

Test Report 22-1-0030601T049a

Number of pages:	39	Date of Report:	2023-Feb-17
Testing company:	cetecom advanced GmbH Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150	Applicant:	Continental Automotive Technologies GmbH
Product: Model:	Telematic Control Unit BSRF_EA_RW0		
FCC ID:	KR5-BSRFEARW0		
Testing has been carried out in accordance with:	FCC Regulations Title 47 CFR, Chapter I, Subchapter A, Par Subpart C Intentional Radiators § 15.247 Operation within the bands 902- and 5725-5850 MHz ISED-Regulations Radio Standards Specification RSS-Gen, Issue 5 General Requirements for Compliance of RSS-247, Issue 2 Digital Transmission Systems (DTSs), Freq Network (LE-LAN) Device	928 MHz, 2400-2483.5 Radio Apparatus	
Tested Technology:	2.4 GHz W-LAN (IEEE 802.11)		
Test Results:	The EUT complies with the require The test results relate only to devices	-	
Signatures:	DiplIng. Ninovic Perez		Salih Öztan
	Test Lab Manager		Test Manager
	Authorization of test report		Responsible of test report

Table of Contents

Та	able of a	Annex	3
1	Ge	neral information	4
	1.1	Disclaimer and Notes	4
	1.2	Attestation	4
	1.3	Summary of Test Results	5
	1.4	Summary of Test Methods	6
2	Ad	ministrative Data	7
	2.1	Identification of the Testing Laboratory	7
	2.2	General limits for environmental conditions	7
	2.3	Test Laboratories sub-contracted	7
	2.4	Organizational Items	7
	2.5	Applicant's details	7
	2.6	Manufacturer's details	7
	2.7	Equipment under Test (EUT)	8
	2.8	Untested Variant (VAR)	8
	2.9	Auxiliary Equipment (AE)	8
	2.10	Connected cables (CAB)	9
	2.11	Software (SW)	9
	2.12	EUT set-ups	9
	2.13	EUT operation modes	9
3	Equ	uipment under test (EUT)	9
	3.1	General Data of Main EUT as Declared by Applicant	.10
	3.2	Detailed Technical data of Main EUT as Declared by Applicant	.11
	3.3	Worst case identification	.11
	3.4	Modifications on Test sample	.11
4	Me	easurements	.12
	4.1	Duty-Cycle	.12
	4.2	RF output power	.13
	4.3	Power spectral density	.15
	4.4	Minimum Emission Bandwidth 6 dB	.17
	4.5	Occupied Channel Bandwidth 99%	.19
	4.6	Emissions in non-restricted frequency bands	.21
	4.7	Radiated field strength emissions below 30 MHz	.23
	4.8	Radiated field strength emissions 30 MHz – 1 GHz	.27
	4.9	Radiated field strength emissions above 1 GHz	
	4.10	Radiated Band-Edge emissions	.33
	4.11	Equipment lists	

Test Report 22-1-0030601T049a

5	Results from external laboratory	37
6	Opinions and interpretations	37
7	List of abbreviations	37
8	Measurement Uncertainty valid for conducted/radiated measurements	38
9	Versions of test reports (change history)	39

Table of Annex			
Annex No.	Contents	Reference Description	Total Pages
Annex 1	Test result diagrams	TR22-1-0030601T049a-A1	164
Annex 2	Internal photographs of EUT		
Annex 3	External photographs of EUT	TR22-1-0030601T049a-A3	10
Annex 4	Test set-up photographs	TR22-1-0030601T049a-A4	5
	The listed attachment	s are separate documents.	

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. cetecom advanced does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced.

The testing service provided by cetecom advanced has been rendered under the current "General Terms and Conditions for cetecom advanced".

cetecom advanced will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced test report include or imply any product or service warranties from cetecom advanced, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced.

All rights and remedies regarding vendor's products and services for which cetecom advanced has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at cetecom advanced.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

1.3 Summary of Test Results

The EUT integrates a 2.4 GHz W-LAN transmitter. Other implemented wireless technologies were not considered within this test report.

Test case	Reference Clause FCC	Page	Remark	Result
Duty-Cycle	§15.35(c)	12		PASSED
Minimum Emission Bandwidth 6 dB	§15.247 5.2(a)	18		PASSED
Occupied Channel Bandwidth 99%	2.1049(h)	20		PASSED
RF output power	§15.247(b)(3)	14		PASSED
Transmitter Peak output power radiated	§15.247(b)(4)(c)(i)			NP
Emissions in non-restricted frequency bands	§15.247(d)	22		PASSED
Radiated Band-Edge emissions	§15.205(b)	34		PASSED
	§15.247(d)			
Power spectral density	§15.247(e)	16		PASSED
Radiated field strength emissions below 30 MHz	§15.205(a)	26		PASSED
	§15.209(a)			
Radiated field strength emissions 30 MHz – 1GHz	§15.209	29		PASSED
	§15.247(d)			
Radiated field strength emissions above 1 GHz	§15.209(a)	32		PASSED
	§15.247(d)			
AC-Power Lines Conducted Emissions	§15.207			N/A

PASSED FAILED N/A NP The EUT complies with the essential requirements in the standard.

The EUT does not comply with the essential requirements in the standard.

Test case does not apply to the test object.

The test was not performed by the cetecom advanced laboratory.

Decision Rule: cetecom advanced GmbH follows ILAC G8:2019 chapter 4.2.1 (Simple Acceptance Rule).

1.4 Summary of Test Methods

Test case	Test method
Duty-Cycle	ANSI C63.10:2013, §11.6(b)
Minimum Emission Bandwidth 6 dB	ANSI C63.10:2013, §6.9.2, §11.8
Occupied Channel Bandwidth 99%	ANSI C63.10:2013, §6.9.3
RF output power	ANSI C63.10:2013, §11.9
Power spectral density	ANSI C63.10:2013, §11.10
Emissions in non-restricted frequency bands	ANSI C63.10:2013, §11.11, §6.10.5
Radiated Band-Edge emissions	ANSI C63.10-2013; "Marker-Delta method", §6.10.5, §11.13
Transmitter Peak output power radiated	Result calculated with measured conducted RF-power value and
	stated/measured antenna gain for band of interest
Radiated field strength emissions below 30 MHz	ANSI C63.10-2013 §6.3, §6.4
Radiated field strength emissions 30 MHz- 1 GHz	ANSI C63.4-2014 §8.2.3, ANSI C63.10-2013 §6.3, §6.5
Radiated field strength emissions above 1 GHz	ANSI C63.4-2014 §8.3, ANSI C63.10-2013 §6.3, §6.6
AC-Power Lines Conducted Emissions	ANSI C63.4-2014 §7, ANSI C63.10-2013 §6.2

And reference also to Test methods in KDB558074

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name:	cetecom advanced GmbH	
Address:	Im Teelbruch 116	
	45219 Essen - Kettwig	
	Germany	
Responsible for testing laboratory:	DiplIng. Ninovic Perez	
Accreditation scope:	DAkkS Webpage: <u>FCC ISED</u>	
IC Lab company No. / CAB ID:	3462D / DE0005	
Test location:	Im Teelbruch 116; 45219 Essen	

