

23109RUS1

Nemko Test Report:

Applicant:	Aerocomm 11160 Thompson Avenue Lenexa, KS 66219 USA
Equipment Under Test: (E.U.T.)	LT2510
In Accordance With:	FCC Part 15, Subpart C, 15.247 and IC RSS 210, Issue 7 Frequency Hopping Transmitters
Tested By:	Nemko USA Inc. 802 N. Kealy Lewisville, Texas 75057-3136
TESTED BY: David Light, Sel	DATE: 23 January 2009 nior Wireless Engineer
APPROVED BY: Tom Tidwell, Telec	DATE: 19 November, 2009
Tota	al Number of Pages: 66

Table of Contents

SECTION 1.	SUMMARY OF TEST RESULTS	3
SECTION 2.	EQUIPMENT UNDER TEST (E.U.T.)	5
SECTION 3.	CHANNEL SEPARATION	7
SECTION 4.	TIME OF OCCUPANCY	16
SECTION 5.	PEAK POWER OUTPUT	23
SECTION 6.	SPURIOUS EMISSIONS (ANTENNA CONDUCTED)	24
SECTION 7.	SPURIOUS EMISSIONS (RADIATED)	33
SECTION 8.	POWERLINE CONDUCTED EMISSIONS	46
SECTION 9.	RECEIVER SPURIOUS EMISSIONS	51
SECTION 10.	TEST EQUIPMENT LIST	54
ANNEX A - TE	ST DETAILS	55
ANNEX B - TE	ST DIAGRAMS	64

Nemko USA, Inc.

FCC PART 15, SUBPART C and RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

Section 1.	Summary of Test Results
------------	-------------------------

Manufacturer: Aerocomm

Model No.: LT2510

Serial No.: None

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 and RSS 210, Issue 7 for Frequency Hopping Transmitters. Radiated tests were conducted is accordance with ANSI C63.4-2003. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC.

New Submission	Production Unit
Class II Permissive Change	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

NV (A)

Nemko USA Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary Of Test Data

NAME OF TEST	PARA. NO.	RESULT
Powerline Conducted Emissions	15.207(a), RSS-Gen 7.2.2	Complies
Channel Separation	15.247(a)(1) and A8.1(b)	Complies
Time of Occupancy	15.247(a)(1) and A8.1(d)	Complies
20 dB Occupied Bandwidth	15.247(a)(1) and A8.1(a)	Complies
Peak Power Output	15.247(b) and A8.4(2)	Complies*
Spurious Emissions(Antenna Conducted)	15.247(d) and A8.5	Complies
Spurious Emissions (Radiated)	15.247(d) and A8.5	Complies
Receiver Spurious Emissions	RSS-Gen. 6(b)	Complies

Footnotes:

*The radio comes with options for the following antennas:

- 1) 2 dBi chip
- 2) 5 dBi dipole
- 3) 6 dBi omni
- 4) 9 dBi panel

To comply with the power requirements of 15.247(b)(1) and 15.247(b)(4), the device will not be marketed with the 9 dBi antenna if using the 43 channel hop sequence.

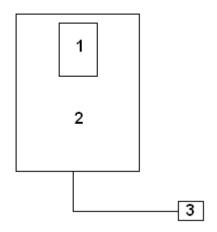
Nemko USA, Inc. FCC PART 15, SUBPART C and RSS-210 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

Software controlled

Section 2. Equipment Under Test (E.U.T.)

General Equipment Information	
Frequency Band:	 ☐ 902 – 928 MHz ☐ 2400 – 2483.5 MHz ☐ 5725 – 5850 MHz
Operating Frequency Range:	2404.0 to 2467.0 MHz (43) 2400.75 to 2471.0 MHz (79)
Number of Channels:	43 or 79
Channel Spacing:	1.5 MHz (43) or 900 kHz (79)


User Frequency Adjustment:

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

Description of EUT

The LT2510 is a surface mount module built around Texas Instruments 2510 soc. The LT2510 utilizes a front-end module to amplify the receive and transmit signals of the 2510. Aerocomm's firmware controls the RF parameters and allows the OEM customer access to customize the data being sent for their application.

System Diagram

- 1) EUT
- 2) Serial interface board
- 3) AC adapter

Nemko USA, Inc. FCC PART 15, SUBPART C and RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

Section 3. Channel Separation

NAME OF TEST: Channel Separation PARA. NO.: FCC 15.247(a)(1)

RSS-210 A8.1(b)

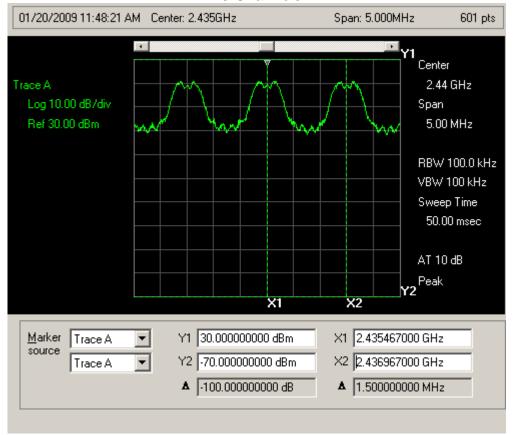
TESTED BY: David Light DATE: 20 January 2009

Test Results: Complies.

Measurement Data: See 20 dB BW plot

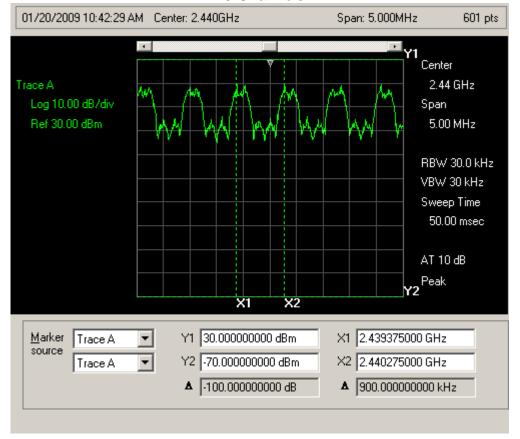
Measured 20 dB bandwidth: 1.36 MHz (43) and 845 kHz (79) Channel Separation: 1.5 MHz (43 and 900 kHz (79)

