

Test Report 18-1-0246401T20a-C1

Number of pages:	15	Date of Report:	2021-Sep-29
Testing company:	CETECOM GmbH Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150	Applicant:	Continental Automotive GmbH
Test Object / Tested Device(s):	Intelligent Antenna Module BSRF-V1RWHIGH.0		
FCC ID:	KR5-BSRFV1RW0	IC:	N/A
Testing has been carried out in accordance with:	FCC Regulations: Title 47 CFR, Chapter I FCC Regulations, Subchapter A Subpart B: §15.109 (Class B limits)		
	Deviations, modifications or clarificat in each section under "Test method a		mentioned documents are written
Test Results:	The EUT complies with the require the test. The test results relate only to devices		
	The current version of Test Report CETEC CETECOM_18_1_0246401T20a dated 202		
Signatures:			W. M
	DiplIng. Ninovic Perez Test Lab Manager Authorization of test report		W. Markus Senior Test manager Responsible of test report

Table of Contents

Table of	Annex	3
1.1	Disclaimer and Notes	4
1.1.	Summary of Test Results	5
1.2.	Summary of Test Methods	5
2.1	Identification of the Testing Laboratory	6
2.2	General limits for environmental conditions	6
2.3	Test Laboratories sub-contracted	6
2.4	Organizational Items	6
2.5	Applicant's details	6
2.6	Manufacturer's details	6
2.7	EUT: Type, S/N etc. and short descriptions used in this test report	7
2.8	Auxiliary Equipment (AE): Type, S/N etc. and short descriptions	7
2.9	Connected cables	7
2.10	Softwares	8
2.11	EUT set-ups	8
2.12	EUT operation modes	8
3.1	General Data of Main EUT as Declared by Applicant	8
3.2	Modifications on Test sample	8
4.1	Radiated field strength emissions 30 MHz – 1 GHz	9
4.2	Radiated field strength emissions above 1 GHz	11
4.3	Results from external laboratory	13
4.4	Opinions and interpretations	13
4.5	List of abbreviations	13

	Table of Annex				
Annex No.	Annex No. Contents Reference Description				
Annex 1	Test result diagrams	CETECOM_TR18_1_0246401T20a_C1_A1	6		
Annex 2	Internal photographs of EUT				
Annex 3	External photographs of EUT	CETECOM_TR18_1_0246401T20a_C1_A3	7		
Annex 4	Test set-up photographs	CETECOM_TR18_1_0246401T20a_C1_A4	4		
The listed attachments are separate documents.					

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM.

The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM". CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM.

All rights and remedies regarding vendor's products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at CETECOM.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

Summary of Test Results 1.1.

Test case	Reference	Reference	Reference	Remark	Result	
	in FCC 🛛	in ISED 🗖	in RSS-GEN 🗖			
Radiated field strength emissions 30 MHz – 1	§15.109	ICES-003, Issue 6	RSS-Gen., Issue 5			
GHz	§15.33		Chapter 8.9,		PASSED	
	§15.35		Chapter 7.3			
Radiated field strength emissions above 1 GHz	§15.109	ICES-003, Issue 6	RSS-Gen., Issue 5			
	§15.33		Chapter 8.9,		PASSED	
	§15.35		Chapter 7.3			
PASSED The EUT complies with the essential requirements in the standard.						
FAILED The EUT does not comply with the essential requirements in the standard.						

NP

The test was not performed by the CETECOM Laboratory.

*The calculation of the measurement uncertainty shows compliance with the "maximum measurement uncertainties" of the tested standard and therefore for result evaluation the stated uncertainties will not be additionally added to the measured results.

Summary of Test Methods 1.2.