2.2 General limits for environmental conditions

Temperature:	22±2 °C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name:	
---------------	--

2.4 Organizational Items

Responsible test manager:	M. Sc. Patrick Marzotko
Receipt of EUT:	2022-Oct-14
Date(s) of test:	2022-Nov-07 to 2023-Jan-02
Version of template:	22.1101

2.5 Applicant's details

Applicant's name:	Continental Automotive Technologies GmbH
Address:	Siemensstraße 12
	93055 Regensburg
	Bavaria
	Germany
Contact Person:	Kelvin Fongang
Contact Person's Email:	kelvin.fongang@continental-corporation.com

2.6 Manufacturer's details

Manufacturer's name:	Continental Automotive Technologies GmbH	
Address:	Siemensstraße 12	
	93055 Regensburg	
	Germany	

2.7 Equipment under Test (EUT)

EUT No.*)	Sample No.	Product	Model	Туре	SN	HW	SW
EUT 1	22-1-00306S178_C01	Telematic Control Unit	BSRF_EA_RWO	-	22991129 093648	C4.2	V19.06
EUT 2	22-1-00306S145_C01	Telematic Control Unit	BSRF_EA_RWO	-	22990129 087088	C4.2	V19.06

*) EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Untested Variant (VAR)

VAR	Sample No.	Product	Model	Туре	SN	HW	SW
No.*)							

*) The listed additional untested model variant(s) (VAR) is/are not object of evaluation of compliance. For further information please see Annex 5: Declaration of applicant of model differences.

If the table above does not show any other line than the headline, no untested variants are available.

2.9 Auxiliary Equipment (AE)

AE	Sample No.	Auxiliary Equipment	Model	SN	HW	SW
No.*)						
AE 1	22-1-00836S61_C01	Backup Battery	N/A	N/A	N/A	N/A
AE 2	22-1-00836S62_C01	E-call button Box	Shielded load box for E-	N/A	N/A	N/A
			call and A-Call			
AE 3	22-1-00836S66_C01	Microphone	KHM0090-010010	N/A	N/A	N/A
			Peugeot Citroen			
			9832955480 00			
AE 4	22-1-00836S67_C01	Loudspeaker	ASK 900065001	N/A	N/A	N/A
AE 5	22-1-00836589_C01	RF shielded load box	N/A	N/A	N/A	N/A
		with load for AM/FM				
AE 6	22-1-00836S90_C01	RF shielded load box	N/A	N/A	N/A	N/A
		with load for FM/DAB				
AE 7	22-1-00836S130_C01	Orig. LTE1/LTE2/GNSS	LTE1/LTE2/GNSS patch	0014	N/A	N/A
		antenna	antennas			
AE 8	22-1-00306S140_C01	HP Laptop	N/A	1004298	N/A	N/A
AE 9	22-1-00306S41_C01	Ethernet BRR media	100BASE-T1	220630 349	N/A	N/A
		converter BSRF1	MediaConverter_BCM			

*) AE short description is used to simplify the identification of the auxiliary equipment in this test report. If the table above does not show any other line than the headline, no AE was used during testing nor was taken into account for evaluation

Length

2 m

0.3m

2.10	connected cap	ies (CAD)	
САВ	Sample No.	Cable Type	Connectors / Details
No.*)			
CAB 1	22-1-00836S40_C01	EMC harness	EMC Harness 2m
CAB 2	22-1-00836S109_C01	External antenna	FAKRA cables SMB/SMB between patch
		cable GNSS/LTE	antenna and BSRF EA

External antenna

cable GNSS/LTE

USB to Ethernet

converter, EU-4208

2.10 Connected cables (CAB)

 CAB 5
 22-1-00836S23_C01
 Ethernet Cable
 RJ45
 1.5m

 *) CAB short description is used to simplify the identification of the connected cables in this test report. If the table above does not show any other line than the headline, no cable was used during testing nor was taken into account for evaluatio

USB/RJ45

FAKRA cables SMB/SMB between patch

antenna and BSRF EA

2.11 Software (SW)

22-1-00836S110 C01

22-1-00836S151 C01

CAB 3

CAB 4

SW No.*)	SW Name	SW Status
SW 1	QPST	2.7 Build 480
SW 2	PuTTY	0.63
SW 3	QRCT	4.0.00129.0

*) SW short description is used to simplify the identification of the used software in this test report. If the table above does not show any other line than the headline, no SW was used during testing nor was taken into account for evaluation.

2.12 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
1	EUT 1 + AE 1 + AE 2 + AE 3 + AE 4 + AE 5 + AE 6 + AE 7 + AE 8 +	Used for Radiated measurements
	AE 9 + CAB 1 + CAB 2 + CAB 3 + CAB 4 + CAB 5	
2	EUT 2 + AE 8 + AE 9 + CAB 1 + CAB 4 + CAB 5	Used for Conducted measurements

*) EUT setup no. is used to simplify the identification of the EUT set-up in this test report.

2.13 EUT operation modes

EUT operating mode no.*)	Operating modes	Additional information
op. 1	WLAN_TX-Mode	With help of special test firmware TX-mode was set-up to b-mode, 5.5 Mbps.
0p. 1	b-mode	We refer to applicants information/papers for details about necessary commands.
op. 2	WLAN_TX-Mode	With help of special test firmware TX-mode was set-up to g-mode, 24 Mbps.
0p. 2	g-mode	We refer to applicants information/papers for details about necessary commands.
op. 3	WLAN_TX-Mode	With help of special test firmware TX-mode was set-up to n-mode, 20MHz BW, MCS3.
op. 5	n-mode HT20	We refer to applicants information/papers for details about necessary commands.

*) EUT operating mode no. is used to simplify the test report.

2.14 Test Software

Via SW1, SW2 and SW3 special test mode was set up with following worst case power settings:

b-mode, 5.5 Mbps: TX Power 17 g-mode, 24 Mbps: TX Power 16 n-mode HT20, MCS3: TX Power 16

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Firmware	□ for normal use	$oxed{intermation}$ Special version for	test execution
Power supply	AC Mains	-	
	DC Mains	12 V DC	
	□ Battery	-	
Operational conditions	T _{nom} = +21 °C	T _{min} = -40°C	T _{max} = +85 °C
EUT sample type	Pre-Production		
Weight	0.400 kg		
Size [LxWxH]	18.5 cm x 11.0 cm x 2.0 cr	n	
Interfaces/Ports			
For further details refer Applicants Declar	ation & following technical	documents	
For further details regarding radio parame	eters, please refer to IEEE80	2.11 Specification	

