

Report on the Radio Testing

For

Renishaw Plc

on

RMP600

Report no. TRA-046257-47-00B

2 September 2020

Report Number: TRA-046257-47-00B

Issue: E

REPORT ON THE RADIO TESTING OF A Renishaw Plc RMP600 WITH RESPECT TO SPECIFICATION FCC 47CFR 15.247

TEST DATE: 30th July 2020 - 17th August 2020

Written by:		D Moncayola Radio Test Engineer
Approved by:		J Charters Lab Manager
Date:	2 September 2020	

Disclaimers:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

1 Revision Record

Issue Number	Issue Date	Revision History
Α	2 nd September 2020	Original
В	2 September 2020	Typographical Corrections

RF916 10.0 Page 3 of 68

2 Summary

TEST REPORT NUMBER: TRA-046257-47-00B WORKS ORDER NUMBER: TRA-046257-00 PURPOSE OF TEST: USA: Testing of radio frequency equipment per the relevant authorization procedure of chapter 47 of CFR (code of federal regulations) Part 2, subpart J. TEST SPECIFICATION(S): 47CFR15.247 **EQUIPMENT UNDER TEST (EUT):** RMP600 **EQUIPMENT VARIANTS:** RMP600QE FCC IDENTIFIER: KQGRMP600QE **EUT SERIAL NUMBER:** 22AM74 Renishaw Plc MANUFACTURER/AGENT: ADDRESS: **New Mills** Wotton Under Edge Gloucestershire GL12 8JR United Kingdom **CLIENT CONTACT:** Rich Warren **1** 01453 523240 ⊠ richard.warren@renishaw.com TEST DATE: 30th July 2020 - 17th August 2020 **TESTED BY:** D Winstanley S Garwell Element

RF916 10.0 Page 4 of 68

2.1 Test Summary

Test Method and Descrip	tion	Requirement Clause47CFR15	Applicable to this equipment	Result / Note
Radiated spurious emissions (restricted bands of operation and cabinet radiated bands)		15.205		Pass Note 4
AC power line conducted emission	S	15.207		Note 1
Carrier frequency separation		15.247(a)(1)		Pass Note 2
Number of hopping channels		15.247(a)(1) (i), (ii) and (iii)		Pass Note 2
Average time of occupancy		15.247(a)(1) (i), (ii) and (iii)	\boxtimes	Pass Note 2
Maximum peak conducted output	oower	15.247 (a)(1), (b)(1) and (b)(2)		
Conducted carrier power	Peak	15.247(b)(3)		Pass
Conducted carrier power	Max.	10.247(0)(0)		Note 3
Power spectral density, conducted		15.247(e)	\boxtimes	Pass Note 3
20dB emission bandwidth		15.247(a)(1) (i) and (ii)	\boxtimes	Pass Note 2
Occupied bandwidth		15.247(a)(2)	\boxtimes	Pass Note 3
Out-of-band emissions		15.247(d)	\boxtimes	Pass Note 4

Notes:

- 1 Note applicable EUT is battery powered
- 2 Applicable for Mode 1 and Mode 2 FHSS Operation
- 3 Applicable for Mode 2 DTS operation
- Applicable for Mode 1 and Mode 2 (both FHSS and DTS Operation) EUT uses same modulation techniques for both FHSS and DTS operation