Test case	Test method
Radiated field strength emissions 30 MHz – 1 GHz	ANSI C63.4-2014 chapter 8.2.3
Radiated field strength emissions above 1 GHz	ANSI C63.4-2014 chapter 8.3

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name:	CETECOM GmbH
Address:	Im Teelbruch 116
	45219 Essen - Kettwig
	Germany
Responsible for testing laboratory:	DiplIng. Ninovic Perez
Accreditation scope:	DAkkS Webpage
Test location:	CETECOM GmbH; Im Teelbruch 116; 45219 Essen - Kettwig

2.2 General limits for environmental conditions

Temperature:	22±2 °C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name:	

2.4 Organizational Items

Order No.:	1
Responsible test manager:	W. Markus
Receipt of EUT:	2021-Jun-25
Date(s) of test:	2021-Jul-23 – 2021-Sep-21
Version of template:	14.3

2.5 Applicant's details

Applicant's name:	Continental Automotive GmbH	
Address:	Siemensstraße 12 93055 Regensburg	
	Germany	
Contact Person:	Kelvin Fongang	
Contact Person's Email:	kelvin.fongang@continental.com	

2.6 Manufacturer's details

Manufacturer's name:	Continental Automotive GmbH
Address:	Siemensstraße 12
	93055 Regensburg
	Germany

2.7 EUT: Type, S/N etc. and short descriptions used in this test report

Short descrip tion*)	PMT Sample No.	Product	Model	Туре	S/N	HW status	SW status
EUT 01	18-1-02426S183_C01	Intelligent Antenna Module	BSRF- V1RWHIGH.0		21331000 28S	D5	V15_1.15. 1.21.10.30

*) EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

Short descrip tion*)	PMT Sample No.	Auxiliary Equipment	Model	Туре	S/N	HW status	SW status
AE 1	18-1-02426S42_C01	Metal plate					
AE 2	18-1-02426S61_C01	CAN Traffic Simulator	iSiCAN Traffic Simulator (CN3)				
AE 3	18-1-02426S73_C01	Ethernet to BRR Converter	100BASE-T1 BCM		200330 121		3.0a
AE 4	18-1-02426S78_C01	Optical LAN Converter	OptoLAN- BCM89810	-	19-018462		
AE 5	18-1-02426S79_C01	Optical LAN Converter	OptoLAN- BCM89810	-	19-018461		
AE 6	18-1-02426S83_C01	Optical CAN Transceiver	OptoCAN 2000	-	CAN 20/139HS		
AE 7	18-1-02426S84_C01	Optical CAN Transceiver	OptoCAN 2000		CAN 20/140HS		
AE 8	18-1-02426S252_C01	Microphone	Peugeot Citroen		98329554 8000		
AE 9	18-1-02426S270_C01	Loudspeaker	PSA		96639941 80		
AE 10	18-1-02426S98_C01	HP Laptop	EliteBook 850 G6		5CGO11BJ KJ	Intel Core i5	Windows 7 PRO

*) AE short description is used to simplify the identification of the auxiliary equipment in this test report.

2.9 Connected cables

Short descrip tion*)	PMT Sample No.	Cable type	Connectors	Length
CAB 1	18-1-02426S193_C01	Main harness	Fakra, Can Bus, Power	1,5

*) CAB short description is used to simplify the identification of the connected cables in this test report.

2.10 Softwares

Short descrip tion*)	PMT Sample No.	Software	Туре	S/N	HW status	SW status
		BSRF Stimulator				V1.89a

*) SW short description is used to simplify the identification of the used softwares in this test report.

2.11 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
1	EUT 01 + AE 1 + AE 2 + AE 3 + AE 4 + AE 5 + AE 6 +AE 7 + AE 8 + AE 9 + AE 10 + CAB 1	

*) EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.12 EUT operation modes

EUT operating mode no.*)	Operating modes	Additional information
Operating mode 1	All radio functions off, GSM IDLE Mode active, FM transmitter active	 GSM 850 (GPRS)IDLE The mobile station is synchronized to the Broadcast Control Channel (BCCH) and listening to the Common Control Channel (CCCH) CAN Communication: Can Communication is established between EUT 01 and AE 10 FM transmitter active @ 107.8 MHz

*) EUT operating mode no. is used to simplify the test report.