3.2 Detailed Technical data of Main EUT as Declared by Applicant

Frequency Band	2.4 GHz ISM Band (240	00 MHz - 2483.5 MHz)			
МІМО					
	🛛 WLAN 2.4 GHz	Ch 1 2 3 4 5 6 7	Bandwidth 20 MHz		
Frequency Channel B.W.	802.11b g n (SISO)	Ch. 8 9 10 11 12 13	Balluwiutii 20 Minz		
(USA bands only)	🗌 WLAN 2.4 GHz	Ch 3 4 5 6 7 8 9 10 11	Bandwidth 40 MHz		
	802.11n (SISO)		Bandwidth 40 Minz		
	🖾 DBPSK 1 Mbps				
802.11b – Mode OFDM	🖾 DQPSK 2 Mbps				
Modulation Data Rates	🖾 CCK-PBCC 5.5 Mb	ps / 11 Mbps			
	🖾 ERP-PBCC 22 Mbp)S			
	🖾 BPSK 6 Mbps / 9 N	Иbps			
802.11g – Mode OFDM	🛛 QPSK 12 Mbps / 1	8 Mbps			
Modulation Data Rates	🛛 16-QAM 24 Mbps	/ 36 Mbps			
	🛛 64-QAM 48 Mbps	/ 54 Mbps			
802.11n – Mode OFDM	HT20(MCS0 to MCS		8 / 65 / 72.2 Mbps		
Modulation Data Rates	□ HT40(MCS0 to MCS	15) 15/30/45/60/90/120/135/150/18	30/240/270/300 Mbps		
	☑ WLAN 5 GHz 802.11 a/n/ac mode ((not tested within this report)				
	☑ Bluetooth LE (not tested within this report)				
Other wireless options	oxdot Bluetooth EDR (not tested within this report)				
	🛛 Cellular transceiver	(2G/3G/4G/5G/GPS, not tested in this	report)		
	b-mode: 17.5 dBm				
Max. Conducted Output Power	g-mode: 14.9 dBm				
	n-mode(20 MHz): 14.9	dBm			
EIRP WLAN	b-mode: 17.5 dBm + 2.	.0 dBi = 19.5 dBm			
(Calculated EIRP)	g-mode: 14.9 dBm+ 2.0 dBi = 16.9 dBm				
	n-mode(20 MHz): 14.9 dBm + 2.0 dBi = 16.9 dBm				
Antenna Type	Integrated				
Antenna Gain	+2.0 dBi				
FCC label attached	No				
Test firmware / software and storage	EUT 1/ EUT 2 + AE 8				
location	·				
For further details refer Applicants Declar	ration & following techr	nical documents			
Description of Reference Document (sup	plied by applicant)	Version	Total Pages		
BSRF EA Homologation Test Setup Manua	al	V1.0	81		

3.3 Worst case identification

WLAN mode	Data rate
802.11b	5.5 Mbps
802.11g	24 Mbps
802.11n, 20 MHz bandwidth	MCS3

3.4 Modifications on Test sample

Additions/deviations or exclusions

4 Measurements

4.1 Duty-Cycle

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

The necessary duty-cycle correction factor is determined on nominal conditions on middle channel only. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

A special firmware program is used for test purposes. In opposite to normal operating mode a higher duty-cycle is set in order to facilitate the measurements. This is maximized at the extent possible.

The necessary duty-cycle correction factor is determined on nominal conditions on one channel in each operable frequency-band. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions. The Duty-Cycle was constant, means without variations.

Formula to calculate Duty-Cycle:

Duty cycle calculations:		Regarding power: $10 * log(1/\chi)$ dB
$x = \frac{TX_{ON}}{(TX_{ON} + TX_{OFF})}$	Duty cycle factor: DC=	Regarding field strength: $20*log(1/_{\chi})$ dB

☑ The results were corrected in order to evaluate for worst-case result each time when average values are necessary for example average radiated emissions or similar

 \Box No correction necessary: Duty-Cycle > 98%

4.1.1 Measurement Location

Test site 120910 - Radio Laboratory 1 (TS 8997)

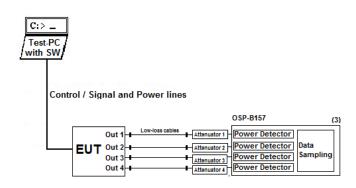
4.1.2 Result

Mode	Duty-Cycle [%]	Duty-Cycle correction Power [dB]	Duty-Cycle correction Field Strength [dB]
b-mode 5 Mbps	93.364	0.298	0.596
g-mode 24 Mbps	83.887	0.764	1.528
n20-mode MCS3	73.887	0.733	1.466

4.2 RF output power


4.2.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to power meter (3) or spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings.


мімо

The EUT use MIMO technology as it use multiple antennas for receive and transmit. The measurements are performed by using R&S TS8997 (Ref.No. 693) test system which is able to perform measurements simultanuously and timesynchronized on maximum 8 antenna conducted RF-ports. A common trigger ensures the sampling time is minimized so the total power represents a sampling value calculated for all 8-ports simultanuously for each time bin/frame. A high data sampling rate together with a wide band power measurement capability ensures that latest modulation schemes are correctly measured. Therefore testing method Subchapter E1 of KDB662911 is fulfilled. (measure-and-sum technique).

Schematic:

Schematic MIMO:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

Test method	AVGSA-2 / AVGSA-2 alternative (duty-cycle < 98%, constant)
SISO	\boxtimes
MIMO	□ Summation of values from two antenna ports
Remarks	

The measurement was performed in non-hopping transmission mode with the carrier set to lowest/middle and highest channel.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate

4.2.2 Measurement Location

Test site 120910 - Radio Laboratory 1 (TS 8997)

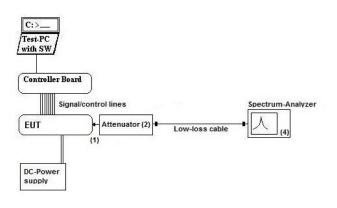
4.2.3 Limit

Frequency Range [MHz]	Limit [W]	Limit [dBm]	Detector	RBW / VBW [MHz]
2400 - 2483.5	1	30	RMS	20 / 30

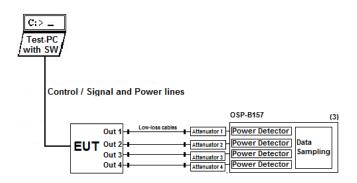
4.2.4 Result

Mode	Channel	Frequency [MHz]	Max. Power [RMS]	Result
b-mode [5.5MBps]	1	2412	14.4	Passed
b-mode [5.5MBps]	6	2437	15.2	Passed
b-mode [5.5MBps]	11	2462	17.5	Passed
g-mode [24MBps]	1	2412	13.5	Passed
g-mode [24MBps]	6	2437	14.2	Passed
g-mode [24MBps]	11	2462	14.9	Passed
n20-mode [MCS3]	1	2412	13.6	Passed
n20-mode [MCS3]	6	2437	14.3	Passed
n20-mode [MCS3]	11	2462	14.9	Passed

Remark: Only worst case values are listed. For more information and graphical plot see annex A1 TR22-1-0030601T049a-A1



4.3 Power spectral density


4.3.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Schematic MIMO:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

		B I I B C I	T CO007	
Measurement is	s made using	Ronde & Scr	1warz 158997	test system.

Test method	AVGPSD Method
SISO	\boxtimes
MIMO	□ Summation of values from two antenna ports
Remarks	-

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions.