Equipment Used: 1464-1472-1469-1082

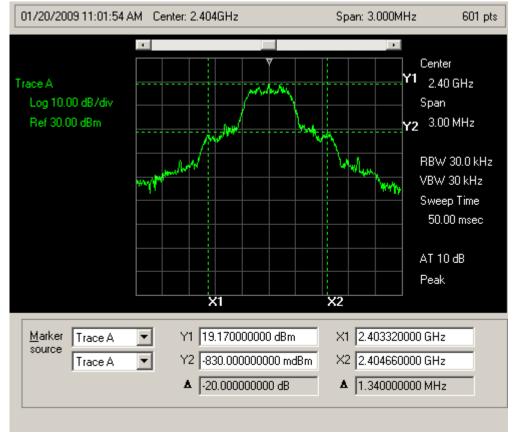

Measurement Uncertainty: 1X10⁻⁷ppm

Temperature: 22 °C

Relative Humidity: 35 %


Test Data – Channel Separation

Test Data – Channel Separation

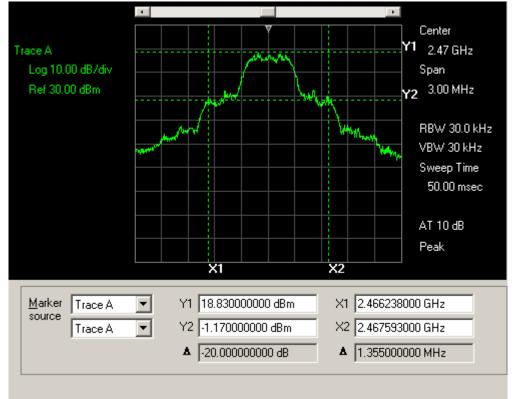


PROJECT NO.:23109RUS1

Test Data - 20 dB Bandwidth

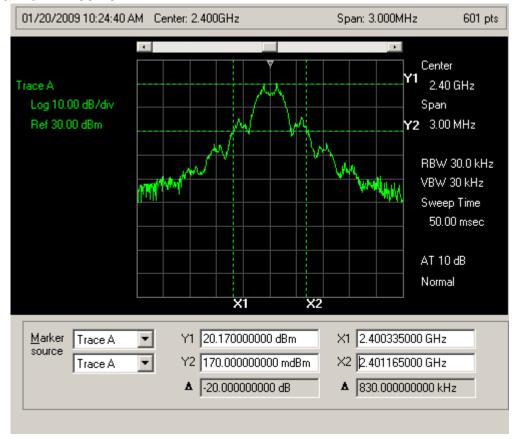

43 Channel Low Channel – 2404.0 MHz

PROJECT NO.:23109RUS1


Test Data - 20 dB Bandwidth

43 Channel Mid Channel – 2435 MHz

Test Data - 20 dB Bandwidth


43 Channel High Channel – 2467 MHz

PROJECT NO.:23109RUS1

Test Data - 20 dB Bandwidth

79 Channel Low Channel – 2400.75 MHz

Test Data - 20 dB Bandwidth

79 Channel Mid Channel – 2435 MHz

PROJECT NO.:23109RUS1

Test Data - 20 dB Bandwidth

79 Channel High Channel – 2471 MHz

Nemko USA, Inc. FCC PART 15, SUBPART C and RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

Section 4. Time of Occupancy

NAME OF TEST: Time of Occupancy PARA. NO.: 15.247(a)(1)

RSS-210 A8(d)

TESTED BY: David Light DATE: 20 January 2009

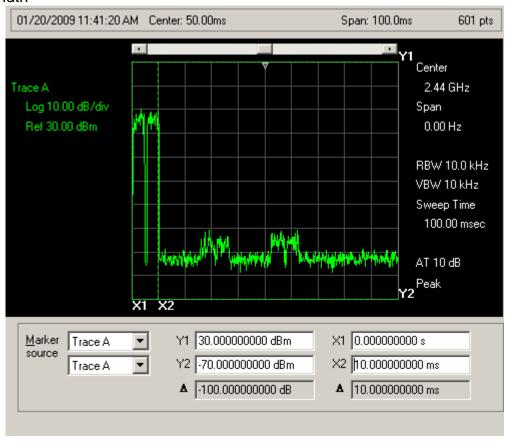
Test Results: Complies.

Measurement Data:

Maximum Dwell Time On Any Channel: 333 mS (49)

297 mS (79)

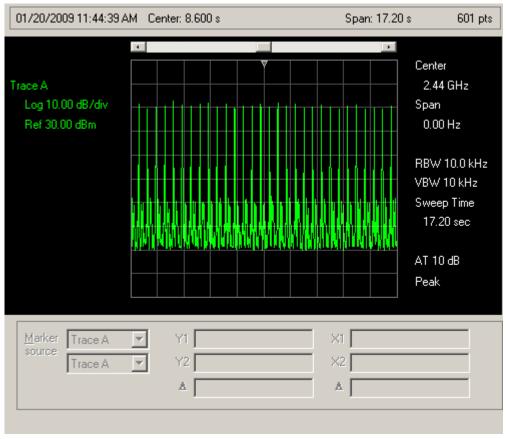
Equipment Used: 1464-1082-1472-1469


Measurement Uncertainty: <u>1X10⁻⁷ppm</u>

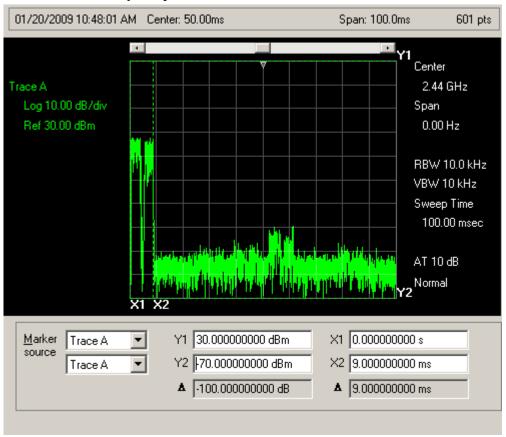
Temperature: 22 °C

Relative Humidity: 35 %

Test Data – Time of Occupancy


43 Channels Pulse Width

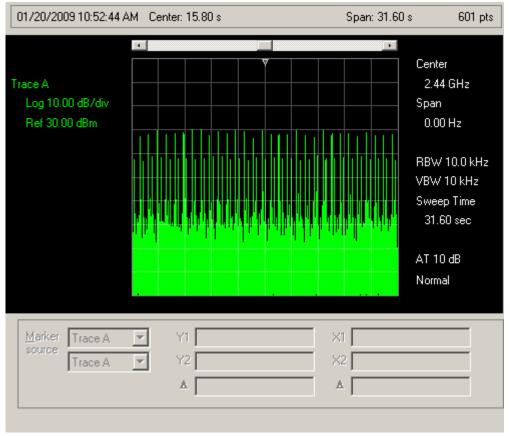
 $20 \log (10/100) = -20.0 dB$ (Duty cycle correction)


PROJECT NO.:23109RUS1

Test Data – Time of Occupancy

33 hops in 17.2 seconds 33 x 10 mS = 333 mS (0.333 seconds)

Test Data – Time of Occupancy

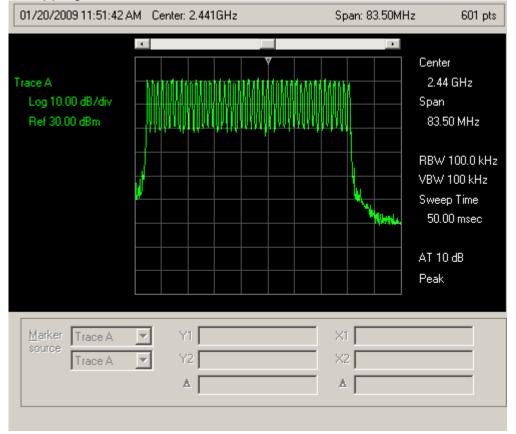


 $20 \log (9/100) = -20.9 dB$ (Duty cycle correction)

PROJECT NO.:23109RUS1

Test Data – Time of Occupancy

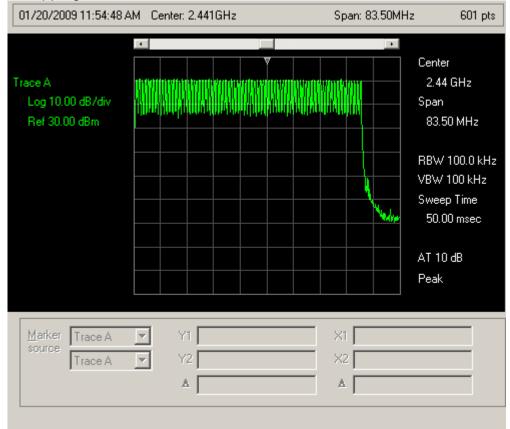
79 Channels



33 hops in 31.6 seconds 33 x 9 mS = 297 mS (0.297 seconds)

Test Data – Time of Occupancy

43 Channels


Number of hopping channels

Test Data – Time of Occupancy

79 Channels

Number of hopping channels

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

Section 5. Peak Power Output

NAME OF TEST: Peak Power Output PARA. NO.: 15.247 (b)

RSS-210 A8.4(2)

TESTED BY: David Light DATE: 20 January 2009

Test Results: Complies.

Measurement Data: See attached plots.

Frequency	Peak Power	Peak Power	Antenna	Gain	E.I.R.P.	E.I.R.P.
(MHz)	(dBm)	(mW)	Type	(dBi)	(dBm)	(mW)
2404	21.0	125	Omni	6	27.0	500
2435	20.7	117	Omni	6	26.7	468
2467	20.5	112	Omni	6	26.5	447
2400.75	20.8	120	Panel	9	29.8	955
2434	20.7	117	Panel	9	29.7	933
2471	20.3	107	Panel	9	29.3	851
Maximum El	RP (mW): 955	(79 channel n	node) / 500 (43	3 channel	mode)	

This device was tested at +/- 15% input power per 15.31(e), with no variation in output power.