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

RF916 10.0 Page 5 of 68

3 Contents

1		Revision Record	3	
2	;	Summary	4	
	2.1			. 5
3		Contents		
4		Introduction		
5		Test Specifications		
5		Test Specifications	y	_
	5.1			
_	5.2			
6		Glossary of Terms		
7	ı	Equipment Under Test		
	7.1	1 EUT Identification		11
	7.2	2 System Equipment		11
	7.3	3 EUT Mode of Operation		11
		7.3.1 Transmission		
	7.4			
		7.4.1 General		
	7.5			
0				12
8		Modifications		
9		EUT Test Setup		
	9.1	5		
	9.2	- I J I		
	9.3	3 Measurement software		14
10)	General Technical Parameters		
	10.	1.1 Normal Conditions		15
11		Radiated emissions		
•	11.			16
	11.			
	11.			
	11.			
	11.			
	11.			
	11.			
	11.	.8 Test Results – RMP600QE		20
	2	Carrier frequency separation	28	
12			20	
12	12.	.1 Definition	20	28
12	12.			
12	12. 12.	.2 Test Parameters		28
12	12. 12. 12.	2.2 Test Parameters		28 28
12	12. 12. 12. 12.	2.2 Test Parameters		28 28 29
12	12. 12. 12. 12. 12.	1.2 Test Parameters 1.3 Test Limit 1.4 Test Method 1.5 Test Equipment		28 28 29 29
	12. 12. 12. 12. 12. 12.	P.2 Test Parameters P.3 Test Limit P.4 Test Method P.5 Test Equipment P.6 Test Results		28 28 29 29
12	12. 12. 12. 12. 12. 12.	1.2 Test Parameters 1.3 Test Limit 1.4 Test Method 1.5 Test Equipment 1.6 Test Results 1.7 Number of hopping frequencies	31	28 29 29 29 29
	12. 12. 12. 12. 12. 13.	2.2 Test Parameters 2.3 Test Limit 2.4 Test Method 2.5 Test Equipment 2.6 Test Results Number of hopping frequencies 3.1 Definition	31	28 29 29 29 29
	12. 12. 12. 12. 12. 12. 13.	1.2 Test Parameters 1.3 Test Limit 1.4 Test Method 1.5 Test Equipment 1.6 Test Results 1.7 Number of hopping frequencies 1.8 Definition 1.9 Test Parameters	31	28 29 29 29 31 31
	12. 12. 12. 12. 12. 13.	1.2 Test Parameters 1.3 Test Limit 1.4 Test Method 1.5 Test Equipment 1.6 Test Results 1.7 Number of hopping frequencies 1.8 Definition 1.9 Test Parameters	31	28 29 29 29 31 31
	12. 12. 12. 12. 12. 12. 13.	P.2 Test Parameters P.3 Test Limit P.4 Test Method P.5 Test Equipment P.6 Test Results Number of hopping frequencies P.6 Test Parameters P.6 Test Parameters P.7 Test Parameters P.8 Test Limit	31	28 28 29 29 29 31 31
	12. 12. 12. 12. 12. 13. 13. 13.	7.2 Test Parameters 7.3 Test Limit 7.4 Test Method 7.5 Test Equipment 7.6 Test Results 7.7 Number of hopping frequencies 7.1 Definition 7.2 Test Parameters 7.3 Test Limit 7.4 Test Method	31	28 29 29 29 31 31 31 32
	12. 12. 12. 12. 12. 13. 13. 13.	Test Parameters Test Limit Test Method Test Equipment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Method Test Equipment	31	28 28 29 29 31 31 31 32 32
13	12. 12. 12. 12. 13. 13. 13. 13.	Test Parameters Test Limit Test Method Test Equipment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Results	31	28 28 29 29 31 31 31 32 32
	12. 12. 12. 12. 13. 13. 13. 13.	Test Parameters Test Limit Test Method Test Regulpment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Regulpment Test Results Average channel occupancy	31	28 29 29 29 31 31 32 32 32
13	12. 12. 12. 12. 12. 13. 13. 13. 13. 14.	Test Parameters Test Limit Test Method Test Equipment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Results Test Results Test Method Test Results Average channel occupancy	31	28 28 29 29 31 31 31 32 32 32
13	12. 12. 12. 12. 12. 13. 13. 13. 13. 14. 14.	Test Parameters Test Limit Test Method Test Equipment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Results Test Equipment Test Results Average channel occupancy Test Parameters Test Parameters Test Results Test Results Test Results Test Results Test Results Test Parameters	31	28 28 29 29 31 31 31 32 32 32 34
13	12. 12. 12. 12. 13. 13. 13. 13. 14. 14. 14.	Test Parameters Test Limit Test Method Test Equipment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Results Average channel occupancy Test Parameters Test Parameters Test Results Average channel occupancy Test Parameters Test Parameters Test Parameters Test Parameters Test Parameters	31	28 28 29 29 29 31 31 31 32 32 34 34
13	12. 12. 12. 12. 12. 13. 13. 13. 13. 14. 14. 14. 14.	Test Parameters Test Limit Test Method Test Equipment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Results Average channel occupancy Test Parameters Test Parameters Test Results Average channel occupancy Test Parameters	31	28 29 29 29 31 31 31 32 32 32 34 34 34 34
13	12. 12. 12. 12. 12. 13. 13. 13. 13. 14. 14. 14. 14. 14.	Test Parameters Test Limit Test Method Test Equipment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Results Average channel occupancy Test Parameters Test Parameters Test Parameters Test Results Average channel occupancy Test Parameters Test Limit Test Method Test Method	31	28 28 29 29 31 31 31 32 32 32 34 34 35 35
13	12. 12. 12. 12. 12. 13. 13. 13. 13. 14. 14. 14. 14. 14.	Test Parameters Test Limit Test Method Test Equipment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Results Average channel occupancy Test Parameters Test Parameters Test Parameters Test Results Average channel occupancy Test Parameters Test Limit Test Method Test Method Test Method	31	28 29 29 29 31 31 31 32 32 32 34 34 34 35 35
13	12. 12. 12. 12. 12. 13. 13. 13. 13. 14. 14. 14. 14. 14.	Test Parameters Test Limit Test Method Test Equipment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Results Average channel occupancy Test Parameters Test Parameters Test Parameters Test Results Average channel occupancy Test Parameters Test Limit Test Method Test Method	31	28 28 29 29 31 31 31 32 32 32 34 34 35 35
13	12. 12. 12. 12. 12. 13. 13. 13. 13. 14. 14. 14. 14. 14.	Test Parameters Test Limit Test Method Test Regulpment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Results Average channel occupancy Test Parameters Test Parameters Test Parameters Test Results Average channel occupancy Test Parameters Test Method Test Results Maximum peak conducted output power	31	28 28 29 29 31 31 31 32 32 32 34 34 35 36
13	12. 12. 12. 12. 13. 13. 13. 13. 14. 14. 14. 14. 14. 14.	Test Parameters Test Limit Test Method Test Regulpment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Regulpment Test Regulpment Test Regulpment Test Regulpment Test Regulpment Test Results Average channel occupancy Test Parameters Test Regulpment Test Method Test Regulpment Test Method Test Regulpment	31	28 29 29 29 31 31 31 32 32 32 34 34 35 36 40
13	12. 12. 12. 12. 13. 13. 13. 13. 14. 14. 14. 14. 14. 14. 15.	Test Parameters Test Limit Test Method Test Regults Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Parameters Test Method Test Results Average channel occupancy Test Parameters Test Parameters Test Parameters Test Results Average channel occupancy Test Parameters Test Parameters Test Parameters Test Parameters Test Parameters Test Parameters Test Results Average channel occupancy	31	28 28 29 29 31 31 31 32 32 32 34 34 35 36 40
13	12. 12. 12. 12. 13. 13. 13. 13. 14. 14. 14. 14. 14. 15. 15.	Test Parameters Test Limit Test Method Test Regults Number of hopping frequencies Definition Test Parameters Test Parameters Test Parameters Test Period Test Method Test Method Test Regults Average channel occupancy Test Parameters Test Parameters Test Parameters Test Parameters Test Regults Average channel occupancy Test Parameters Test Parameters Test Parameters Test Parameters Test Regults Maximum peak conducted output power Definition Test Parameters Test Parameters Test Parameters Test Parameters	31	28 28 29 29 31 31 31 32 32 32 34 34 34 34 40 41
13	12. 12. 12. 12. 3 13. 13. 13. 13. 14. 14. 14. 14. 14. 14. 15. 15.	Test Parameters Test Limit Test Method Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Results Average channel occupancy Test Parameters Test Results Test Method Test Results Maximum peak conducted output power Test Parameters	34	28 28 29 29 31 31 31 31 32 32 32 32 34 40 41 41
13	12. 12. 12. 12. 3 13. 13. 13. 13. 14. 14. 14. 14. 14. 15. 15. 15.	Test Parameters Test Limit Test Method Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Results Average channel occupancy Test Parameters Test Parameters Test Equipment Test Results Average channel occupancy Test Parameters Test Parameters Test Parameters Test Parameters Test Parameters Test Parameters Test Results Average channel occupancy Test Parameters	31	28 28 29 29 31 31 31 32 32 32 34 40 41 41 41
13 14	12. 12. 12. 12. 12. 13. 13. 13. 13. 13. 14. 14. 14. 14. 15. 15. 15. 15.	Test Parameters Test Limit Test Method Test Equipment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Results Average channel occupancy Definition Test Parameters Test Parameters Test Parameters Test Results Average channel occupancy Test Parameters Test Parameters Test Parameters Test Parameters Test Parameters Test Parameters Test Results Arest Method Test Results Arest Method Test Results Maximum peak conducted output power Test Parameters Test Par	31	28 28 29 29 31 31 31 32 32 32 34 40 41 41 41
13	12. 12. 12. 12. 12. 13. 13. 13. 13. 14. 14. 14. 14. 15. 15. 15.	Test Parameters Test Limit Test Method Test Regulpment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Results Average channel occupancy Test Parameters Test Parameters Test Parameters Test Results Average channel occupancy Test Parameters Test Results Maximum peak conducted output power Test Parameters Test P		28 29 29 29 31 31 31 31 31 32 32 32 40 41 41 41 41
13 14	12. 12. 12. 12. 12. 13. 13. 13. 13. 13. 14. 14. 14. 14. 15. 15. 15. 15. 15.	Test Parameters Test Limit Test Method Test Regulpment Test Results Number of hopping frequencies Definition Test Parameters Test Parameters Test Parameters Test Equipment Test Method Test Results Average channel occupancy Definition Test Parameters Test Parameters Test Parameters Test Parameters Test Results Average channel occupancy Test Parameters Test Parameters Test Parameters Test Parameters Test Equipment Test Method Test Results Maximum peak conducted output power Definition Test Parameters Test P		28 29 29 29 31 31 31 31 31 32 32 32 40 41 41 41 41 41 41
13 14	12. 12. 12. 12. 12. 13. 13. 13. 13. 14. 14. 14. 14. 15. 15. 15.	Test Parameters Test Limit Test Method Test Regulpment Test Results Number of hopping frequencies Definition Test Parameters Test Parameters Test Parameters Test Equipment Test Method Test Results Average channel occupancy Definition Test Parameters Test Parameters Test Parameters Test Parameters Test Results Average channel occupancy Test Parameters Test Parameters Test Parameters Test Equipment Test Method Test Results Maximum peak conducted output power Definition Test Parameters Test Parameters Test Parameters Test Results Test Results Test Parameters Test Results Test Method Test Results Power spectral density.		28 29 29 29 31 31 31 31 31 32 32 32 40 41 41 41 41 41 41
13 14	12. 12. 12. 12. 12. 13. 13. 13. 13. 13. 14. 14. 14. 14. 15. 15. 15. 15. 15.	Test Parameters Test Limit Test Method Test Requipment Test Results Number of hopping frequencies Test Parameters Test Parameters Test Parameters Test Limit Test Method Test Results Average channel occupancy Test Parameters Test Parameters Test Parameters Test Parameters Test Results Average channel occupancy Test Parameters Test Parameters Test Limit Test Method Test Results Test Limit Test Method Test Results Test Limit Test Method Test Results Maximum peak conducted output power Definition Test Parameters Test Parameters Test Parameters Test Parameters Test Results Maximum peak conducted output power Test Parameters Test Parameters Test Parameters Test Parameters Test Results Power spectral density Definition Test Parameters		28 29 29 29 31 31 31 31 32 32 32 40 41 41 41 41 42 46