4.3.2 Measurement Location

Test site 120910 - Radio Laboratory 1 (TS 8997)	Test site	120910 - Radio Laboratory 1 (TS 8997)
---	-----------	---------------------------------------

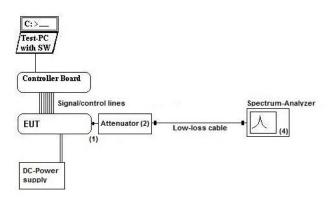
4.3.3 Limit

Limit [dBm] @ 3 kHz	Detector [MaxHold]	RBW / VBW [kHz]
≤ 8	RMS	3 / 10

4.3.4 Result

Mode	Channel	Frequency [MHz]	PSD [dBm]	Result
b-mode [5.5MBps]	1	2412	-0.243	Passed
b-mode [5.5MBps]	6	2437	4.796	Passed
b-mode [5.5MBps]	11	2462	6.895	Passed
g-mode [24MBps]	1	2412	-2.371	Passed
g-mode [24MBps]	6	2437	-1.315	Passed
g-mode [24MBps]	11	2462	-0.580	Passed
n20-mode [MCS3]	1	2412	-2.134	Passed
n20-mode [MCS3]	6	2437	-1.522	Passed
n20-mode [MCS3]	11	2462	-0.810	Passed

Remark: for more information and graphical plot see annex A1 TR22-1-0030601T049a-A1



4.4 Minimum Emission Bandwidth 6 dB

4.4.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

4.4.2 Measurement Location

|--|

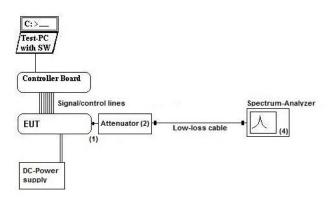
4.4.3 Limit

Limit [kHz]	Detector [MaxHold]	RBW / VBW [kHz]
≥ 500	MaxPeak	100 / 300

4.4.4 Result

Mode	Channel	Frequency [MHz]	6 dB bandwidth [MHz]	Result
b-mode [5.5MBps]	1	2412	7.050000	Passed
b-mode [5.5MBps]	6	2437	7.300000	Passed
b-mode [5.5MBps]	11	2462	7.300000	Passed
g-mode [24MBps]	1	2412	16.600000	Passed
g-mode [24MBps]	6	2437	16.550000	Passed
g-mode [24MBps]	11	2462	16.450000	Passed
n20-mode [MCS3]	1	2412	17.800000	Passed
n20-mode [MCS3]	6	2437	17.750000	Passed
n20-mode [MCS3]	11	2462	17.350000	Passed

Remark: for more information and graphical plot see annex A1 TR22-1-0030601T049a-A1



4.5 Occupied Channel Bandwidth 99%

4.5.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

4.5.2 Measurement Location

Test site 120910 - Radio Laboratory 1 (TS 8997)

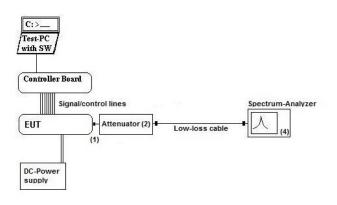
4.5.3 Limit

When the occupied bandwidth limit is not stated in the applicable reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

4.5.4 Result

Mode	Channel	Frequency [MHz]	99% Occupied bandwidth [MHz]	Result
b-mode [5.5MBps]	1	2412	13.100000	Passed
b-mode [5.5MBps]	6	2437	13.200000	Passed
b-mode [5.5MBps]	11	2462	13.400000	Passed
g-mode [24MBps]	1	2412	16.800000	Passed
g-mode [24MBps]	6	2437	16.900000	Passed
g-mode [24MBps]	11	2462	16.900000	Passed
n20-mode [MCS3]	1	2412	17.900000	Passed
n20-mode [MCS3]	6	2437	17.900000	Passed
n20-mode [MCS3]	11	2462	17.900000	Passed

Remark: for more information and graphical plot see annex A1 TR22-1-0030601T049a-A1



4.6 Emissions in non-restricted frequency bands

4.6.1 Description of the general conducted test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

The measurements were performed with the RBW set to 100 kHz & maximum carrier level was indicated with MAX-Hold positive peak detector using markers. Then a frequency line was set 20 or 30 dB below this measured maximum carrier level.

Then using RBW 100 kHz & spectrum analyzer span from 150 kHz to 25 GHz in three steps spurious emissions were measured with MAX-Hold positive peak detector.

The sweep time set as long as necessary to capture the full signal burst per hopping channel. The burst on-period is captured by setting appropriate markers in the rising and falling edges.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked. e.g. data rates which EUT can operate.

4.6.2 Measurement Location

Test site	120910 - Radio Laboratory 1 (TS 8997)
-----------	---------------------------------------

4.6.3 Limit

Frequency Range [MHz]	Limit [dBc]
0.15 – 25000	-20 / -30

4.6.4 Result

Maximum Level Peak [dBc]

Mode	Channel	Frequency [MHz]	Result
b-mode [5.5MBps]	1	2412	Passed
b-mode [5.5MBps]	6	2437	Passed
b-mode [5.5MBps]	11	2462	Passed
g-mode [24MBps]	1	2412	Passed
g-mode [24MBps]	6	2437	Passed
g-mode [24MBps]	11	2462	Passed
n20-mode [MCS3]	1	2412	Passed
n20-mode [MCS3]	6	2437	Passed
n20-mode [MCS3]	11	2462	Passed

Remark1: every RF-Port tested separatelly in case on MIMO device

Remark2: for more information and graphical plot see annex A1 TR22-1-0030601T049a-A1

4.7 Radiated field strength emissions below 30 MHz

4.7.1 Description of the general test setup and methodology, see below example:

Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0°to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT), the emission spectrum was recorded.

The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worstcase operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

$E_{C} = E_{R} + AF + C_{L} + D_{F} - G_{A}$	AF = Antenna factor
	C _L = Cable loss
$M = L_{T} - E_{C}$	D _F = Distance correction factor (if used)
	E _c = Electrical field – corrected value
	E _R = Receiver reading
	G _A = Gain of pre-amplifier (if used)
	L _T = Limit
	M = Margin

All units are dB-units, positive margin means value is below limit.