The device was tested on three channels per 15.31(I).

Equipment Used: 1464-1472-1469-1082

Measurement Uncertainty: 1.7 dB

Temperature: 22 °C

Relative Humidity: 35 %

Nemko USA, Inc. FCC PART 15, SUBPART C and RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

Section 6. Spurious Emissions (Antenna Conducted)

NAME OF TEST: Spurious Emissions (Antenna Conducted) PARA. NO.: 15.247(d)

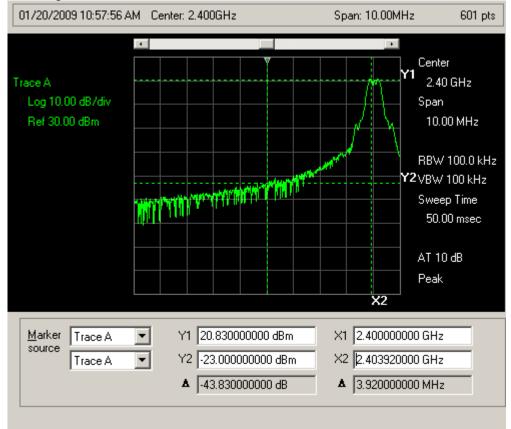
RSS-210 A8.5

TESTED BY: David Light DATE: 20 January

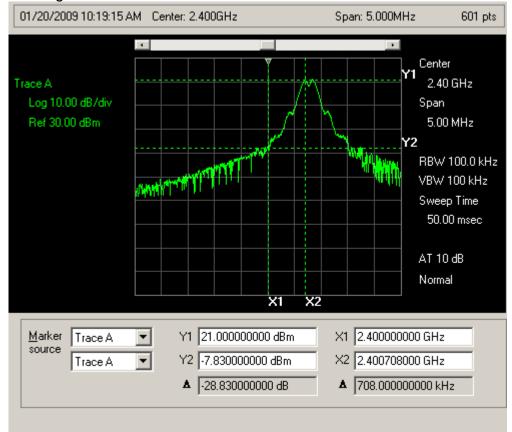
2009

Test Results: Complies.

Measurement Data: See attached plots.

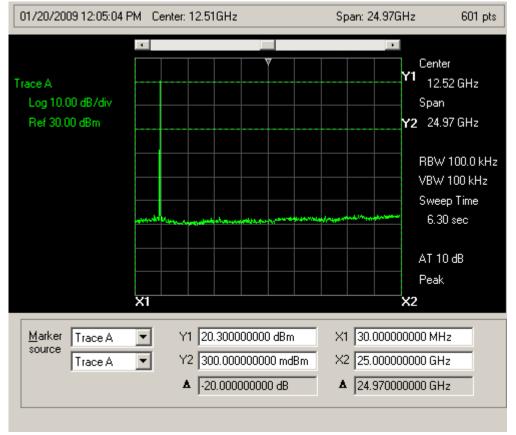

Equipment Used: 1464-1472-1469-1082

Measurement Uncertainty: 1X10⁻⁷ppm

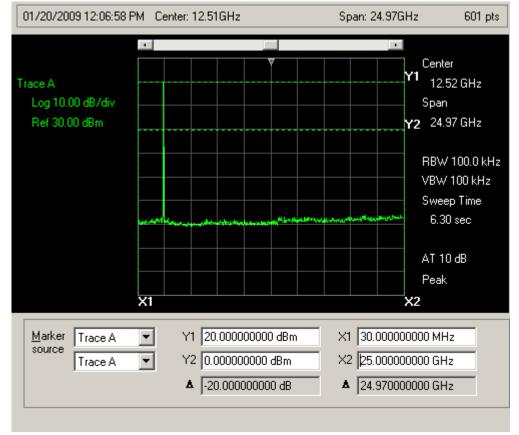

Temperature: 22 °C

Relative Humidity: 35 %

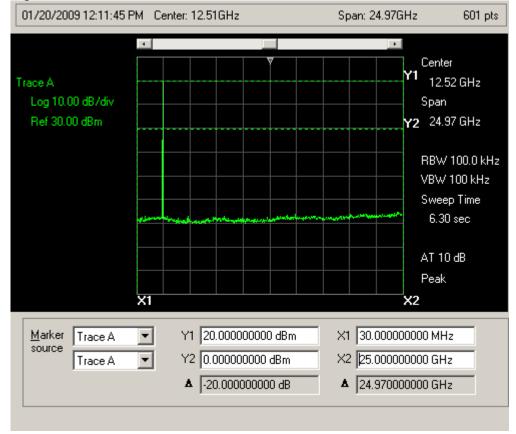
43 Channel Lower Band Edge



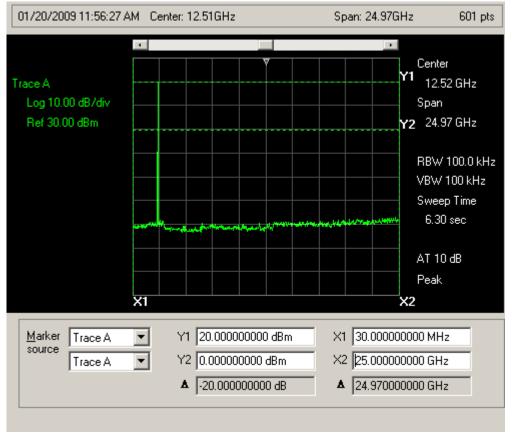
79 Channel Lower Band Edge


43 Channel

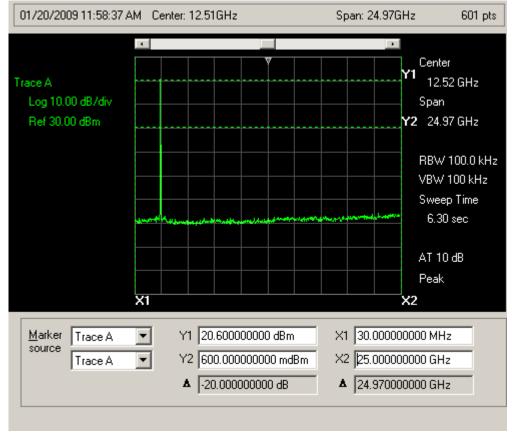
Spurs - Low Channel


43 Channel

Spurs - Mid Channel

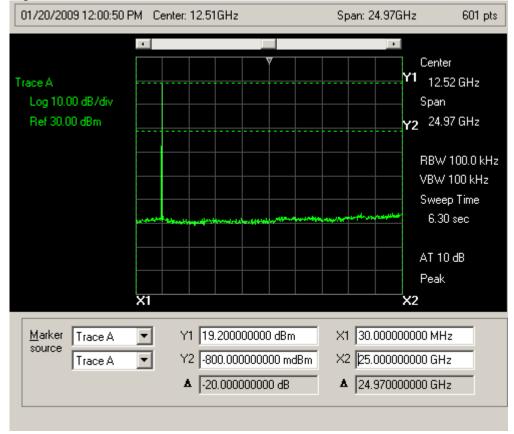

43 Channel

Spurs - High Channel



79 Channel

Spurs - Low Channel



79 Channel Spurs – Mid Channel

79 Channel

Spurs - High Channel

Nemko USA, Inc. FCC PART 15, SUBPART C and RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

Section 7. Spurious Emissions (Radiated)

NAME OF TEST: Spurious Emissions (Radiated) PARA. NO.: 15.247(d)

RSS-210 A8.5

TESTED BY: David Light DATE: 22 January 2009

Test Results: Complies. The worst case emission was 73.6 dBµV/m at

2483.5 MHz. This is 0.4 dB below the specification limit of 74

dBμV/m.

Measurement Data: See attached table(s).

Notes:

For handheld devices, the EUT was tested on three orthogonal axis'

The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency per 15.33

The device was tested on three channels per 15.31(I).