16.5	Test Equipment	47
16.6		48
17	Occupied Bandwidth	50
17.1	Definition	50
17.2	Test Parameters	50
17.3	Test Limit	50
17.4	Test Method	51
17.5	Test Equipment	51
17.6	Test Results	52
	Out-of-band and conducted spurious emissions	58
	Out-of-band and conducted spurious emissions	58 58
18	Out-of-band and conducted spurious emissions Definition Test Parameters	58 58 58
18 18.1	Out-of-band and conducted spurious emissions Definition Test Parameters Test Limits	58 58 58 58
18 18.1 18.2	Out-of-band and conducted spurious emissions Definition Test Parameters Test Limits Test Method	58 58 58 58
18 18.1 18.2 18.3	Out-of-band and conducted spurious emissions Definition Test Parameters Test Limits	58 58 58 58
18.1 18.2 18.3 18.4	Out-of-band and conducted spurious emissions Definition Test Parameters Test Limits Test Method	58
18 18.1 18.2 18.3 18.4 18.5 18.6	Out-of-band and conducted spurious emissions Definition Test Parameters Test Limits Test Method Test Equipment	58

4 Introduction

This report TRA-046257-47-00B presents the results of the Radio testing on a Renishaw Plc, RMP600 to specification 47CFR15 Radio Frequency Devices.

The testing was carried out for Renishaw Plc by Element, at the address detailed below.

☐ Element Hull ☐ Element Skelmersdale
Unit E ☐ Unit 1

Unit E Ur South Orbital Trading Park Pe

South Orbital Trading Park
Hedon Road
Hull
HU9 1NJ
Pendle Place
Skemersdale
West Lancashire
WN8 9PN

UK UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

Element is accredited for the above sites under the US-EU MRA, Designation number UK0009.

IC Registration Number(s):

Element Hull 3483A Element North West 3930B

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF916 10.0 Page 8 of 68

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

5.2 Deviations from Test Standards

There were no deviations from the test standard.

RF916 10.0 Page 9 of 68

6 Glossary of Terms

§ denotes a section reference from the standard, not this document

\$ denotes a section reAC Alternating Current

ANSI American National Standards Institute

BW bandwidth C Celsius

CFR Code of Federal Regulations

CW Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt

DC Direct Current

DSSS Direct Sequence Spread Spectrum
Equivalent Isotropically Radiated Power

ERP Effective Radiated Power **EUT** Equipment Under Test

FCC Federal Communications Commission FHSS Frequency Hopping Spread Spectrum

Hz hertz

IC Industry Canada

ITU International Telecommunication Union

LBT Listen Before Talk

m metremax maximum

MIMO Multiple Input and Multiple Output

min minimum

MRA Mutual Recognition Agreement

N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format

Pt-mpt Point-to-multipoint
Pt-pt Point-to-point
RF Radio Frequency
RH Relative Humidity
RMS Root Mean Square

Rx receiver second

SVSWR Site Voltage Standing Wave Ratio

Tx transmitter

UKAS United Kingdom Accreditation Service

 $\begin{array}{ll} \textbf{V} & \text{volt} \\ \textbf{W} & \text{watt} \\ \boldsymbol{\Omega} & \text{ohm} \end{array}$

RF916 10.0 Page 10 of 68

Report Number: TRA-046257-47-00B

7 Equipment Under Test

7.1 EUT Identification

Name: RMP600

Serial Number: 22AM74
Model Number: RMP600QE
Software Revision: Not Applicable

• Build Level / Revision Number: Production

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Not Applicable - No support/monitoring equipment required.

7.3 EUT Mode of Operation

7.3.1 Transmission

The mode of operation for transmitter tests was as follows.

The EUT contains selections for test menus for Mode 1 or Mode 2 and selection of normal operation.

These test menus allow the unit to be set to top, middle or bottom frequencies or hopping across all frequencies in either Mode 1 or Mode 2.

RF916 10.0 Page 11 of 68

7.4 EUT Radio Parameters

7.4.1 General

Frequency of operation:	2403 MHz-2481 MHz
Modulation type(s):	Mode 1: 1 MBps Binary GFSK Frequency Hopping Mode 2: 2 MBps Binary GFSK Frequency Hopping Mode 2: 2 MBps Binary GFSK DSSS
Occupied channel bandwidth(s):	Mode 1: 1 MHz Mode 2: 2 MHz
Channel spacing:	Mode 1: 1 MHz Mode 2: 2 MHz
Declared output power(s):	Mode 1: 0dBm Mode 2: +4dBm
Antenna type:	Slot type
Antenna gain:	1.3 dBi
Nominal Supply Voltage:	3.0 Vdc

7.5 EUT Description

The EUT is a measuring probe, using the 2400 MHz - 2483.5 MHz frequency band, and uses frequency hopping.

Mode 1 uses FHSS operating over 79 channels. Mode 2 uses DTS and FHSS over 39 channels. DTS mode is used during setup and FHSS mode in probe operation.

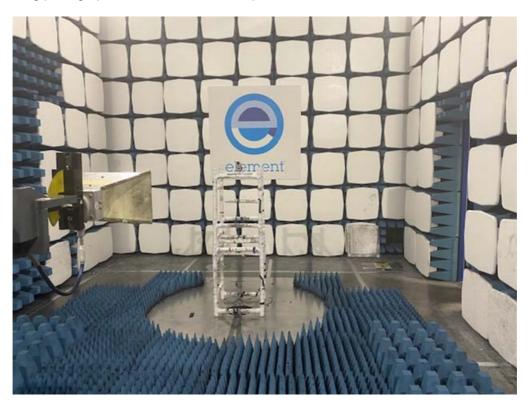
RF916 10.0 Page 12 of 68

8 Modifications

No modifications were performed during this assessment.

RF916 10.0 Page 13 of 68

9 EUT Test Setup


9.1 Block Diagram

The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

Battery Powered EUT

9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:

9.3 Measurement software

Where applicable, the following software was used to perform measurements contained within this report.

Element Emissions R5 (See Note) Element Transmitter Bench Test (See Note) ETS Lindgren EMPower V1.0.4.2

Note:

The version of the Element software used is recorded in the results sheets contained within this report.

RF916 10.0 Page 14 of 68

10 General Technical Parameters

10.1 Normal Conditions

The E U T was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was approx. 3 Vdc from alkaline batteries

Varying Test Conditions

There are no specific frequency stability requirements for the type of device. The results contained in this report demonstrate that the occupied bandwidth is contained within the authorised band and the manufacturer has declared sufficient frequency stability (refer to section 7.4).

Variation of supply voltage is required to ensure stability of the declared output power. During carrier power testing the following variations were made:

Category	Nominal	Variation			
Mains	110 V ac +/-2 %	85 % and 115 %			
Battery	New battery	N/A			

RF916 10.0 Page 15 of 68

11 Radiated emissions

11.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Chamber 3

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6

EUT Channels Measured: Low / Mid / High
EUT Channel Bandwidths: 1 MHz / 2 MHz

Deviations From Standard: None

Measurement BW: 30 MHz to 1 GHz: 120 kHz; Above 1 GHz: 1 MHz

Measurement Detector: Up to 1 GHz: quasi-peak; Above 1 GHz: RMS average and Peak

Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 39 % RH 20 % RH to 75 % RH (as declared)

Supply: 3 V dc

11.3 Test Limit

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength (μV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

RF916 10.0 Page 16 of 68

11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in $dB\mu V/m$ at the regulatory distance, using:

Where.