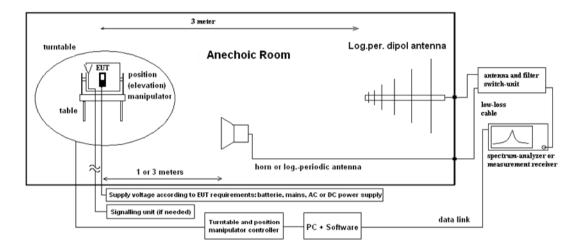
3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Product name	Intelligent Antenna M	Intelligent Antenna Module			
Kind of product	BSRF-V1RWHIGH.0				
Firmware	☑ for normal use				
Power supply	AC Mains -				
	DC Mains 12V DC				
	Battery				
Operational conditions	T _{nom} = °C	T _{min} =-40 °C	T _{max} =+80 °C		
EUT sample type	Pre-Production	Pre-Production			
Weight	0,6 kg				
Size					
Interfaces/Ports	-				
For further details refer Applicants Declaration & following technical documents					

3.2 Modifications on Test sample

Additions/deviations or exclusions	
------------------------------------	--


4 Measurements

4.1 Radiated field strength emissions 30 MHz – 1 GHz

4.1.1 Description of the general test setup and methodology, see below example:

Evaluating the field emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a NSA-compliant semi anechoic room (SAR) recognized by the regulatory commissions.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

Formula:

$E_{C} = E_{R} + AF + C_{L} + D_{F} - G_{A}$ (1)	AF = Antenna factor
	C _L = Cable loss
$M = L_T - E_C $ (2)	D _F = Distance correction factor (if used)
	E _c = Electrical field – corrected value
	E_R = Receiver reading
	G _A = Gain of pre-amplifier (if used)
	$L_T = Limit$
	M = Margin

All units are dB-units, positive margin means value is below limit.

4.1.2 Measurement Location

Test site	120901 - SAC - Radiated Emission <1GHz

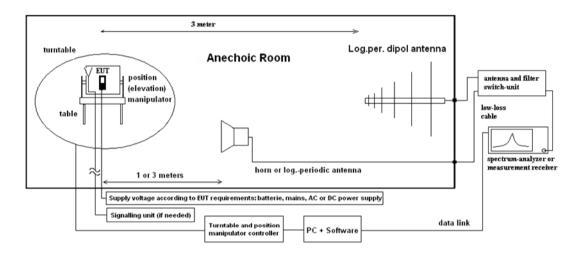
4.1.3 Limit

Frequency Range	Class B 🔀 (3 meters)		Class A 🗖 (10 meters)			
[MHz]	Limit [µV/m]	Limit	Limit [µV/m]	Limit [dBµV/m]	Detector	RBW / VBW
		[dBµV/m]				[kHz]
30 - 88	100	40.0	90	39.0	Quasi peak	100 / 300
88 - 216	150	43.5	150	43.5	Quasi peak	100 / 300
216 - 960	200	46.0	210	46.4	Quasi peak	100 / 300
960 - 1000	500	54.0	300	49.5	Quasi peak	100 / 300

4.1.4 Result

Diagram	Mode	Maximum Level [dBµV/m] Frequency Range 30 – 1000 MHz	Result
<u>3.01</u>	GSM 850 IDLE, radio function off, FM transmitter active	19.71	Passed

Remark: for more informations and graphical plot see annex A1 CETECOM_TR18_1_0246401T20a_C1_A1



4.2 Radiated field strength emissions above 1 GHz

4.2.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

$E_{C} = E_{R} + A_{F} + C_{L} + I$	D _F - G _A (1)	E _c = Electrical field – corrected value
		E _R = Receiver reading
$M = L_T - E_C$	(2)	M = Margin
		L _T = Limit
		A _F = Antenna factor
		C _L = Cable loss
		D _F = Distance correction factor (if used)
		G _A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.2.2 Measurement Location