Equipment Used: 1464-1484-1485-1016-993-1763-791

Measurement Uncertainty: +/-3.6 dB

Temperature: 25 °C

Relative Humidity: 40 %

Analyzer Settings:

<1000 MHz: RBW=VBW=100 kHz, Peak detector >1000 MHz: RBW=VBW=1 MHz, Peak detector

Duty cycle correction:

-20.9 dB for 43 channel configuration

-20.0 dB for 79 channel configuration

Test Data - Radiated Emissions

Laird Technologies WIC2450-A 2dBi Chip Antenna

43 Channel

		Pre-A	Horn	Cable	Cable					
Freq	Rdng	Duty				Dist	Corr	Spec	Margin	Polar
MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	dΒμV/m	dB	Ant
2483.500	36.2	+0.0	+29.0	+0.8	+2.3	+0.0	68.3	74.0	-5.7	Horiz
		+0.0						High char	nel	
2483.500	36.2	+0.0	+29.0	+0.8	+2.3	+0.0	47.4	54.0	-6.6	Horiz
Ave		-20.9						High char		
7400.757	50.5	-32.4	+35.9	+1.2	+4.0	+0.0	59.2	74.0	-14.8	Horiz
		+0.0						High char		
7400.757	50.5	-32.4	+35.9	+1.2	+4.0	+0.0	38.3	54.0	-15.7	Horiz
Ave		-20.9						High char		
2483.500	34.3	+0.0	+29.0	+0.8	+2.3	+0.0	66.4	74.0	7.6	Vert
0.400 =00		+0.0						High char		
2483.500	34.3	+0.0	+29.0	+0.8	+2.3	+0.0	45.5	54.0	-8.5	Vert
Ave	540	-20.9	.05.0	. 1.0	. 4.0	. 0. 0	00.0	High char		\
7400.760	54.3	-32.4	+35.9	+1.2	+4.0	+0.0	63.0	74.0	-11.0	Vert
7400.760	54.3	+0.0	+35.9	+1.2	+4.0	+0.0	42.1	High char 54.0	-11.9	Vert
7400.760 Ave	54.5	-32.4 -20.9	+35.9	+1.2	+4.0	+0.0	42.1	54.0 High char		vert
7306.425	53.0	-32.3	+35.8	+1.2	+4.0	+0.0	61.7	74.0	-12.3	Vert
7300.423	33.0	+0.0	+33.0	⊤1.∠	T4.0	+0.0	01.7	Mid chanr		VEIL
7306.425	53.0	-32.3	+35.8	+1.2	+4.0	+0.0	40.8	54.0	-13.2	Vert
Ave	00.0	-20.9	100.0	11.2	14.0	10.0	40.0	Mid chanr		VOIL
7306.425	48.3	-32.3	+35.8	+1.2	+4.0	+0.0	57.0	74.0	-17.0	Horiz
		+0.0						Mid chanr		
7306.425	48.3	-32.3	+35.8	+1.2	+4.0	+0.0	36.1	54.0	-17.9	Horiz
Ave		-20.9						Mid chann	nel	
7211.973	45.7	-32.1	+35.8	+1.2	+3.9	+0.0	54.5	74.0	-19.5	Horiz
		+0.0						Low chan	nel	
7211.973	45.7	-32.1	+35.8	+1.2	+3.9	+0.0	33.6	54.0	-20.4	Horiz
Ave		-20.9						Low chan		
7211.973	48.2	-32.1	+35.8	+1.2	+3.9	+0.0	57.0	74.0	-17.0	Vert
		+0.0						Low chan		
7211.973	48.2	-32.1	+35.8	+1.2	+3.9	+0.0	36.1	54.0	-17.9	Vert
Ave		-20.9						Low chan	nel	

Test Data - Radiated Emissions

Nearson S151FC-L-(132)PX-2450S 5dBi Dipole Antenna 43 Channel

	101	Pre-A	Horn	Cable	Cable					
Freq	Rdng	Duty	110111	Cable	Cable	Dist	Corr	Spec	Margin	Polar
MHz	dBµV	dB	dB	dB	dB	Table		dBµV/m	dB	Ant
2483.500	37.2	+0.0 +0.0	+29.0	+0.8	+2.3	+0.0	69.3	74.0 High Char	-4.7	Vert
2492 500	37.2	+0.0	+29.0	+0.8	+2.3	100	48.4	54.0	-5.6	Vert
2483.500	31.2	-20.9	+29.0	+0.6	+2.3	+0.0	40.4			ven
Ave 7404 000	57.5		+35.9	+1.2	. 1 0	. 0 0	66.2	High Cha	-7.8	Vert
7401.000	57.5	-32.4 +0.0	+35.9	+1.2	+4.0	+0.0	00.2	74.0		ven
7401.000	57.5	-32.4	+35.9	+1.2	+4.0	+0.0	45.3	High Char 54.0		Vert
	57.5	-32.4 -20.9	+35.9	+1.2	+4.0	+0.0	45.3	54.0 High Cha	-8.7	vert
Ave 2483.000	33.7		+29.0	+0.8	+2.3	+0.0	65.8	74.0	-8.2	Horiz
2463.000	33.1	+0.0 +0.0	+29.0	+0.6	+2.3	+0.0	05.6	High Cha	-	HOHZ
2483.000	33.7	+0.0	+29.0	+0.8	+2.3	+0.0	44.9	54.0	-9.1	Horiz
	33.1		+29.0	+0.6	+2.3	+0.0	44.9		-	HOHZ
Ave		-20.9	. 25.0	.4.0	. 1 0	. 0 0	04.0	High Cha		I I a al-
7401.000	52.5	-32.4	+35.9	+1.2	+4.0	+0.0	61.2	74.0	-12.8	Horiz
7404 000		+0.0	. 25 0	+1.2	. 1 0		40.0	High Cha	-13.7	المعال
7401.000	52.5	-32.4 -20.9	+35.9	+1.2	+4.0	+0.0	40.3	54.0		Horiz
Ave	40.0		. 25 0	+1.2	. 1 0		F0 F	High Cha		المعال
7306.350	49.8	-32.3	+35.8	+1.2	+4.0	+0.0	58.5	74.0 Mid Chan	-15.5	Horiz
7200 250	40.0	+0.0	. 25 0	+1.2	. 1 0		27.0			المعال
7306.350	49.8	-32.3 -20.9	+35.8	+1.2	+4.0	+0.0	37.6	54.0 Mid Chan	-16.4	Horiz
Ave			. 25 0	+1.2	+4.0	. 0 0	64.2			\/o#
7306.350	55.5	-32.3 +0.0	+35.8	+1.2	+4.0	+0.0	64.2	74.0 Mid Chan	-9.8	Vert
7200 250			.25.0	+1.2	+4.0		40.0			\/owt
7306.350	55.5	-32.3	+35.8	+1.2	+4.0	+0.0	43.3	54.0	-10.7	Vert
Ave	F0.0	-20.9	.25.0	+1.2			<u> </u>	Mid Chan		\/owt
7212.000	53.2	-32.1	+35.8	+1.2	+3.9	+0.0	62.0	74.0	-12.0	Vert
7040.000	F2 2	+0.0	. 25.0	.4.0	.20	. 0 0	11 1	Low Char		\/out
7212.000	53.2	-32.1	+35.8	+1.2	+3.9	+0.0	41.1	54.0	-12.9	Vert
Ave	47.7	-20.9	. 25. 0	.4.0		.0.0	FC F	Low Char		l lovi-
7212.000	47.7	-32.1	+35.8	+1.2	+3.9	+0.0	56.5	74.0	-17.5	Horiz
7040.000	47.7	+0.0	.05.0	. 4 0	. 0. 0	. 0. 0	05.0	Low Char		I I and
7212.000	47.7	-32.1	+35.8	+1.2	+3.9	+0.0	35.6	54.0	-18.4	Horiz
Ave		-20.9						Low Char	nnel	