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

CL is the cable loss in dB:

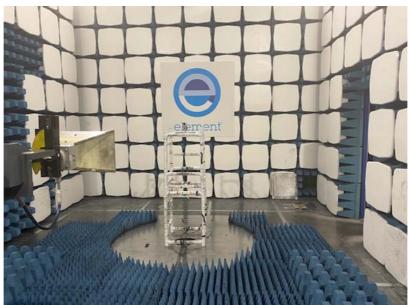
AF is the test antenna factor in dB/m;

PA is the pre-amplifier gain in dB (where used);

DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);

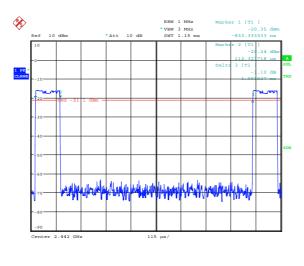
CF is the distance factor in dB (where measurement distance different to limit distance);

This field strength value is then compared with the regulatory limit.


Figure i Test Setup

RF916 10.0 Page 17 of 68

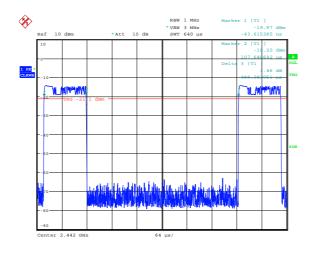
11.5 Test Set-up Photographs


11.6 Test Equipment

Equipment		Equipment	Element	Due For		
Description	Manufacturer	Туре	No	Calibration		
Spectrum Analyser	R&S	FSU26	REF909	2021-07-09		
Bilog	Chase	CBL611/A	U573	2021-09-19		
PreAmp	Watkins Johnson	6201-69	U372	2021-02-26		
8449B	Agilent	Pre Amp	L572	2020-10-15		
1-18GHz Horn	EMCO	3115	L139	2021-07-16		

RF916 10.0 Page 18 of 68

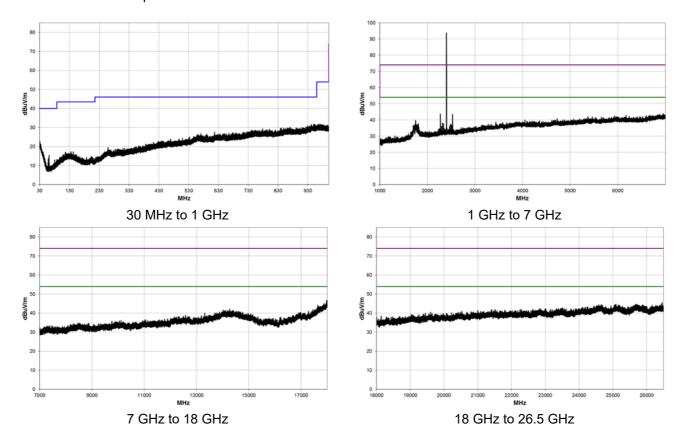
11.7 Test Results


Duty cycle correction Mode 1

Date: 30.JUL.2020 10:03:40

Duty Cycle Correction= $20log (1/D)= 20 log (T/T_{on})= 19.2$ Where D is the duty cycle= T_{on}/T

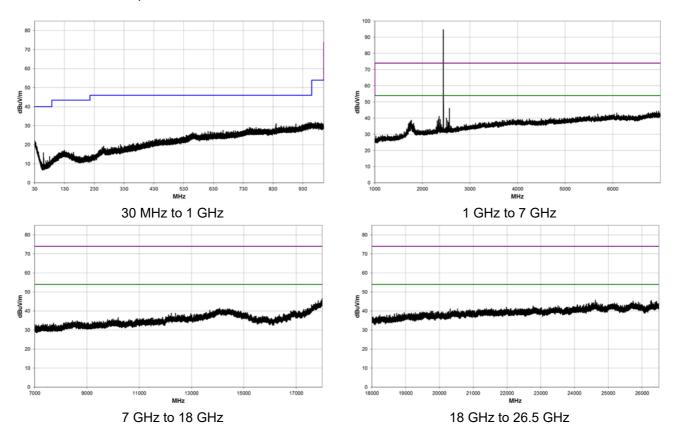
Duty cycle correction Mode 2


Date: 30.JUL.2020 11:01:59

Duty Cycle Correction= 20log (1/D)= 20 log (T/Ton)= 13.3 Where D is the duty cycle= T_{on}/T

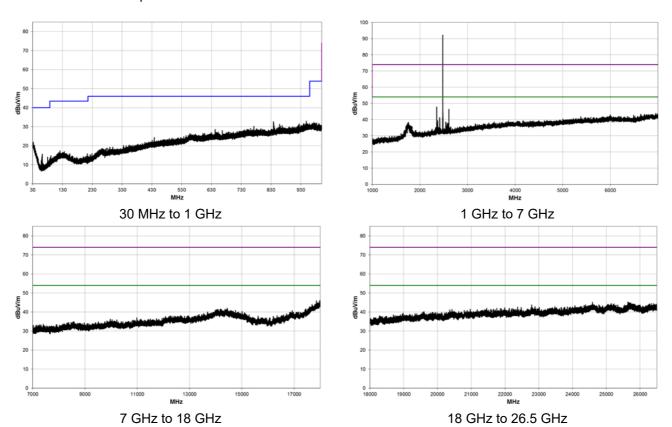
RF916 10.0 Page 19 of 68

11.8 Test Results - RMP600QE


2403 MHz - 1 Mbps

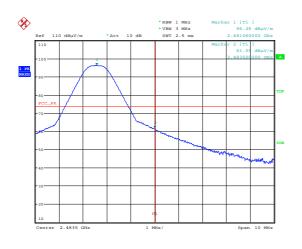
Freq	Amplitude	Factor	Antenna Height	Azimuth	Duty Cycle Correction Factor	External Attenuation	Polarity/ Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
2275.087	34.4	-4.2	1.27	-0.1	19.2	0.0	Horz	AV	0.0	49.4	54.0	-4.6	Pass
2274.995	59.8	-4.2	1.27	-0.1		0.0	Horz	PK	0.0	55.6	74.0	-18.4	Pass
2275.187	52.2	-4.2	1.25	177.0		0.0	Vert	PK	0.0	48.0	74.0	-26.0	Pass

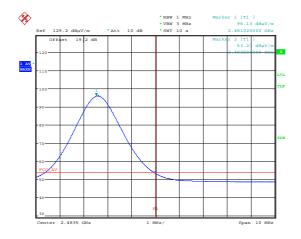
RF916 10.0 Page 20 of 68


2442 MHz - 1 Mbps

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	
													Comments
2351.887	56.4	-3.8	2.13	261.9		0.0	Horz	PK	0.0	52.6	74.0	-21.4	Pass
2352.770	47.5	-3.8	1.5	327.1		0.0	Vert	PK	0.0	43.7	74.0	-30.3	Pass

RF916 10.0 Page 21 of 68

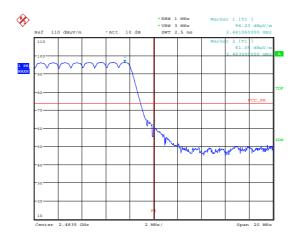

2481 MHz - 1 Mbps



Freq	Amplitude	Factor	Antenna Height	Azimuth	Duty Cycle Correction Factor	External Attenuation	Polarity/ Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
2353.103	34.6	-3.8	1.5	270.1	19.2	0.0	Horz	AV	0.0	50.0	54.0	-4.0	Pass
2352.953	60.1	-3.8	1.5	270.1		0.0	Horz	PK	0.0	56.3	74.0	-17.7	Pass
2353.137	49.4	-3.8	1.11	203.9		0.0	Vert	PK	0.0	45.6	74.0	-28.4	Pass