4.7.2 Sample calculation

Raw-Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
19.83	18.9	-70.75	0.18		-51.67	-31.83	30 to 3 m correction used according ANSI C63.10-2013

Remark: This calculation is based on an example value at 458 kHz

4.7.3 Measurement Location

Test site	120901 - SAC - Radiated Emission <1GHz

4.7.4 Correction factors due to reduced meas. distance (f < 30 MHz):

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors

Frequency	f	Lambda	Far-Field	Distance Limit	1st	2nd Condition	Distance
Range	[kHz/MHz]	[m]	Point	accord. 15.209	Condition	(Limit distance	Correction
			[m]	[m]	(dmeas <	bigger dnear-	accord.
			[]	[]	Dnear-field)	field)	Formula
	0	22222.22	5305.17		fullfilled		
	9	33333.33				not fullfilled	-80.00
	10	30000.00	4774.65		fullfilled	not fullfilled	-80.00
	20	15000.00	2387.33		fullfilled	not fullfilled	-80.00
	30	10000.00	1591.55		fullfilled	not fullfilled not fullfilled	-80.00
	40 50	7500.00	1193.66		fullfilled fullfilled	not fullfilled	-80.00
	60	6000.00 5000.00	954.93 795.78		fullfilled	not fullfilled	-80.00 -80.00
	70	4285.71	682.09		fullfilled	not fullfilled	-80.00
	80	3750.00	596.83	300	fullfilled	not fullfilled	-80.00
	90	3333.33	530.52		fullfilled	not fullfilled	-80.00
kHz	100	3000.00	477.47		fullfilled	not fullfilled	-80.00
R112	100 125	2400.00	381.97		fullfilled	not fullfilled	-80.00
	200	1500.00	238.73		fullfilled	fullfilled	-78.02
	300	1000.00	159.16		fullfilled	fullfilled	-74.49
	400	750.00	119.37		fullfilled	fullfilled	-72.00
	400 490	612.24	97.44		fullfilled	fullfilled	-70.23
	500	600.00	95.49		fullfilled	not fullfilled	-40.00
	600	500.00	79.58		fullfilled	not fullfilled	-40.00
	700	428.57	68.21		fullfilled	not fullfilled	-40.00
	800	375.00	59.68		fullfilled	not fullfilled	-40.00
	900	333.33	53.05		fullfilled	not fullfilled	-40.00
	1.00	300.00	47.75	-	fullfilled	not fullfilled	-40.00
	1.59	188.50	30.00		fullfilled	not fullfilled	-40.00
	2.00	150.00	23.87		fullfilled	fullfilled	-38.02
	3.00	100.00	15.92		fullfilled	fullfilled	-34.49
	4.00	75.00	11.94		fullfilled	fullfilled	-32.00
	5.00	60.00	9.55		fullfilled	fullfilled	-30.06
	6.00	50.00	7.96		fullfilled	fullfilled	-28.47
	7.00	42.86	6.82		fullfilled	fullfilled	-27.13
	8.00	37.50	5.97		fullfilled	fullfilled	-25.97
	9.00	33.33	5.31		fullfilled	fullfilled	-24.95
	10.00	30.00	4.77	30	fullfilled	fullfilled	-24.04
	10.60	28.30	4.50		fullfilled	fullfilled	-23.53
N 41 I_	11.00	27.27	4.34		fullfilled	fullfilled	-23.21
MHz	12.00	25.00	3.98		fullfilled	fullfilled	-22.45
	13.56	22.12	3.52	1	fullfilled	fullfilled	-21.39
	15.00	20.00	3.18	1	fullfilled	fullfilled	-20.51
	15.92	18.85	3.00		fullfilled	fullfilled	-20.00
	17.00	17.65	2.81		not fullfilled	fullfilled	-20.00
	18.00	16.67	2.65		not fullfilled	fullfilled	-20.00
	20.00	15.00	2.39	1	not fullfilled	fullfilled	-20.00
	21.00	14.29	2.27		not fullfilled	fullfilled	-20.00
	23.00	13.04	2.08	1	not fullfilled	fullfilled	-20.00
	25.00	12.00	1.91		not fullfilled	fullfilled	-20.00
	27.00	11.11	1.77		not fullfilled	fullfilled	-20.00
	29.00	10.34	1.65		not fullfilled	fullfilled	-20.00
	30.00	10.00	1.59		not fullfilled	fullfilled	-20.00

4.7.5 Limit

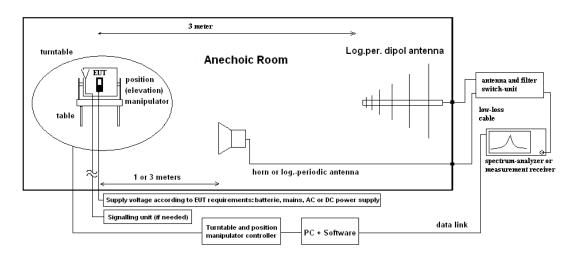
Radiated emissions limits (3 meters)						
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m]	Distance [m]	Detector	RBW [kHz]	
0.009 - 0.09	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2	
0.09 - 0.11	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Quasi peak	0.2	
0.11 - 0.15	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2	
0.15 – 0.49	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	9	
0.49 - 1.705	24000 / f [kHz]	87.6 – 20Log(f) (kHz)	30	Quasi peak	9	
1.705 - 30	30	29.5	30	Quasi peak	9	

*Remark: In Canada same limits apply, just unit reference is different

4.7.6 Result

Diagram	Channel	Mode	Maximum Level [dBµV/m] Frequency Range 0.009 – 30 MHz	Result
<u>2.01</u>	1	Op.1	No peaks found	Passed
<u>2.02</u>	6	Op.2	No peaks found	Passed
<u>2.03</u>	11	Op.3	No peaks found	Passed

Remark: for more information and graphical plot see annex A1 TR22-1-0030601T049a-A1



4.8 Radiated field strength emissions 30 MHz – 1 GHz

4.8.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant semi anechoic room (SAR) and fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worstcase operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

Formula:

$E_{C} = E_{R} + AF + C_{L} + D_{F} - G_{A}$ (1)		AF = Antenna factor
		C _L = Cable loss
$M = L_T - E_C $ (2)		D _F = Distance correction factor (if used)
		E _c = Electrical field – corrected value
		E _R = Receiver reading
		G _A = Gain of pre-amplifier (if used)
		L _T = Limit
		M = Margin

All units are dB-units, positive margin means value is below limit.

4.8.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
32.7	22.25		3.1		25.35	58.05	

Remark: This calculation is based on an example value at 800.4 MHz.

4.8.3 Measurement Location

Test site	120901 - SAC - Radiated Emission <1GHz

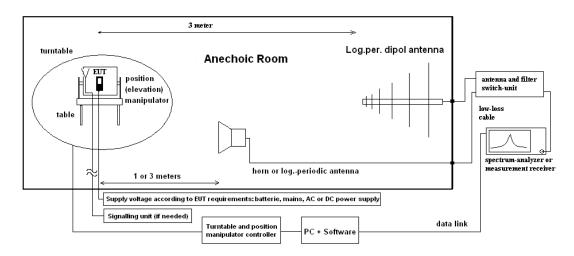
4.8.4 Limit

	Radiated emissions limits (3 meters)							
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]				
30 - 88	100	40.0	Quasi peak	100 / 300				
88 - 216	150	43.5	Quasi peak	100 / 300				
216 - 960	200	46.0	Quasi peak	100 / 300				
960 - 1000	500	54.0	Quasi peak	100 / 300				

4.8.5 Result

Diagram	Channel	Mode	Maximum Level [dBµV/m] Frequency Range 30 – 1000 MHz	Result
<u>3.01</u>	1	Op.1	No peaks found	Passed
<u>3.02</u>	6	Op.2	No peaks found	Passed
<u>3.03</u>	11	Op.3	No peaks found	Passed