Test Data - Radiated Emissions

Laird Technologies IG2450-RS36 6dBi Omni Antenna 43 Channel

		Pre-A	Horn	Cable	Cable					
Freq	Rdng	Duty				Dist	Corr	Spec	Margin	Polar
MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
2483.500	32.8	+0.0	+29.0	+0.8	+2.3	+0.0	64.9	74.0	-9.1	Vert
		+0.0						High Char	nnel	
2483.500	32.8	+0.0	+29.0	+0.8	+2.3	+0.0	44.0	54.0	-10.0	Vert
Ave		-20.9						High Char		
4934.000	49.8	-32.6	+33.6	+1.0	+3.3	+0.0	55.1	74.0	-18.9	Vert
		+0.0						High Chai		
4934.000	49.8	-32.6	+33.6	+1.0	+3.3	+0.0	34.2	54.0	-19.8	Vert
Ave		-20.9						High Char		
7401.000	57.7	-32.4	+35.9	+1.2	+4.0	+0.0	66.4	74.0	-7.6	Vert
7404.000		+0.0	05.0	4.0	4.5		45.5	High Chai		
7401.000	57.7	-32.4	+35.9	+1.2	+4.0	+0.0	45.5	54.0	-8.5	Vert
Ave	00.7	-20.9					0.1.0	High Chai		
2483.500	32.7	+0.0	+29.0	+0.8	+2.3	+0.0	64.8	74.0	-9.2	Horiz
0400 500	20.7	+0.0	. 20. 0		.00		40.0	High Char		l la vi=
2483.500 Ave	32.7	+0.0 -20.9	+29.0	+0.8	+2.3	+0.0	43.9	54.0 High Chai	-10.1	Horiz
7401.000	54.2	-32.4	+35.9	+1.2	+4.0	+0.0	62.9	74.0	-11.1	Horiz
7401.000	54.2	+0.0	+35.8	Ŧ1.Z	+4.0	+0.0	02.9	High Chai		110112
7401.000	54.2	-32.4	+35.9	+1.2	+4.0	+0.0	42.0	54.0	-12.0	Horiz
Ave	54.2	-20.9	+55.5	Τ1.Ζ	T - 4.0	+0.0	42.0	High Chai	_	110112
7306.339	50.2	-32.3	+35.8	+1.2	+4.0	+0.0	58.9	74.0	-15.1	Horiz
1 000.000	00.2	+0.0	. 00.0			. 0.0	00.0	Mid Chan	_	110112
7306.339	50.2	-32.3	+35.8	+1.2	+4.0	+0.0	38.0	54.0	-16.0	Horiz
Ave		-20.9						Mid Chan		
7306.339	55.2	-32.3	+35.8	+1.2	+4.0	+0.0	63.9	74.0	-10.1	Vert
		+0.0						Mid Chan	nel	
7306.339	55.2	-32.3	+35.8	+1.2	+4.0	+0.0	43.0	54.0	-11.0	Vert
Ave		-20.9						Mid Chan	nel	
7211.964	54.7	-32.1	+35.8	+1.2	+3.9	+0.0	63.5	74.0	-10.5	Vert
		+0.0						Low Char	nel	
7211.964	54.7	-32.1	+35.8	+1.2	+3.9	+0.0	42.6	54.0	-11.4	Vert
Ave		-20.9						Low Char		
7211.964	50.7	-32.1	+35.8	+1.2	+3.9	+0.0	59.5	74.0	-14.5	Horiz
		+0.0						Low Char		
7211.964	50.7	-32.1	+35.8	+1.2	+3.9	+0.0	38.6	54.0	-15.4	Horiz
Ave		-20.9						Low Char	nel	

PROJECT NO.:23109RUS1

Test Data - Radiated Emissions

Laird Technologies ID2450-RS36 9dBi Panel Antenna 43 Channel

	CI									
		Pre-A	Horn	Cable	Cable					
Freq	Rdng	Duty				Dist	Corr	Spec	Margin	Polar
MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
2483.500	26.2	+0.0	+29.0	+0.8	+2.3	+0.0	58.3	74.0	-15.7	Vert
		+0.0						High Chai	nnel	
2483.500	26.3	+0.0	+29.0	+0.8	+2.3	+0.0	37.5	54.0	-16.5	Vert
Ave		-20.9						High Chai	nnel	
7401.000	59.5	-32.4	+35.9	+1.2	+4.0	+0.0	68.2	74.0	-5.8	Vert
		+0.0						High Chai	nnel	
7401.000	59.5	-32.4	+35.9	+1.2	+4.0	+0.0	47.3	54.0	-6.7	Vert
Ave		-20.9						High Chai	nnel	
2483.500	27.0	+0.0	+29.0	+0.8	+2.3	+0.0	59.1	74.0	-14.9	Horiz
		+0.0						High Chai	nnel	
2483.500	27.0	+0.0	+29.0	+0.8	+2.3	+0.0	38.2	54.0	-15.8	Horiz
Ave		-20.9						High Chai	nnel	
7401.000	49.8	-32.4	+35.9	+1.2	+4.0	+0.0	58.5	74.0	-15.5	Horiz
		+0.0						High Chai	nnel	
7401.000	49.8	-32.4	+35.9	+1.2	+4.0	+0.0	37.6	54.0	-16.4	Horiz
Ave		-20.9						High Chai	nnel	
7306.350	50.7	-32.3	+35.8	+1.2	+4.0	+0.0	59.4	74.0	-14.6	Horiz
		+0.0						Mid Chan	nel	
7306.350	50.7	-32.3	+35.8	+1.2	+4.0	+0.0	38.5	54.0	-15.5	Horiz
Ave		-20.9						Mid Chan		
7306.350	56.3	-32.3	+35.8	+1.2	+4.0	+0.0	65.0	74.0	-9.0	Vert
		+0.0						Mid Chan	nel	
7306.350	56.3	-32.3	+35.8	+1.2	+4.0	+0.0	44.1	54.0	-9.9	Vert
Ave		-20.9						Mid Chan	nel	
7212.000	53.8	-32.1	+35.8	+1.2	+3.9	+0.0	62.6	74.0	-11.4	Vert
		+0.0						Low Char	nel	
7212.000	53.8	-32.1	+35.8	+1.2	+3.9	+0.0	41.7	54.0	-12.3	Vert
Ave		-20.9						Low Char	nel	
7212.000	48.5	-32.1	+35.8	+1.2	+3.9	+0.0	57.3	74.0	-16.7	Horiz
		+0.0						Low Char	nel	
7212.000	48.5	-32.1	+35.8	+1.2	+3.9	+0.0	36.4	54.0	-17.6	Horiz
Ave		-20.9						Low Char	nel	