	Test site	12094 - FAC1 - Radiated Emissions
--	-----------	-----------------------------------

4.2.3 Limit

	Radiated emissions limits (3 meters)									
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]						
Above 1000	500	54	Average	1000 / 3000						
Above 1000	5000	74	Peak	1000 / 3000						

4.2.4 Result

Diagram	Mode	Maximum Level [dBµV/m] Frequency Range 1 – 12.75 GHz	Result
<u>4.01</u>	GSM 850 IDLE, radio function off, FM transmitter active	58.46	Passed
Bomark: for m	ore informations and graphical plot see appey A1 CETEC	ONA TRIS 1 0346401T20- C1 A1	

Remark: for more informations and graphical plot see annex A1 CETECOM_TR18_1_0246401T20a_C1_A1

Diagram	Mode	Maximum Level [dBµV/m] Frequency Range 12.40– 18.0 GHz	Result
<u>4.02</u>	GSM 850 IDLE, radio function off, FM transmitter	55.01	Passed
	active		

Remark: for more informations and graphical plot see annex A1 CETECOM_TR18_1_0246401T20a_C1_A1

Diagram	Mode	Maximum Level [dBµV/m] Frequency Range 18.0– 26.5 GHz	Result
<u>4.03</u>	GSM 850 IDLE, radio function off, FM transmitter active	62.19	Passed

Remark: for more informations and graphical plot see annex A1 CETECOM_TR18_1_0246401T20a_C1_A1

4.3 Results from external laboratory

_

-

None -

4.4 **Opinions and interpretations**

None

4.5 List of abbreviations

None

5 Equipment lists

ID	Description	Manufacturer	SerNo	Cal due date	
	120901 - SAC - Radiated Emission <1GHz			2025-Jul-21	
20574	Biconilog Hybrid Antenna BTA-L	Frankonia GmbH	980026L	2022-May-03	
20487	CETECOM Semi Anechoic Chamber < 1GHz	ETS-Lindgren Gmbh	-	2025-Jul-15	
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH	81650455	2022-May-25	
20620	EMI Test Receiver ESU26	Rohde & Schwarz Messgerätebau GmbH	100362	2022-May-20	
20482	filter matrix Filter matrix SAR 1	CETECOM GmbH	-		
25038	Loop Antenna HFH2-Z2	Rohde & Schwarz Messgerätebau GmbH	879824/13	2022-Apr-07	
20885	Power Supply EA3632A	Agilent Technologies Deutschland GmbH	75305850		
	120904 - FAC1 - Radiated Emissions				
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH	81650455	2022-May-25	
20720	EMC32 [FAC]	Rohde & Schwarz Messgerätebau GmbH	V10.xx		
20489	EMI Test Receiver ESU40	Rohde & Schwarz Messgerätebau GmbH	1000-30	2022-May-19	
20254	High Pass Filter 5HC 2600/12750-1.5KK (GSM1800/1900/DECT)	Trilithic	23042		
20868	High Pass Filter AFH-07000 AtlanTecRF		1607130000 4		
20291	High Pass Filter WHJ 2200-4EE (GSM 850/900) Wainwright Instruments GmbH		14		
20020	Horn Antenna 3115 (Subst 1)	tenna 3115 (Subst 1) EMCO Elektronik GmbH		2024-Aug-17	
20302	Horn Antenna BBHA9170 (Meas 1)	Schwarzbeck Mess-Elektronik OHG	155	2023-Apr-15	
20549	Log.Per-Antenna HL025	Rohde & Schwarz Messgerätebau GmbH		2024-Aug-17	
20512	Notch Filter WRCA 800/960-02/40-6EEK (GSM 850)	Wainwright Instruments GmbH	24		
20290	Notch Filter WRCA 901,9/903,1SS (GSM 900)	Wainwright Instruments GmbH	3RR		