RF916 10.0 Page 22 of 68

Report Number: TRA-046257-47-00B

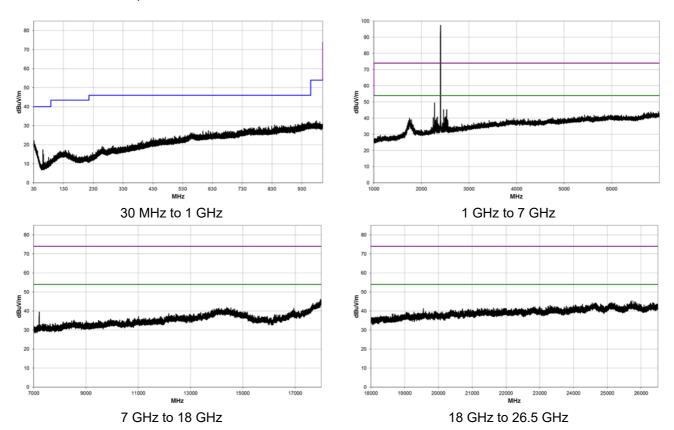


Date: 30.JUL.2020 13:03:19

2481 MHz Upper Band Edge Plot – Peak

2481 MHz Upper Band Edge Plot – Average

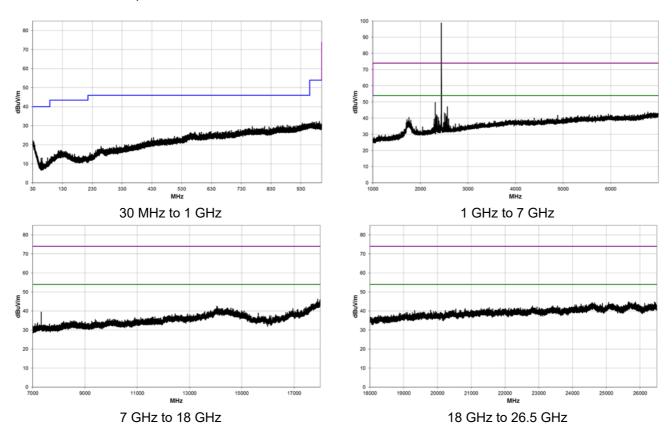
Date: 30.JUL.2020 13:04:42



2481 MHz Upper Band Edge Plot – All Hopping

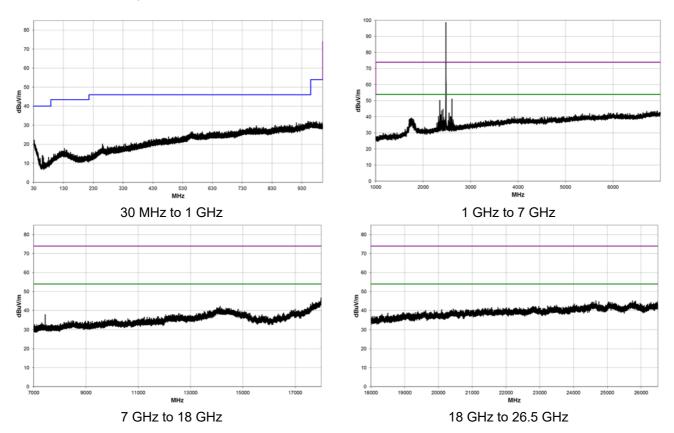
Date: 30.JUL.2020 16:28:29

RF916 10.0 Page 23 of 68


2404 MHz – 2 Mbps

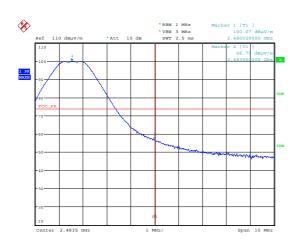
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	
` '													Comments
2276.103	37.0	-4.2	2.1	4.0	13.3	0.0	Horz	AV	0.0	46.1	54.0	-7.9	Pass
2276.120	61.9	-4.2	2.1	4.0		0.0	Horz	PK	0.0	57.7	74.0	-16.3	Pass
2276.228	53.1	-4.2	1.1	319.0		0.0	Vert	PK	0.0	48.9	74.0	-25.1	Pass

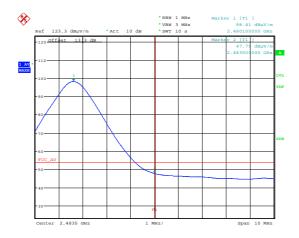
RF916 10.0 Page 24 of 68


2442 MHz - 2 Mbps

Freq	Amplitude	Factor	Antenna Height	Azimuth	Duty Cycle Correction Factor	External Attenuation	Polarity/ Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
2314.087	36.4	-4.0	1.5	185.0	13.3	0.0	Horz	AV	0.0	45.7	54.0	-8.3	Pass
2313.728	61.7	-4.0	1.5	185.0		0.0	Horz	PK	0.0	57.7	74.0	-16.3	Pass
2313.687	53.0	-4.0	1.05	318.0		0.0	Vert	PK	0.0	49.0	74.0	-25.0	Pass
7327.07	53.10	7.50	1.85	194.00		0.00	Vert	PK	-9.50	51.10	74.00	-22.90	Pass
7325.70	49.40	7.50	1.60	24.10		0.00	Horz	PK	-9.50	47.40	74.00	-26.60	Pass

RF916 10.0 Page 25 of 68

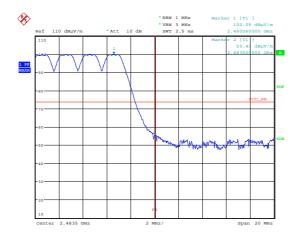

2480 MHz - 2 Mbps



Freq	Amplitude	Factor	Antenna Height	Azimuth	Duty Cycle Correction Factor	External Attenuation	Polarity/ Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
2352.070	37.2	-3.8	1.5	264.0	13.3	0.0	Horz	AV	0.0	46.7	54.0	-7.3	Pass
2351.837	62.4	-3.8	1.5	264.0		0.0	Horz	PK	0.0	58.6	74.0	-15.4	Pass
2351.862	52.0	-3.8	1.5	202.1		0.0	Vert	PK	0.0	48.2	74.0	-25.8	Pass
7441.22	52.60	7.60	1.91	191.00		0.00	Vert	PK	-9.50	50.70	74.00	-23.30	Pass
7440.14	48.80	7.60	1.50	169.00		0.00	Horz	PK	-9.50	46.90	74.00	-27.10	Pass

RF916 10.0 Page 26 of 68

Report Number: TRA-046257-47-00B



2481 MHz Upper Band Edge Plot – Peak

Date: 30.JUL.2020 16:43:43

2481 MHz Upper Band Edge Plot – Average

Date: 30.JUL.2020 16:43:11

Date: 30.JUL.2020 16:47:26

2481 MHz Upper Band Edge Plot – All Hopping

RF916 10.0 Page 27 of 68

12 Carrier frequency separation

12.1 Definition

The carrier frequency separation is the frequency separation between two adjacent hopping frequencies.

12.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.2

EUT Channels / Frequencies Measured: Mode 1: 2403 to 2481 MHz

Mode 2: 2404 to 2480 MHz

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard:

Measurement BW:

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

Temperature: 23 $^{\circ}$ C +15 $^{\circ}$ C to +35 $^{\circ}$ C (as declared)

Humidity: 29 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.0 Vdc

12.3 Test Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the band 2400 to 2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

RF916 10.0 Page 28 of 68

12.4 Test Method

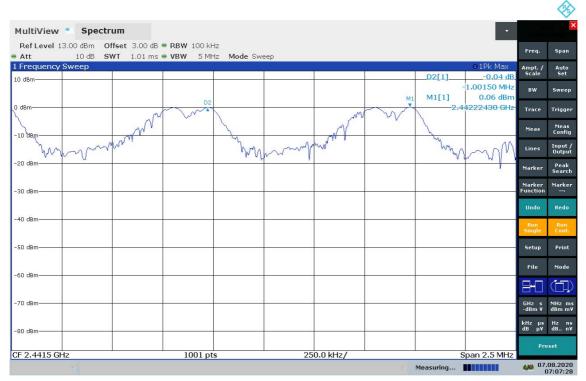
With the EUT setup as per section 9 of this report and connected as per Figure iii, the emissions of the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each nominal bandwidth.