Test Data - Radiated Emissions

Laird Technologies WIC2450-A 2dBi Chip Antenna

79 Channel

		Pre-A	Horn	Cable	Cable					
Freq	Rdng	Duty				Dist	Corr	Spec	Margin	Polar
MHz (dΒμV	dB	dB	dB	dB	Table	dBµV/m	dΒμV/m	dB	Ant
2483.500	34.5		+29.0	+0.8	+2.3	+0.0	66.6	74.0	-7.4	Vert
		+0.0						High chan	nel	
2483.500	34.5		+29.0	+0.8	+2.3	+0.0	45.7	54.0	-8.3	Vert
Ave		-20.9						High chan		
7412.781	53.3	-32.5	+35.9	+1.2	+4.0	+0.0	61.9	74.0	-12.1	Vert
		+0.0						High chan		
7412.781	53.3	-32.5	+35.9	+1.2	+4.0	+0.0	41.0	54.0	-13.0	Vert
Ave		-20.9						High chan		
2483.500	33.3		+29.0	+0.8	+2.3	+0.0	65.4	74.0	-8.6	Horiz
		+0.0						High chan		
2483.500	33.3		+29.0	+0.8	+2.3	+0.0	44.5	54.0	-9.5	Horiz
Ave		-20.9						High chan		
7412.781	47.7	-32.5	+35.9	+1.2	+4.0	+0.0	56.3	74.0	-17.7	Horiz
		+0.0						High chan		
7412.781	47.7	-32.5	+35.9	+1.2	+4.0	+0.0	35.4	54.0	-18.6	Horiz
Ave	50.0	-20.9	05.0	4.0	4.0		50.0	High chan		
7307.493	50.3	-32.3	+35.8	+1.2	+4.0	+0.0	59.0	74.0	-15.0	Vert
7007.400	50.0	+0.0	.05.0	. 1.0	. 1.0	. 0. 0	00.4	Mid chann		Mont
7307.493	50.3	-32.3 -20.9	+35.8	+1.2	+4.0	+0.0	38.1	54.0 Mid chann	-15.9	Vert
Ave 7307.493	49.8	-32.3	+35.8	+1.2	+4.0	+0.0	58.5	74.0	-15.5	Horiz
7307.493	49.0	-32.3 +0.0	+35.6	+1.2	+4.0	+0.0	56.5	Mid chanr		HOHZ
7307.493	49.8	-32.3	+35.8	+1.2	+4.0	+0.0	37.6	54.0	-16.4	Horiz
7307.493 Ave	49.0	-32.3 -20.9	+33.6	Ŧ1.Z	+4 .0	+0.0	37.0	Mid chanr		110112
7202.400	44.7	-32.1	+35.8	+1.2	+3.9	+0.0	53.5	74.0	-20.5	Horiz
7202.400	77.7	+0.0	+55.0	Τ1.Ζ	+5.5	+0.0	55.5	Low chan		110112
7202.400	44.7	-32.1	+35.8	+1.2	+3.9	+0.0	32.6	54.0	-21.4	Horiz
Ave	77.7	-20.9	100.0	11.2	10.5	10.0	02.0	Low chan		110112
7202.400	47.5	-32.1	+35.8	+1.2	+3.9	+0.0	56.3	74.0	-17.7	Vert
. 202. 100		+0.0	. 55.6		. 0.0	. 0.0	00.0	Low chan		V 0.1
7202.400	47.5	-32.1	+35.8	+1.2	+3.9	+0.0	35.4	54.0	-18.6	Vert
Ave	5	-20.9		· -	. 5.6	. 5.0		Low chan		

Test Data - Radiated Emissions

Nearson S151FC-L-(132)PX-2450S 5dBi Dipole Antenna 79 Channel

		Pre-A	Horn	Cable	Cable					
Freq	Rdng	Duty				Dist	Corr	Spec	Margin	Polar
MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
2483.500	33.5		+29.0	+0.8	+2.3	+0.0	65.6	74.0	-8.4	Horiz
		+0.0						5 dBi		
2483.500	33.5		+29.0	+0.8	+2.3	+0.0	44.7	54.0	-9.3	Horiz
Ave		-20.9						5 dBi		
7412.850	54.8	-32.5	+35.9	+1.2	+4.0	+0.0	63.4	74.0	-10.6	Horiz
		+0.0						High char		
7412.850	54.8	-32.5	+35.9	+1.2	+4.0	+0.0	42.5	54.0	-11.5	Horiz
Ave		-20.9						High char		
2483.500	41.5		+29.0	+0.8	+2.3	+0.0	73.6	74.0	-0.4	Vert
		+0.0						5 dBi		
2483.500	41.5		+29.0	+0.8	+2.3	+0.0	52.7	54.0	-1.3	Vert
Ave		-20.9						5 dBi		
7412.850	60.8	-32.5	+35.9	+1.2	+4.0	+0.0	69.4	74.0	-4.6	Vert
7440.050	00.0	+0.0	.05.0	. 4.0	. 1.0	. 0. 0	40.5	High char		\ /1
7412.850	60.8	-32.5	+35.9	+1.2	+4.0	+0.0	48.5	54.0	-5.5	Vert
Ave 7207 475	C4 2	-20.9	. 25.0	.10	+4.0	. 0 0	70.0	High char	-4.0	l la vi=
7307.475	61.3	-32.3	+35.8	+1.2	+4.0	+0.0	70.0	74.0	_	Horiz
7307.475	61.3	+0.0	+35.8	+1.2	+4.0	.00	49.1	Mid chant 54.0	-4.9	Horiz
7307.475 Ave	61.3	-32.3 -20.9	+35.6	+1.2	+4.0	+0.0	49.1	Mid chan		HOHZ
4871.650	43.7	-32.5	+33.4	+1.0	+3.3	+0.0	48.9	74.0	-25.1	Vert
7307.475	56.0	-32.3	+35.8	+1.2	+4.0	+0.0	64.7	74.0	-9.3	Vert
7307.473	30.0	+0.0	+33.0	T1.Z	T4.0	+0.0	04.7	Mid chan		VEIL
7307.475	56.0	-32.3	+35.8	+1.2	+4.0	+0.0	43.8	54.0	-10.2	Vert
Ave	30.0	-20.9	+55.0	T1.Z	T 4. 0	+0.0	45.0	Mid chan		Vert
7202.400	55.8	-32.1	+35.8	+1.2	+3.9	+0.0	64.6	74.0	-9.4	Horiz
7202.400	00.0	+0.0	100.0	11.2	10.5	10.0	04.0	Low chan		110112
7202.400	55.8	-32.1	+35.8	+1.2	+3.9	+0.0	43.7	54.0	-10.3	Horiz
Ave	00.0	-20.9	. 00.0		. 0.0	. 0.0	.0.,	Low chan		110112
7202.400	59.8	-32.1	+35.8	+1.2	+3.9	+0.0	68.6	74.0	-5.4	Vert
	50.5	+0.0	. 55.5		. 0.0	. 0.0	20.0	Low chan		. 5
7202.400	59.8	-32.1	+35.8	+1.2	+3.9	+0.0	47.7	54.0	-6.3	Vert
Ave		-20.9						Low chan	nel	

Test Data - Radiated Emissions

Laird Technologies IG2450-RS36 6dBi Omni Antenna 79 Channel

		Pre-A	Horn	Cable	Cable					
Freq	Rdng	Duty	110111	Cabic	Oabic	Dist	Corr	Spec	Margin	Polar
MHz	dBµV	dB	dB	dB	dB	Table		dBµV/m	dB	Ant
2483.500	33.5	<u> </u>	+29.0	+0.8	+2.3	+0.0	65.6	74.0	-8.4	Horiz
2400.000	00.0	+0.0	120.0	10.0	12.0	10.0	00.0	6 dBi	0.4	110112
2483.500	33.5		+29.0	+0.8	+2.3	+0.0	44.7	54.0	-9.3	Horiz
Ave	00.0	-20.9						6 dBi	0.0	
7412.760	54.0	-32.5	+35.9	+1.2	+4.0	+0.0	62.6	74.0	-11.4	Horiz
		+0.0						High char		
7412.760	54.0	-32.5	+35.9	+1.2	+4.0	+0.0	41.7	54.0	-12.3	Horiz
Ave		-20.9						High char	nnel	
2483.500	39.8		+29.0	+0.8	+2.3	+0.0	71.9	74.0	-2.1	Vert
		+0.0						6 dBi		
2483.500	39.8		+29.0	+0.8	+2.3	+0.0	51.0	54.0	-3.0	Vert
Ave		-20.9						6 dBi		
7412.760	58.0	-32.5	+35.9	+1.2	+4.0	+0.0	66.6	74.0	-7.4	Vert
		+0.0						High char		
7412.760	58.0	-32.5	+35.9	+1.2	+4.0	+0.0	45.7	54.0	-8.3	Vert
Ave		-20.9						High char		
7307.232	54.2	-32.3	+35.8	+1.2	+4.0	+0.0	62.9	74.0	-11.1	Vert
		+0.0						Mid chann		
7307.232	54.2	-32.3	+35.8	+1.2	+4.0	+0.0	42.0	54.0	-12.0	Vert
Ave	54.0	-20.9	.05.0	. 1.0	. 1.0	. 0. 0	50.7	Mid chann		112
7307.232	51.0	-32.3	+35.8	+1.2	+4.0	+0.0	59.7	74.0	-14.3	Horiz
7007.000	54.0	+0.0	.05.0	.40	. 1 0	. 0 0	20.0	Mid chann		I I a wi-
7307.232	51.0	-32.3	+35.8	+1.2	+4.0	+0.0	38.8	54.0	-15.2	Horiz
Ave 7202.400	53.8	-20.9 -32.1	+35.8	+1.2	+3.9	+0.0	62.6	Mid chann 74.0	-11.4	Vert
7202.400	55.6	-32.1 +0.0	+35.6	+1.2	+3.9	+0.0	02.0	Low chan		vert
7202.400	53.8	-32.1	+35.8	+1.2	+3.9	+0.0	41.7	54.0	-12.3	Vert
7202.400 Ave	55.0	-20.9	+33.0	T1.Z	тэ.э	+0.0	41.7	Low chan		VEIL
7202.400	51.0	-32.1	+35.8	+1.2	+3.9	+0.0	59.8	74.0	-14.2	Horiz
7202.400	51.0	+0.0	100.0	11.2	10.0	10.0	55.0	Low chan		1 10112
7202.400	51.0	-32.1	+35.8	+1.2	+3.9	+0.0	38.9	54.0	-15.1	Horiz
Ave	00	-20.9	. 55.6		. 5.0	. 0.0	00.0	Low chan		. 10112
								2 261.1		