Remark: for more information and graphical plot see annex A1 TR22-1-0030601T049a-A1



4.9 Radiated field strength emissions above 1 GHz

4.9.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worstcase operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

E _c = Electrical field – corrected value
E_R = Receiver reading
M = Margin
L _T = Limit
A _F = Antenna factor
C_L = Cable loss
D _F = Distance correction factor (if used)
G _A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.9.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss + Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
29.37	41.20		24.28	16.92	46.3	CableLoss and PreAmp data in one data correction file

Remark: This calculation is based on an example value at 10 GHz

4.9.3 Measurement Location

Test site 1 – 18 GHz	120904 - FAC1 - Radiated Emissions
Test site 15 – 18 GHz	120907 - FAC2
Test site 18 – 26.5 GHz	120907 - FAC2

4.9.4 Limit

Radiated emissions limits (3 meters)						
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]		
Above 1000	500	54	Average	1000 / 3000		
Above 1000	5000	74	Peak	1000 / 3000		

4.9.5 Result

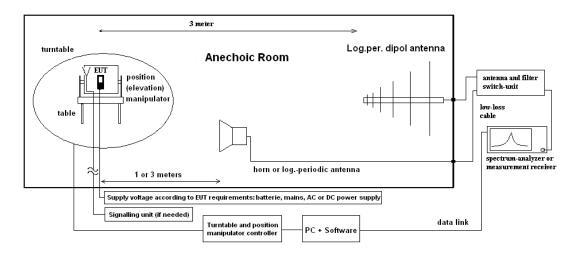
		Mode	Maximum Level [dBµV/m] Frequency Range 1 – 15 GHz	Result Passed	
		Op.3	63.57 @ 1439.99 MHz (PK) 48.32 @ 1439.99 MHz (AV)		
<u>8.02a</u>	6	Op.2	No peaks found	Passed	
<u>8.02b</u>	6	Op.2	56.64 @ 4874.63 MHz (PK) 45.21 @ 4874.63 MHz (AV)	Passed	
<u>8.03a</u>	11	Op.1 standing	64.01 @ 1440.02 MHz (PK) 49.22 @ 1440.02 MHz (AV)	Passed	
<u>8.03b</u>	11	Op.1 laying	63.25 @ 1440.12 MHz (PK) 48.13 @ 1440.12 MHz (AV)	Passed	
<u>8.03c</u>	11	Op.1 laying	No peaks found	Passed	

Remark: for more information and graphical plot see annex A1 TR22-1-0030601T049a-A1

Diagram	Channel	Mode	Maximum Level [dBµV/m] Frequency Range 15 – 18 GHz	Result
<u>8.01b</u>	1	Op.3 laying	No peaks found	Passed
<u>8.01c</u>	1	Op.3 standing	No peaks found	Passed
<u>8.02c</u>	6	Op.2 laying	No peaks found	Passed
<u>8.02d</u>	6	Op.2 standing	No peaks found	Passed
<u>8.03d</u>	11	Op.1 laying	No peaks found	Passed
<u>8.03e</u>	11	Op.1 standing	No peaks found	Passed

Remark: for more information and graphical plot see annex A1 TR22-1-0030601T049a-A1

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 18 – 26.5 GHz	Result
<u>8.01d</u>	1	Op.3	No peaks found	Passed
<u>8.02e</u>	6	Op.2	No peaks found	Passed
<u>8.03f</u>	11	Op.1 laying	No peaks found	Passed
<u>8.03g</u>	11	Op.1 standing	No peaks found	Passed


Remark: for more information and graphical plot see annex A1 TR22-1-0030601T049a-A1

4.10 Radiated Band-Edge emissions

4.10.1 Description of the general test setup and methodology, see below example:

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

For uncritical results where a measurement resolution bandwidth of 1MHz can clearly show the compliance without influencing the results, a field strength measurement was performed to show compliance.

For critical results a Marker-Delta marker method was used for showing compliance to restricted bands. The method consists of three independent steps:

- 1. Step: Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- 2. Step: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-of-band emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth.
- 3. .Step: The delta value recorded in step 2 will be subtracted from value recorded in step 1, thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in FCC §15.205 with the general limits of FCC §15.209

The EUT was instructed to send with maximum power (if adjustable) according to applicants instructions.

4.10.2 Measurement Location

Test site Choose Test site

4.10.3 Limit

Frequency Range [MHz]	Pk Limit [dBc]	Avg Limit [dBc]	Avg Limit [dBμV/m]	Pk Limit [dBμV/m]	Detector	RBW / VBW [kHz]
Below 2390	-	-	54	74	Average / Peak	100 / 300
Above 2483.5	-	-	54	74	Average / Peak	1000 / 3000
2390 - 2400	-20	-	-	-	Peak	100 / 300
2390 - 2400	-	-30	-	-	Average	100 / 300

4.10.4 Result

Non-restricted bands near-by

Diagram	Channel	Mode	Peak [dBc]	Average [dBc]	Result
<u>9.01</u>	1	Op.1	40.081	40.384	Passed
<u>9.02</u>	1	Op.2	28.846	32.708	Passed
<u>9.03</u>	1	Op.3	30.635	31.167	Passed

Remark: for more information and graphical plot see annex A1 TR22-1-0030601T049a-A1

Restricted bands near-by

Diagram	Channel	Mode	Peak [dBμV/m]	Average [dBµV/m]	Result
<u>9.04</u>	11	Op.1	59.916	48.758	Passed
<u>9.05</u>	11	Op.2	65.042	53.709	Passed
<u>9.06</u>	11	Op.3	65.445	53.466	Passed

Remark1: Duty Cycle correction applied.

Remark2: for more information and graphical plot see annex A1 TR22-1-0030601T049a-A1