Figure iii Test Setup

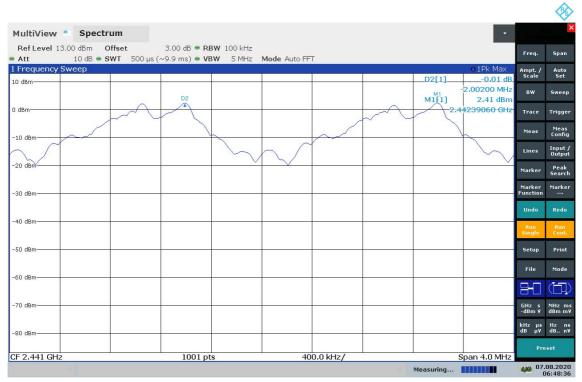
12.5 Test Equipment

Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	R&S	FSU26	REF909	2021-07-09


12.6 Test Results

Mode 1: 1MBps									
Data Rate	Channel Separation, F2c – F1c (kHz)	Result							
1 MBps	1001.5	PASS							

Mode 2: 2MBps									
Data Rate	Channel Separation, F2c – F1c (kHz)	Result							
2 MBps	2002	PASS							


RF916 10.0 Page 29 of 68

Mode 1:

07:07:29 07.08.2020

Mode 2:

06:48:37 07.08.2020

RF916 10.0 Page 30 of 68

13 Number of hopping frequencies

13.1 Definition

The total number of hopping frequencies (the centre frequencies defined within the hopping sequence of a FHSS equipment) which are randomly sequenced in order to spread the transmission.

13.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.3

EUT Channels / Frequencies Measured: All; 2400 – 2483.5 MHz

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard: None
Measurement Detector: Peak

Environmental Conditions (Normal Environment)

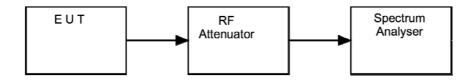
Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 29 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.0 V dc

13.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: if the -20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels; If the -20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels;
- Frequency hopping systems operating in the band 2400 to 2483.5 MHz shall use at least 15 hopping channels;
- Frequency hopping systems operating in the band 5725 to 5850 MHz shall use at least 75 hopping channels.


RF916 10.0 Page 31 of 68

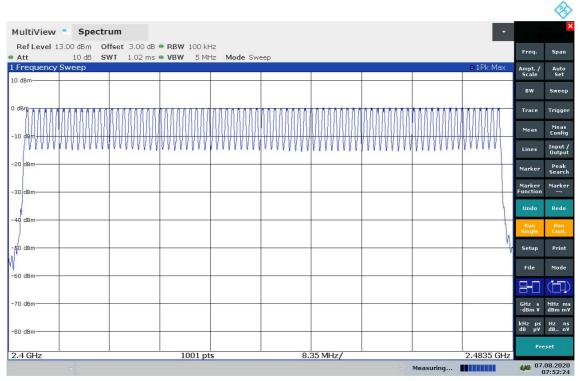
13.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iv, the emissions of the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each nominal bandwidth.

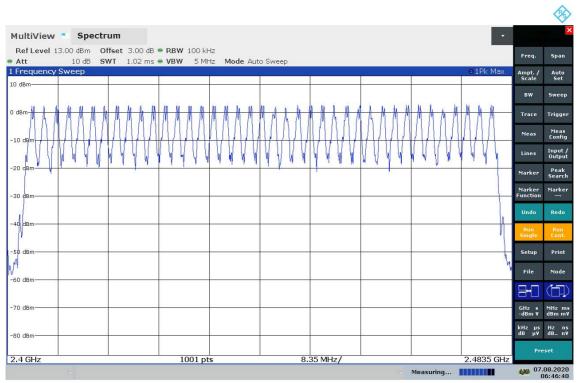
Figure iv Test Setup

13.5 Test Equipment


Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	R&S	FSU26	REF909	2021-07-09

13.6 Test Results

Data Rate	Lowest channel, F _{CL} (MHz)	Highest channel, Fcн (MHz)	Number of channels observed	Result
1 MBps	2403.0 MHz	2481.0 MHz	79	PASS
2 MBps	2404.0 MHz	2480.0 MHz	39	PASS


RF916 10.0 Page 32 of 68

Mode 1:

07:52:25 07.08.2020

Mode 2:

06:46:41 07.08.2020

RF916 10.0 Page 33 of 68

14 Average channel occupancy

14.1 Definition

The channel occupancy is the total of the transmitter 'on' times, during an observation period, on a particular hopping frequency.

14.2 Test Parameters

Test Location: Element Skelmersdale
Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.4

Frequencies Measured: 2440 MHz
EUT Number of hopping channels: Mode 1: 79

Mode 2: 39

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard:

Measurement BW:

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

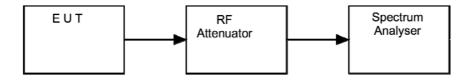
Temperature: 22 °C +15 °C to +35 °C (as declared)

Humidity: 30 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.0 Vdc

14.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: if the -20 dB bandwidth of the
 hopping channel is less than 250 kHz, the average time of occupancy on any channel shall
 not be greater than 0.4 seconds within a 20 second period;
 If the -20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of
 occupancy on any channel shall not be greater than 0.4 seconds within a 10 second period;
- Frequency hopping systems operating in the band 2400 to 2483.5 MHz: The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed;
- Frequency hopping systems operating in the band 5725 to 5850 MHz: The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

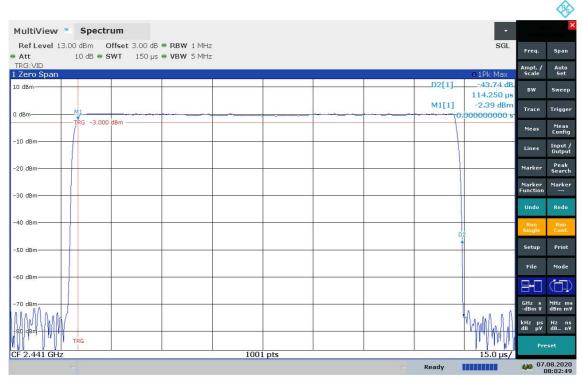

RF916 10.0 Page 34 of 68

14.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure v, the emissions of the EUT were measured on a spectrum analyser.

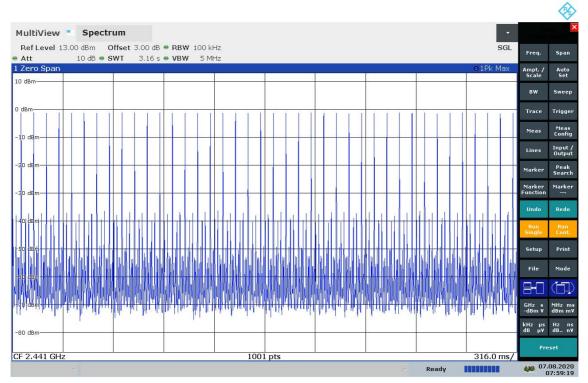
The measurements were performed with EUT set at its maximum duty. A number of hops were observed to confirm consistency of the dwell time / observe the worst case. All modulation schemes, data rates and power settings were used to observe the worst-case configuration.