Test Data - Radiated Emissions

Laird Technologies ID2450-RS36 9dBi Panel Antenna 79 Channel

		Pre-A	Horn	Cable	Cable					
Freq	Rdng	Duty	110111	Cabic	Odbio	Dist	Corr	Spec	Margin	Polar
MHz	dBµV	dB	dB	dB	dB	Table		dBµV/m	dB	Ant
2483.500	41.2		+29.0	+0.8	+2.3	+0.0	73.3	74.0	-0.7	Vert
		+0.0						Panel		
2483.500	41.2		+29.0	+0.8	+2.3	+0.0	52.4	54.0	-1.6	Vert
Ave		-20.9						Panel		
7412.775	59.2	-32.5	+35.9	+1.2	+4.0	+0.0	67.8	74.0	-6.2	Vert
		+0.0						High char	nel	
7412.775	59.2	-32.5	+35.9	+1.2	+4.0	+0.0	46.9	54.0	-7.1	Vert
Ave		-20.9						High char		
2483.500	33.3		+29.0	+0.8	+2.3	+0.0	65.4	74.0	-8.6	Horiz
		+0.0						Panel		
2483.500	33.3		+29.0	+0.8	+2.3	+0.0	44.5	54.0	-9.5	Horiz
Ave		-20.9						Panel		
7412.775	56.8	-32.5	+35.9	+1.2	+4.0	+0.0	65.4	74.0	8.6	Horiz
		+0.0						High char		
7412.775	56.8	-32.5	+35.9	+1.2	+4.0	+0.0	44.5	54.0	-9.5	Horiz
Ave	50.7	-20.9	05.0	4.0	4.0		04.4	High char		
7307.482	52.7	-32.3	+35.8	+1.2	+4.0	+0.0	61.4	74.0	-12.6	Horiz
7007 400	50.7	+0.0	.05.0	. 1.0	. 1.0	. 0. 0	40.5	Mid chann		112
7307.482 Ave	52.7	-32.3 -20.9	+35.8	+1.2	+4.0	+0.0	40.5	54.0 Mid chanr	-13.5	Horiz
7307.482	53.5	-32.3	+35.8	+1.2	+4.0	+0.0	62.2	74.0	-11.8	Vert
7307.462	55.5	+0.0	+35.6	∓1. ∠	+4 .0	+0.0	02.2	Mid chanr		veit
7307.482	53.5	-32.3	+35.8	+1.2	+4.0	+0.0	41.3	54.0	-12.7	Vert
7307.402 Ave	55.5	-20.9	+55.0	Τ1.Ζ	T 4 .0	+0.0	41.5	Mid chanr		Vert
7202.250	47.0	-32.1	+35.8	+1.2	+3.9	+0.0	55.8	74.0	-18.2	Horiz
7202.200	47.0	+0.0	100.0	11.2	10.5	10.0	00.0	Low chan		110112
7202.250	47.0	-32.1	+35.8	+1.2	+3.9	+0.0	34.9	54.0	-19.1	Horiz
Ave		-20.9					0	Low chan		
7202.250	50.5	-32.1	+35.8	+1.2	+3.9	+0.0	59.3	74.0	-14.7	Vert
		+0.0		· · · · -				Low chan		
7202.250	50.5	-32.1	+35.8	+1.2	+3.9	+0.0	38.4	54.0	-15.6	Vert
Ave		-20.9						Low chan	nel	

Laird Technologies WIC2450-A 2dBi Chip Antenna

Laird Technologies ID2450-RS36 9dBi Panel Antenna

Laird Technologies IG2450-RS36 6dBi Omni Antenna

Nearson S151FC-L-(132)PX-2450S 5dBi Dipole Antenna

Nemko USA, Inc. FCC PART 15, SUBPART C and RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

Section 8. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

RSS-Gen 7.2.2

TESTED BY: David Light DATE: 25 January 2009

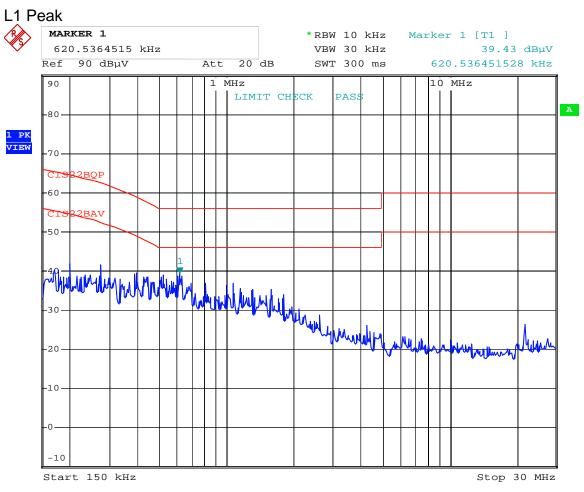
Test Results: Complies.

Measurement Data: See attached graphs...

Test Conditions: 41 %RH

24 °C

Measurement Uncertainty: +/-1.7 dB

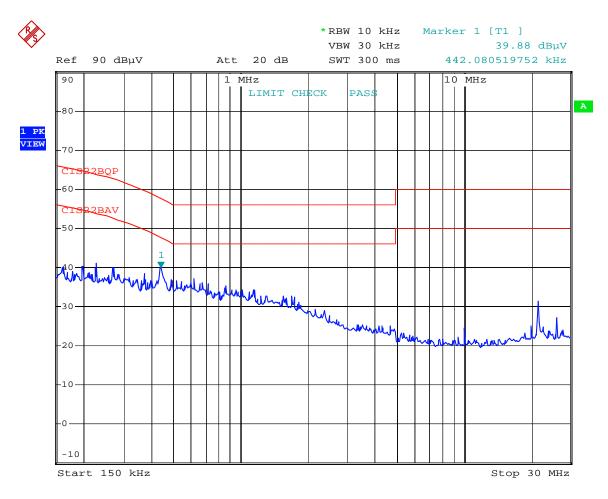

Test Equipment Used: 1663-1484-545

Power was supplied with a GlobTek power adapter p/n WR90C2000LCP-N-NA.

EQUIPMENT: LT2510

PROJECT NO.:23109RUS1

Test Data – Powerline Conducted Emissions



Date: 26.JAN.2009 09:55:38

PROJECT NO.:23109RUS1

Test Data – Powerline Conducted Emissions

L2 Peak

Date: 26.JAN.2009 09:57:32

Conducted Emissions

Nemko USA, Inc. FCC PART 15, SUBPART C and RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

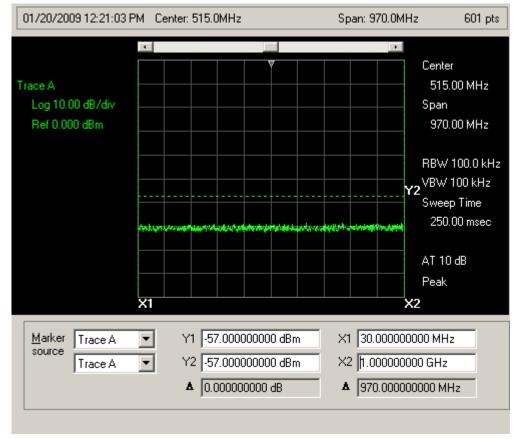
Section 9. Receiver Spurious Emissions

NAME OF TEST: Receiver Spurious Emissions PARA. NO.: RSS-Gen 6(b)

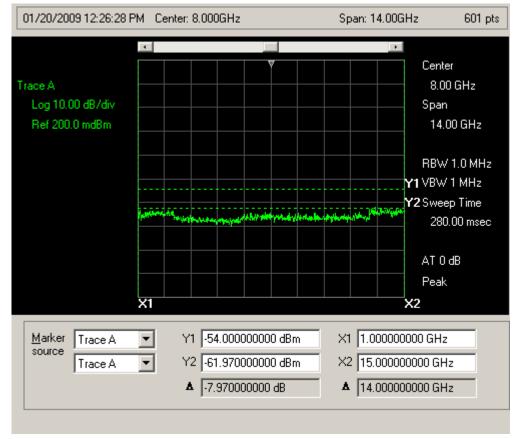
TESTED BY: David Light DATE: 20 January 2009

Test Results: Complies.