4.11 Equipment lists

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
	120901 - SAC - Radiated Emission <1GHz			calchk	cal: 2015-Jul-21	cal: 10Y	cal: 2025-Jul-21
20442	Semi Anechoic Chamber	ETS-Lindgren Gmbh / Taufkirchen	-	cnn	chk: 2022-Jul-27 cal: -	chk: 12M cal: -	chk: 2023-Jul-27 cal: -
20442				cim	chk: -	chk: -	chk: -
20482	filter matrix Filter matrix SAR 1	CETECOM GmbH	-	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20574	Biconilog Hybrid Antenna BTA-L	Frankonia GmbH / Heideck	980026L	cal	cal: 2022-Jun-15	cal: 36M	cal: 2025-Jun-15
20620	Test Receiver ESU26	Rohde & Schwarz Messgerätebau GmbH /	100362	cal	cal: 2022-Jun-08	cal: 12M	cal: 2023-Jun-08
20885	Power Supply EA3632A	Memmingen	75305850	cnn	cal: -	cal: -	cal: -
20885	Power Supply EASOS2A	Agilent Technologies Deutschland GmbH	/5505850	chin	chk: -	chk: -	chk: -
25038	Loop Antenna HFH2-Z2	Rohde & Schwarz Messgerätebau GmbH /	879824/13	cal	cal: 2022-Jul-04	cal: 24M	cal: 2024-Jul-04
	120904 - FAC1 - Radiated Emissions	Memmingen		chk			
					chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20020	Horn Antenna 3115 (Subst 1)	EMCO Elektronik GmbH	9107-3699	calchk	cal: 2021-Aug-17 chk: 2013-Apr-20	cal: 36M chk: 12M	cal: 2024-Aug-17
20066	Notch Filter WRCT 1900/2200-5/40-10EEK	Wainwright Instruments GmbH	5	chk	cinki 2010 Apri 20		
20121	Notes Filter WDCD 1970 F /1990 FFF	Meinwight Instruments Cmb11	15	able	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20121	Notch Filter WRCB 1879,5/1880,5EE	Wainwright Instruments GmbH	15	chk	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20122	Notch Filter WRCB 1747/1748	Wainwright Instruments GmbH	12	chk			
20254	High Pass Filter 5HC 2600/12750-1.5KK	Trilithic	23042	chk	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20234	Tigit 133 Titel 5112 2000/12/30 1.5KK	Thunc	23042	CIIK	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20287	Pre-Amplifier 25MHz - 4GHz AMF-2D-	Miteq Inc.	379418	chk			
20290	100M4G-35-10P Notch Filter WRCA 901,9/903,1SS	Wainwright Instruments GmbH	3RR	chk	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
		÷			chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20291	High Pass Filter WHJ 2200-4EE	Wainwright Instruments GmbH	14	chk	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20302	Horn Antenna BBHA9170 (Meas 1)	Schwarzbeck Mess-Elektronik OHG /	155	cpu	CIR. 2022-Juli-30	CIIK. 12IVI	CIR. 2023-3011-30
		Schönau			chk: 2020-Apr-15	chk: 12M	
20338	Pre-Amplifier 100MHz - 26GHz JS4- 00102600-38-5P	Miteq Inc.	838697	chk	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH / Glottertal	81650455	cal	cal: 2022-May-18	cal: 24M	cal: 2024-May-18
20439	Ultrabroadband-Antenna HL562	Rohde & Schwarz Messgerätebau GmbH	100248	calchk	cal: 2017-Mar-10	cal: 72M	cal: 2023-Mar-10
20448	Notch Filter WRCT 1850.0/2170.0-5/40-	Wainwright Instruments GmbH	5	chk		chk: 12M	
	10SSK		-		chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20449	Notch Filter WRCT 824.0/894.0-5/40-8SSK	Wainwright Instruments GmbH	1	chk	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20484	Pre-Amplifier 2,5GHz - 18GHz AMF-5D-	Miteq Inc.	1244554	chk	CIR. 2022-Juli-30	CIIK. 12IVI	CIR. 2023-3011-30
	02501800-25-10P				chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20489	Test Receiver ESU40	Rohde & Schwarz Messgerätebau GmbH / Memmingen	100030	cal	cal: 2022-Jul-20	cal: 12M	cal: 2023-Jul-20
20512	Notch Filter WRCA 800/960-02/40-6EEK	Wainwright Instruments GmbH	24	chk			
20549	(GSM 850) Log. Per. Antenna HL025	Rohde & Schwarz Messgerätebau GmbH	1000060	calchk	chk: 2022-Jun-30	chk: 12M cal: 36M	chk: 2023-Jun-30
20549	Log. Per. Antenna hLozo	Konde & Schwarz Wessgeratebau Gribh	1000000	COLLIN	cal: 2021-Aug-18	chk: 12M	cal: 2024-Aug-18
20558	Fully Anechoic Chamber 1	ETS-Lindgren Gmbh / Taufkirchen	-	cnn	cal: -	cal: -	cal: -
20611	Power Supply E3632A	Agilent Technologies Deutschland GmbH	KR 75305854	cpu	chk: -	chk: -	chk: -
20670	Radio Communication Tester CMU200	Rohde & Schwarz Messgerätebau GmbH /	106833	cal	cal: 2022-May-10	cal: 24M	cal: 2024-May-10
20500	Construct Analysis (Cl.)	Memmingen	100202/025				
20690 20720	Spectrum Analyzer FSU Measurement Software EMC32 [FAC]	Rohde & Schwarz Messgerätebau GmbH Rohde & Schwarz Messgerätebau GmbH	100302/026 V10.xx	cal cnn	cal: 2021-May-20 cal: -	cal: 24M cal: -	cal: 2023-May-20 cal: -
		_			chk: -	chk: -	chk: -
20868	High Pass Filter AFH-07000	AtlanTecRF	16071300004	chk	chk: 2022-Jun-11	chk: 12M	chk: 2023-Jun-11
	120907 - FAC2 - Radiated Emissions			chk			
20005		Dalada O. Caluman Marana Stalam Carbol /	001744/005		chk: 2022-Aug-30	chk: 12M	chk: 2023-Aug-30
20005	AC - LISN 50 Ohm/50µH ESH2-Z5	Rohde & Schwarz Messgerätebau GmbH / Memmingen	861741/005	cal	cal: 2022-May-19	cal: 12M	cal: 2023-May-19
20133	Horn Antenna 3115 (Meas 1)	EMCO Elektronik GmbH	9012-3629	cal	cal: 2020-Apr-08	cal: 36M	cal: 2023-Apr-08
20412	Fully Anechoic Chamber 2	ETS-Lindgren Gmbh / Taufkirchen	without	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20729	FS-Z140	Rohde & Schwarz Messgerätebau GmbH	101004	cal	cal: 2020-May-26	cal: 36M	cal: 2023-May-26
20730	FS-Z110	Rohde & Schwarz Messgerätebau GmbH	101468	cal	cal: 2020-Jun-19	cal: 36M	cal: 2023-Jun-19
20731	FS-Z75	Rohde & Schwarz Messgerätebau GmbH / Memmingen	101022	cal	cal: 2022-May-18	cal: 36M	cal: 2025-May-18
20732	Signal- and Spectrum Analyzer FSW67	Rohde & Schwarz Messgerätebau GmbH /	104023	cal	cal: 2022-Jun-08	cal: 12M	cal: 2023-Jun-08
20702	Linear and Advances of Second	Memmingen	404000	<u> </u>			
20733 20734	Harmonic Mixer FS-Z220 Harmonic Mixer FS-Z325	RPG-Radiometer Physics GmbH RPG-Radiometer Physics GmbH	101009 101005	cal cal	cal: 2021-May-27 cal: 2021-May-27	cal: 36M cal: 36M	cal: 2024-May-27 cal: 2024-May-27
20765	Pickett-Potter Horn Antenna FH-PP 40-60	RPG-Radiometer Physics GmbH /	010001	cal	cal: 2020-Sep-15	cal: 36M	cal: 2023-Sep-15
20767	Dislott Datter Line Astrony Still BR 110	Meckenheim	010011				
20767	Pickett-Potter Horn Antenna FH-PP 140- 220	RPG-Radiometer Physics GmbH / Meckenheim	010011	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20811	Horn Antenna ASY-SGH-124-SMA	Antenna Systems Solutions S.L	29F14182337	cal	cal: 2021-Oct-20	cal: 36M	cal: 2024-Oct-20
20812	Pickett-Potter Horn Antenna FH-PP-325	RPG-Radiometer Physics GmbH	10024	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20813	Pickett-Potter Horn Antenna FH-PP 075	RPG-Radiometer Physics GmbH /	10006	cal	cal: 2020-Sep-09	cal: 36M	спк: - cal: 2023-Sep-09
		Meckenheim					
20814	Pickett-Potter Horn Antenna FH-PP 140	RPG-Radiometer Physics GmbH	10008	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20815	Pickett-Potter Horn Antenna FH-PP 110	RPG-Radiometer Physics GmbH	10014	cal	cal: 2020-Sep-04	cal: 36M	cal: 2023-Sep-04
	•	•					