Figure v Test Setup

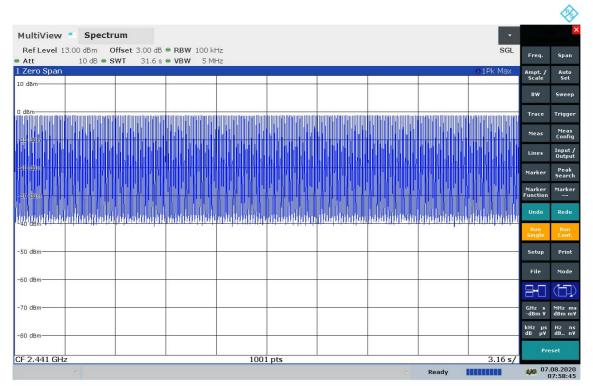

14.5 Test Equipment

Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	R&S	FSU26	REF909	2021-07-09

RF916 10.0 Page 35 of 68


14.6 Test Results

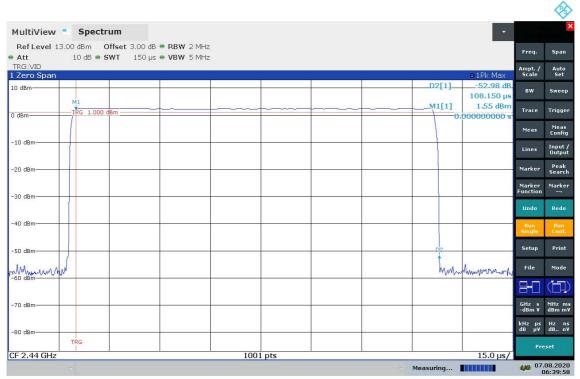
	Mode 1: 1MBps											
Data Rate	Individual occupancy time (ms)	Observation period (s)	Number of hops observed	Average time of occupancy (s)	Result							
1MBps	0.11425	31.6	400	0.0457	PASS							


08:02:49 07.08.2020

TX On

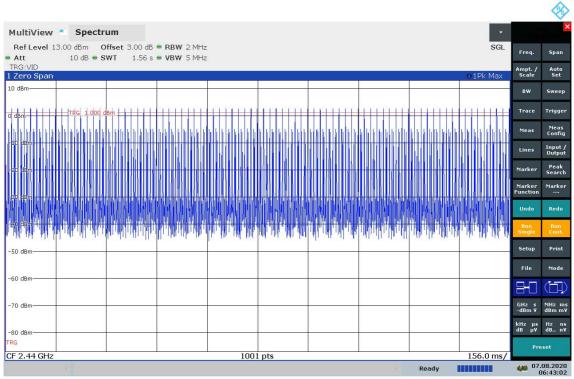
07:59:20 07.08.2020

RF916 10.0 Page 36 of 68

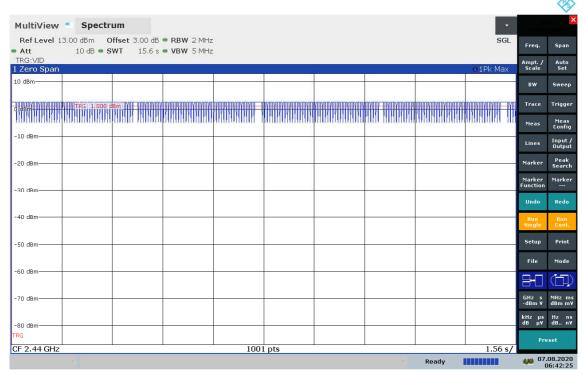

07:58:45 07.08.2020

Number of Transmissions in measurement period

Number of transmissions in a 3.16 second period = 40Number of transmissions in a 31.6 second period = 40 * 10 = 400


RF916 10.0 Page 37 of 68

Mode 2: 2MBps					
Data Rate Individual Observation Observation Observation Observed				Result	
2MBps	0.10815	15.6	800	0.08652	PASS


06:39:58 07.08.2020

TX On

06:43:03 07.08.2020

RF916 10.0 Page 38 of 68

06:42:26 07.08.2020

Number of Transmissions in measurement period

Number of transmissions in a 1.56 second period = 80 Number of transmissions in a 15.6 second period = 80 * 10 = 800

RF916 10.0 Page 39 of 68

15 Maximum peak conducted output power

15.1 Definition

The maximum peak conducted output power is defined as the maximum power level measured with a peak detector using a filter with width and shape of which is sufficient to accept the signal bandwidth.

The maximum conducted output power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level.

15.2 Test Parameters

Element Skelmersdale **Test Location:**

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.5

Frequencies Measured: Mode 1: 2403 MHz / 2442 MHz/ 2481 MHz - hopping disabled.

Mode 2: 2404 MHz / 2442 MHz/ 2480 MHz - hopping disabled / DTS

EUT Channel Bandwidths: Mode 1: 1 MHz

Mode 2: 2 MHz

Deviations From Standard: None

Measurement BW: Mode 1: 1 MHz

Mode 2: 2 MHz

Spectrum Analyzer Video BW: Mode 1: 3 MHz

Mode 2: 5 MHz

Measurement Detector: Peak

Voltage Extreme Environment Test

Battery Power = new battery.

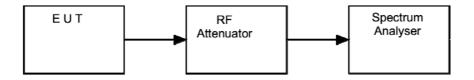
Range:

Environmental Conditions (Normal Environment)

+15 °C to +35 °C (as declared) Temperature: 23 °C Humidity: 29 % RH 20 % RH to 75 % RH (as declared)

RF916 10.0 Page 40 of 68

15.3 Test Limit

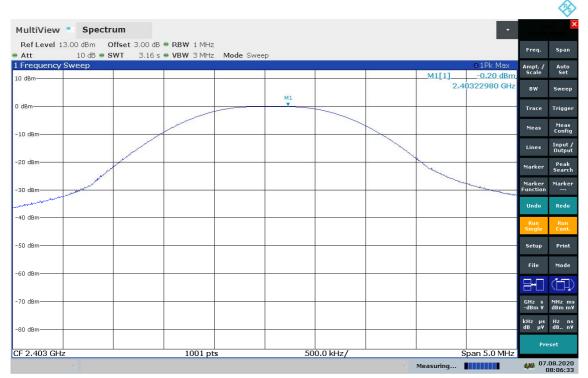

- For frequency hopping systems operating in the band 902 to 928 MHz, the maximum peak conducted output power shall not exceed 1 W, and the e.i.r.p. shall not exceed 4 W, if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W, and the e.i.r.p. shall not exceed 1 W, if the hopset uses less than 50 hopping channels.
- For frequency hopping systems operating in the band 2400 to 2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W. The e.i.r.p. shall not exceed 4 W.
- For frequency hopping systems operating in the band 5725 to 5850 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W.
- Point-to-point systems in the bands 2400-2483.5 MHz and 5725 to 5850 MHz are permitted to have an e.i.r.p. higher than 4 W provided that the higher e.i.r.p. is achieved by employing higher gain directional antennas and not higher transmitter output powers.
- For systems employing digital modulation techniques operating in the bands 902 to 928 MHz, 2400 to 2483.5 MHz and 5725 to 5850 MHz, the maximum peak conducted output power shall not exceed 1 W.

15.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vi, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

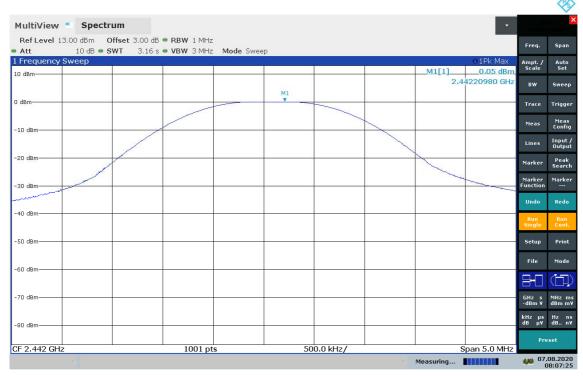
Figure vi Test Setup


15.5 Test Equipment

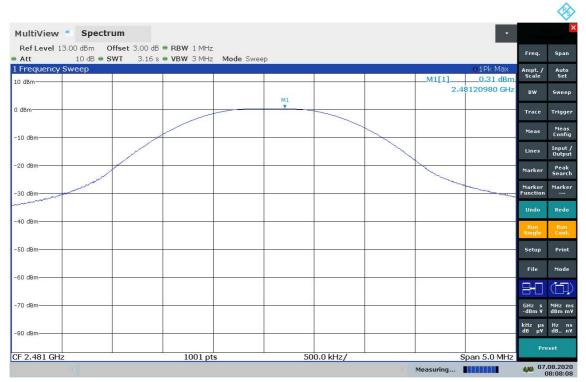
Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	R&S	FSU26	REF909	2021-07-09