Measurement Data: See attached data...


Test Conditions: 48 %RH

22 °C


Measurement Uncertainty: +/-1.7 dB

Test Equipment Used: 1464-1082

Test Data – Receiver Spurious Emissions

Test Data – Receiver Spurious Emissions

PROJECT NO.:23109RUS1

Section 10. Test Equipment List

Nemko ID	Description	Manufacturer Model Number	Serial Number	Calibration Date	Calibration Due
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	01/24/07	01/24/09
1484	Cable	Storm PR90-010-072	N/A	05/07/08	05/07/09
1485	Cable	Storm PR90-010-216	N/A	05/07/08	05/07/09
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	05/07/08	05/07/09
791	PREAMP, 25dB	Nemko USA, Inc. LNA25	398	05/07/08	05/07/09
1763	Bilog Antenna	Schaffner CBL 6111D	22926	11/04/08	11/04/09
993	Horn antenna	A.H. Systems SAS-200/571	XXX	08/31/07	08/30/08
1082	CABLE 2m	Astrolab 32027-2-29094-72TC	N/A	CBU	N/A
1472	20db Attenuator DC 18 Ghz	Omni Spectra 20600-20db	NONE	CBU	N/A
1469	10 db Attenuator DC 18 Ghz	MCL Inc. BW-S10W2 10db-2WDC	NONE	CBU	N/A
1663	Spectrum Analyzer	Rhode & Schwarz FSP3	100073	06/03/08	06/03/09
1484	Cable	Storm PR90-010-072	N/A	05/07/08	05/07/09
545	LISN	Schwarz Beck 8120	8120350	08/05/08	08/05/09

Nemko USA, Inc. FCC PART 15, SUBPART C and RSS-210 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

ANNEX A - TEST DETAILS

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

Minimum Standard: §15.207 Conducted limits.

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 mH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of Conducted	Limit (dBmV))
Emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

- (b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:
- (1) For carrier current systems containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.
- (2) For all other carrier current systems: 1000 mV within the frequency band 535-1705 kHz, as measured using a 50 mH/50 ohms LISN.
- (3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits as provided in §15.205 and §\$15.209, 15.221, 15.223, 15.225 or 15.227, as appropriate.
- (c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provision for, the use of battery chargers which permit operating while charging, AC adaptors or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

Nemko USA, Inc. FCC PART 15, SUBPART C and RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

NAME OF TEST: Channel Separation PARA. NO.: 15.247(a)(1)

Minimum Standard:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output

power no greater than 125 mW.

NAME OF TEST: Time of Occupancy PARA. NO.: 15.247(a)(1)

Minimum Standard:

Frequency Band	20 dB	No. of	Average Time of Occupancy
(MHz)	Bandwidth	Hopping	
		Channels	
902 - 928	<250 kHz	50	=<0.4 sec. in 20 sec.
902 – 928	=>250 kHz	25	=<0.4 sec. in 10 sec.
			=<0.4 sec. in 0.4 seconds
2400 - 2483.5		75	multiplied by the number of
			hopping channels employed.
5725 – 5850		75	=<0.4 sec. in 30 sec.

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: 1 MHz VBW: = RBW Span: 0 Hz

LOG dB/div.: 10 dB

Sweep: Sufficient to see one hop time sequence.

Trigger: Video

The occupancy time of one hop is measured as above. The average time of occupancy is calculated over the appropriate period of time from above table

Avg. time of occupancy = (period from table/duration of one hop)/no. of channels multiplied by the duration of one hop.

For instance:

If a 2.4 GHz system has a measured hop duration time of 1 msec. and uses 75 channels, then the average time of occupancy would be:

(30 sec./.001 sec.)/75 chan. = 400 x 1 msec. = 400 msec. or 0.4 sec. in 30 sec.

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(1)

Minimum Standard:

Frequency Band (MHz)	Maximum 20 dB Bandwidth
902 - 928	500 kHz
2400 – 2483.5	Not defined
5725 – 5850	1 MHz

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: At least 1% of span/div.

VBW: >RBW

Span: Sufficient to display 20 dB bandwidth

LOG dB/div.: 10 dB

Sweep: Auto

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

NAME OF TEST: Peak Power Output PARA. NO.: 15.247(b)

Minimum Standard:

Frequency	No. of	Maximum Peak
Band	Hopping	Power Output at
(MHz)	Channels	Antenna Port
902 - 928	at least 50	1 watt
902 – 928	25 - 49	0.25 watts
2400 –	75	1 watt
2483.5		
5725 – 5850	75	1 watt

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

Calculation Of EIRP For Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

The RBW of the spectrum analyzer shall be set to a value greater than the measured 20 dB occupied bandwidth of the E.U.T.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

NAME OF TEST: Spurious Emissions at Antenna Terminals PARA. NO.: 15.247(d)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the

transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the

restricted bands of 15.205 shall not exceed the following field

strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

Method Of Measurement:

30 MHz - 10th harmonic plot

RBW: 100 kHz VBW: 300 kHz Sweep: Auto Display line: -20 dBc

Lower Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level below center frequency.

Upper Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level above center frequency.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247(d)

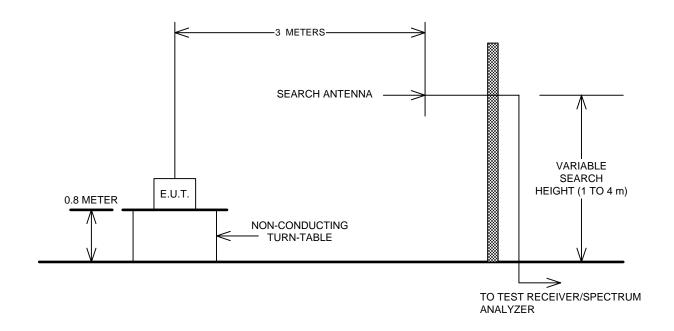
Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

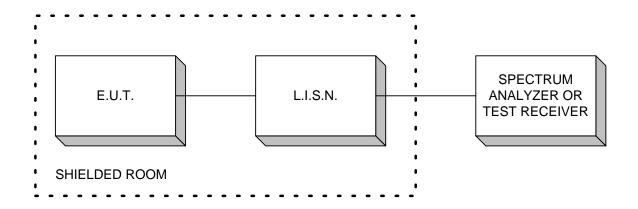
Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

15.205 Restricted Bands


MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

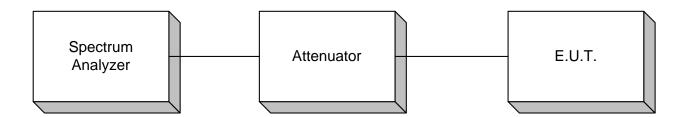
Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom


Nemko USA, Inc. FCC PART 15, SUBPART C and RSS-21 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTE	210 FR
EQUIPMENT: LT2510 PROJECT NO.:23109RUS	

ANNEX B - TEST DIAGRAMS

Test Site For Radiated Emissions

Conducted Emissions



Nemko USA, Inc. FCC PART 15, SUBPART C and RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: LT2510 PROJECT NO.:23109RUS1

Peak Power at Antenna Terminals

