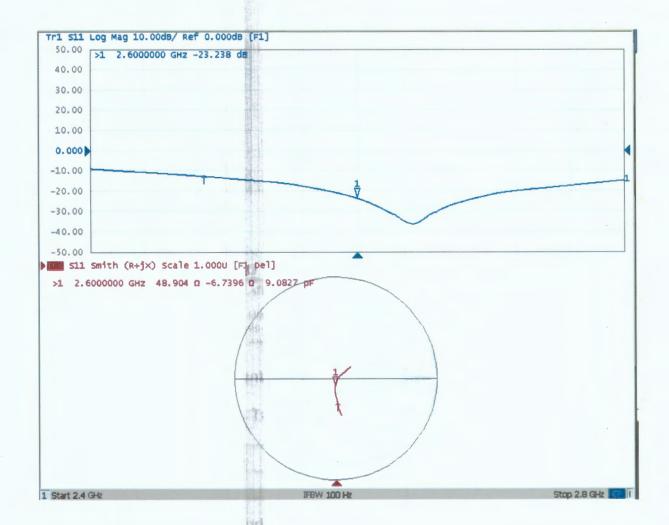
SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.22 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 44.5%

Maximum value of SAR (measured) = 24.7 W/kg

0 dB = 24.7 W/kg = 13.93 dBW/kg



In Collaboration with

S P e a g CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

护钳

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Client

BTL Inc .

Certificate No:

Z21-60226

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1160

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 27, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
ReferenceProbe EX3DV4	SN 3617	27-Jan-21(SPEAG,No.EX3-3617_Jan21)	Jan-22
DAE4	SN 777	08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzerE5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

Name Function Signature
Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: June 2, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com

http://www.chinattl.cn

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

- 11	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	4.68 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.0 W/kg ± 24.4 % (<i>k</i> =2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.4 W/kg ± 24.2 % (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied

9	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.22 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.5 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.6 W/kg ± 24.2 % (k=2)

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.9Ω - 6.08jΩ	
Return Loss	- 24.1dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.2Ω - 1.85jΩ
Return Loss	- 27.1dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	53.1Ω - 1.51jΩ
Return Loss	- 29.6dB

General Antenna Parameters and Design

	1844	
Electrical Delay (one direction)	1	1.105 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	1	SPEAG	

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1160

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,

Date: 05.27.2021

Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 4.683 S/m; ϵ_r = 36.33; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.061 S/m; ϵ_r = 35.72; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.224 S/m; ϵ_r = 35.5; ρ = 1000 kg/m³,

Phantom section: Center Section

DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(5.4, 5.4, 5.4) @ 5250 MHz; ConvF(5, 5, 5)
 @ 5600 MHz; ConvF(5.12, 5.12, 5.12) @ 5750 MHz; Calibrated: 2021-01-27

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn777; Calibrated: 2021-01-08

Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062

 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.64 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.23 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 64.8%

Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.46 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 35.6 W/kg

SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.3 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

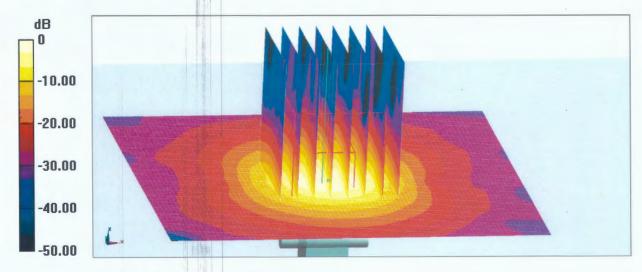
Ratio of SAR at M2 to SAR at M1 = 62.4%

Maximum value of SAR (measured) = 19.7 W/kg

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax; +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.41 V/m; Power Drift = -0.08 dB

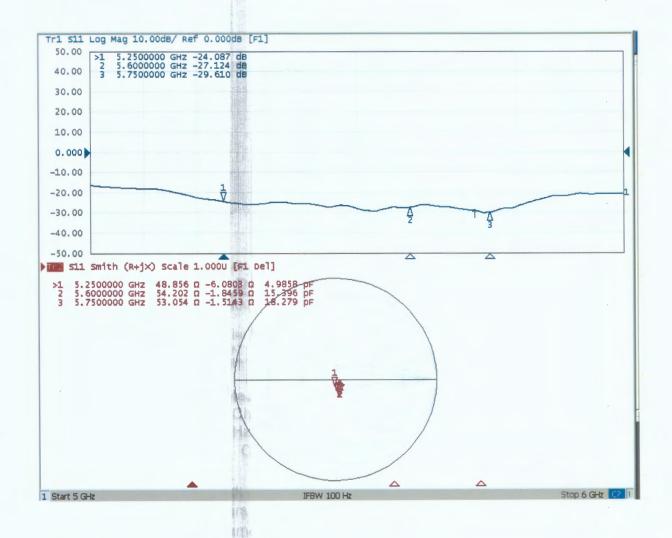

Peak SAR (extrapolated) = 35.0 W/kg

SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.16 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 61.4%

Maximum value of SAR (measured) = 18.6 W/kg


0 dB = 18.6 W/kg = 12.70 dBW/kg

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

自劇

碘