Test Report 22-1-0030601T049a

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
20816	SGH Antenna SGH-26-WR10	Anteral S.L.	1144	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20817	Waveguide Rectangular Horn Antenna	ERAVAN	13254-01	cal	cal: 2020-Jul-29	cal: 36M	cal: 2023-Jul-29
	SAR-2309-22-S2						
20836	1-18 GHz Amplifier	Wright Technologies, Inc., Inc.	0001	chk			
						chk: 36M	
20907	Waveguide WR-15 attenuator STA-30-15-	SAGE Millimeter Inc.	13256-01	cnn	cal: -	cal: -	cal: -
	M2				chk: -	chk: -	chk: -
20908	Waveguide WR 10 attenuator STA-30-10-	SAGE Millimeter Inc.	13256-01	cnn	cal: -	cal: -	cal: -
	M2				chk: -	chk: -	chk: -
20909	Waveguide Horn Antenna PE9881-24	Pasternack Enterprises, Inc.	37/2016	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20910	Frequency Multiplier 936VF-10/385	MI-Wave, Millimeter Wave Products Inc.	142	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20911	Frequency Multiplier 938WF-10/387	MI-Wave, Millimeter Wave Products Inc.	141	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20912	Low noise Amplifier Module 0.5-4GHz	RF-Lambda Europe GmbH	19041200083	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20913	Phase Amplitude Stable Cable Assembly	RF-Lambda Europe GmbH	AC19040001	cnn	cal: -	cal: -	cal: -
	DC-40GHz				chk: -	chk: -	chk: -
	120910 - Radio Laboratory 1 (TS 8997)			chk			
					chk: 2022-Mar-16	chk: 12M	chk: 2023-Mar-16
20559	Vector Signal Generator SMU200A	Rohde & Schwarz Messgerätebau GmbH / Memmingen	103736	cal	cal: 2021-May-20	cal: 24M	cal: 2023-May-20
20691	Open Switch and control Platform OSP120	Rohde & Schwarz Messgerätebau GmbH	101056	cal	cal: 2020-May-13	cal: 36M	cal: 2023-May-13
	Open Switch and control Platform OSP120	Rohde & Schwarz Messgerätebau GmbH	101058		,		cal: 2023-May-13
20805	B157WX 40GHz 8Port Switch	Konde & Schwarz Messgeratebau GmbH	101264	cal	cal: 2020-May-13	cal: 36M	cal: 2023-Ivlay-13
20866	Signal Analyzer FSV3030	Rohde & Schwarz Messgerätebau GmbH /	101247	cal	cal: 2022-Jun-20	cal: 12M	cal: 2023-Jun-20
		Memmingen					
20871	NRP-Z81	Rohde & Schwarz Messgerätebau GmbH /	104631	cal	cal: 2022-May-16	cal: 12M	cal: 2023-May-16
		Memmingen					
20872	NRX Power Meter	Rohde & Schwarz Messgerätebau GmbH /	101831	cal	cal: 2022-May-17	cal: 24M	cal: 2024-May-17
		Memmingen		1			

Tools used in 'P1M1'

4.11.1 Legend

Note / remarks	Interval of calibration & Verification
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years

Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration
calchk	Calibration plus intermediate Verification
chk	Verification
сри	Verification before usage

5 Results from external laboratory

_

-

-

None

6 Opinions and interpretations

None

7 List of abbreviations

None

8 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

Measurement type	Frequency range of measurement Start [MHz] Stop [MHz	Calculated Uncertainty based on confidence level of 95.54%	Remarks
Magnetic field strength	0.009 30	4.86	Magnetic loop antenna, Pre-amp on
	30 100 30 100 100 1000 100 1000	4.57 4.91 4.02 4.26	without Pre-Amp with PreAmp without Pre-Amp with PreAmp
RF-Output power (eirp) Unwanted emissions (eirp)	1000 1000 1000 18000 1000 18000 18000 33000 33000 50000	4.20 4.36 5.23 4.92 4.17	without Pre-Amp with PreAmp Schwarzbeck BBHA9170 (#20302) Antenna set-up non-waveguide antenna) Set-up for Q-Band (WR-22), non-wave guide antenna
[dB]	40000 60000 50000 75000 75000 110000 90000 140000	4.69 4.06 4.17 5.49	Set-up U-Band (WR-19), non-waveguide antenna External Mixer set-up V-Band (WR-15) External Mixer set-up W-Band (WR-6) External Mixer set-up F-Band (WR-8)
	140000 225000 225000 325000 325000 500000	6.22 7.04 8.84	External Mixer set-up G-Band (WR-5) External Mixer set-up (WR-3) External Mixer set-up (WR-2.2)
Radiated Blocking [dB]	1000 18000 18000 33000 33000 50000 50000 75000 75000 110000	2.85 4.66 3.48 3.73 4.26	Typical set-up with microwave generator and antenna, value for 7GHz calculated Typical set-up with microwave generator and antenna WR-22 set-up WR-15 set-up WR-6 set-up
Frequency Error [kHz]	40000 77000 6000 7000	276.19 33.92	calculated for 77 GHz (FMCW) carrier calculated for 6.5GHz UWB Ch.5
	30 6000 30 6000 30 6000 30 6000 30 7500	1.11 1.20 1.20 1.20	Power measurement with Fast-sampling-detector Power measurement with Spectrum-Analyzer Power Spectrum-Density measurement Conducted Spurious emissions:
TS 8997 conducted Parameters	0.009 30 2.4 2.48 5.18 5.825 5.18 5.825	2.56 1.95 ppm 7.180 ppm 1.099 ppm	5. Conducted Spurious emissions: 6a. Bandwidth / 2-Marker Method for 2.4GHz ISM 6b. Bandwidth / 2-Marker Method for 5GHz WLAN 7 Frequency (Marker method) for 5GHz WLAN 2 Modified Hilling in the form of the form
	30 6000 30 6000 30 6000 30 6000 30 30	0.11561µs 1.85 1.62 3.57	8 Medium-Utilization factor / Timing 9 Blocking-Level of companion device 9 Blocking Generator level
Conducted emissions	0.009 30	3.57	

9 Versions of test reports (change history)

Version	Applied changes	Date of release
	Initial release	2023-Feb-17

End Of Test Report