Test Report 18-1-0246401T20a-C1

ID	Description	Manufacturer	SerNo	Cal due date	
20122	Notch Filter WRCB 1747/1748 (GSM 1800)	Wainwright Instruments GmbH	12		
20121	Notch Filter WRCB 1879,5/1880,5EE (GSM 1900)	Wainwright Instruments GmbH	15		
20448	Notch Filter WRCT 1850.0/2170.0-5/40-10SSK (WCDMA- FDD II)	Wainwright Instruments GmbH	5		
20066	Notch Filter WRCT 1900/2200-5/40-10EEK (WCDMA - FDDI)	Wainwright Instruments GmbH	5		
20449	Notch Filter WRCT 824.0/894.0-5/40-8SSK (WCDMA FDD V)	Wainwright Instruments GmbH	1		
20611	Power Supply E3632A	Agilent Technologies Deutschland GmbH	KR 75305854		
20338	Pre-Amplifier 100MHz - 26GHz JS4-00102600-38-5P	Miteq Inc.	838697		
20484	Pre-Amplifier 2,5GHz - 18GHz AMF-5D-02501800-25-10P Miteq Inc.		1244554		
20287	Pre-Amplifier 25MHz - 4GHz AMF-2D-100M4G-35-10P	Miteq Inc.	379418		
20670	Radio Communication Tester CMU200	Tester CMU200 Rohde & Schwarz Messgerätebau GmbH		2022-Jun-16	
20690	Spectrum Analyzer FSU	Rohde & Schwarz Messgerätebau GmbH	100302/026	2023-May-19	
20439	UltraLog-Antenna HL 562	Rohde & Schwarz Messgerätebau GmbH	100248	2023-Mar-10	

6 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor **k**, such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

RF-Measurement	Reference	Frequency range	Calculated uncertainty based on a confidence level of 95%			Remarks			
Conducted emissions		9 kHz - 150 kHz	4.0 dB						
(U _{CISPR})	-	150 kHz - 30 MHz	3.6 dB	3.6 dB			-		
Power Output radiated	-	30 MHz - 4 GHz	3.17 d	3.17 dB				Substitution method	
Power Output conducted	_	Set-up No.	Cel- C1	Cel- C2	BT1	W1	W2		
Power Output conducted	-	9 kHz - 12.75 GHz	N/A	0.60	0.7	0.25	N/A		
		12.75 - 26.5 GHz	N/A	0.82		N/A	N/A		
Conducted emissions	-	9 kHz - 2.8 GHz	0.70	N/A	0.70	N/A	0.69		
on RF-port		2.8 GHz - 12.75 GHz	1.48	N/A	1.51	N/A	1.43		N/A - not applicable
		12.75 GHz – 18 GHz	1.81	N/A	1.83	N/A	1.77		
		18 GHz - 26.5 GHz	1.83	N/A	1.85	N/A	1.79		
				0.1272 ppm (Delta Marker)					
Occupied bandwidth	-	9 kHz - 4 GHz							error
			1.0 dB						Power
	-		0.1272	2 ppm ([Delta Ma	arker)			Frequency
Emission bandwidth		9 kHz - 4 GHz							error
	- See above: 0.70 dB			Power					
Frequency stability	-	9 kHz - 20 GHz	0.0636 ppm				-		
		150 kHz - 30 MHz	5.01d	5.01dB				Magnetic	
Radiated emissions									field strength
Enclosure	-	30 MHz - 1 GHz	5.83 d	В					Electrical
Enclosure		1 GHz - 18 GHz	4.91 d						Field
		18 GHz - 26.5 GHz	5.06 d	В					strength

7 Versions of test reports (change history)

Version	Applied changes	Date of release
	Initial release	2021-Aug-31
C1	measurements from the FM transmitter have been inserted	2021-Sep-28

End Of Test Report