RF916 10.0 Page 41 of 68

15.6 Test Results


	Mode 1: 1 Mbps						
Channel Frequency (MHz)	Maximum Peak Conducted Output power (dBm)	Maximum peak conducted output power (W)	Antenna gain (dBi)	E.I.R.P. (W)	Result		
2403	-0.20	0.0010	1.3	0.0013	PASS		
2442	0.05	0.0010	1.3	0.0014	PASS		
2481	0.31	0.0011	1.3	0.0014	PASS		

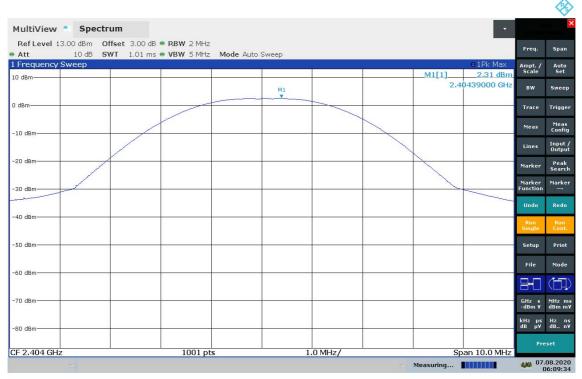
08:06:33 07.08.2020


2403

RF916 10.0 Page 42 of 68

08:07:25 07.08.2020

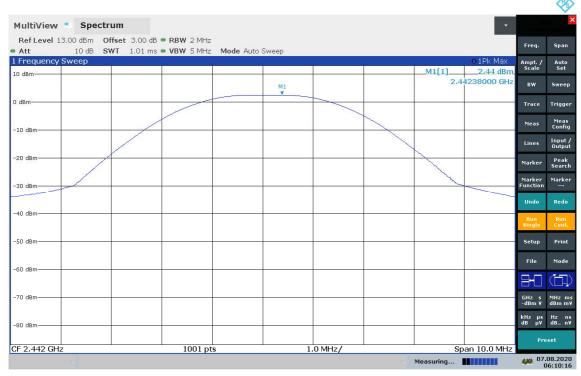
2442



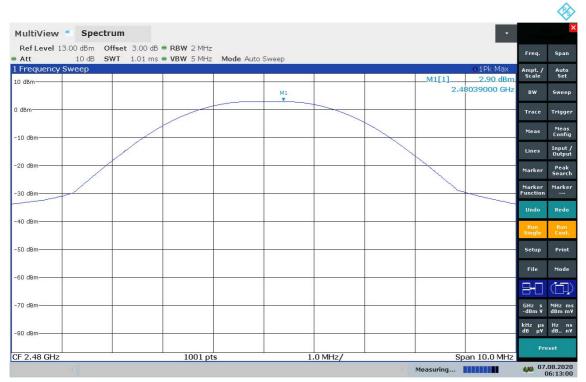
08:08:09 07.08.2020

2481

RF916 10.0 Page 43 of 68


	Mode 2: 2 Mbps						
Channel Frequency (MHz)	Maximum Peak Conducted Output power (dBm)	Maximum peak conducted output power (W)	Antenna gain (dBi)	E.I.R.P. (W)	Result		
2404	2.31	0.0017	1.3	0.0023	PASS		
2442	2.44	0.0018	1.3	0.0024	PASS		
2480	2.90	0.0019	1.3	0.0026	PASS		

06:09:35 07.08.2020


2404

RF916 10.0 Page 44 of 68

06:10:16 07.08.2020

2442

06:13:00 07.08.2020

2480

RF916 10.0 Page 45 of 68

16 Power spectral density

16.1 Definition

The power per unit bandwidth.

16.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 11.10 EUT Channels / Frequencies Measured: 2404 MHz / 2442 MHz / 2480 MHz

EUT Channel Bandwidths: 2 MHz

Deviations From Standard: None

Measurement BW: 100 kHz

Spectrum Analyzer Video BW: 300 kHz

(requirement at least 3x RBW)

Measurement Span: 1.3 MHz

(requirement 1.5 times Channel BW)

Measurement Detector: Peak

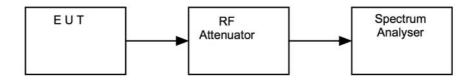
Environmental Conditions (Normal Environment)

Temperature: 22 °C +15 °C to +35 °C (as declared)

Humidity: 32 % RH 20 % RH to 75 % RH (as declared)

16.3 Test Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

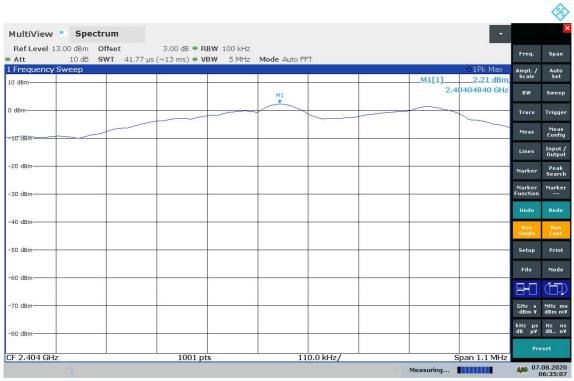

RF916 10.0 Page 46 of 68

16.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vi, the peak emission of the EUT was measured on a spectrum analyser, with path losses taken into account.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

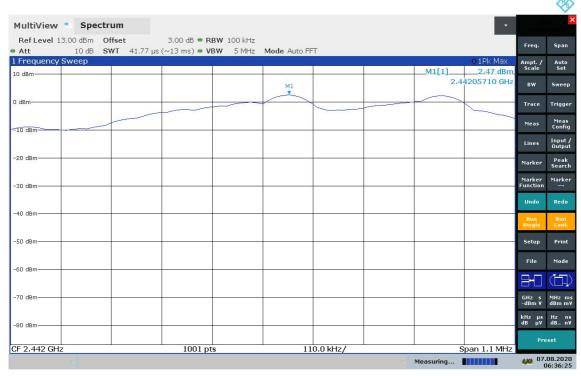
Figure vi Test Setup


16.5 Test Equipment

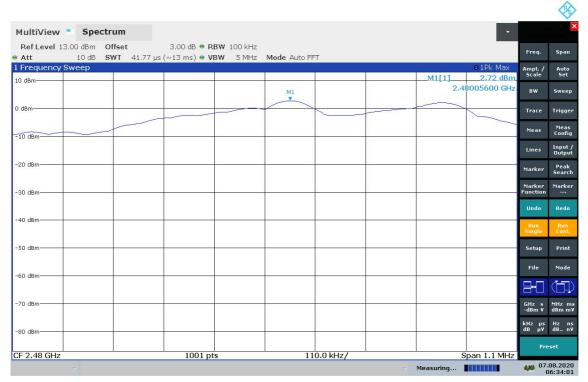
Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	R&S	FSU26	REF909	2021-07-09

RF916 10.0 Page 47 of 68

16.6 Test Results


Mode 2: 2 Mbps					
Channel Frequency (MHz)	Analyzer Level (dBm)	Cable loss (dB)	Power (dBm)	Result	
2404	-0.79	3.00	2.21	PASS	
2442	-0.53	3.00	2.47	PASS	
2480	-0.28	3.00	2.72	PASS	

06:35:08 07.08.2020


Bottom

RF916 10.0 Page 48 of 68

06:36:26 07.08.2020

Middle

06:34:02 07.08.2020

Top

RF916 10.0 Page 49 of 68

17 Occupied Bandwidth

17.1 Definition

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

17.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 11.8

Frequencies Measured: Mode 1: 2403 MHz 2442 MHz / 2481 MHz – hopping stopped.

Mode 2: 2404 MHz 2442 MHz / 2480 MHz - hopping stopped / DTS

EUT Channel Bandwidths: Mode 1: 1 MHz

Mode 2: 2 MHz

EUT Test Modulations: Mode 1: 1MBps Binary GFSK

Mode 2: 1MBps Binary GFSK

Deviations From Standard: None

Measurement BW: 30 kHz / 100 kHz

Spectrum Analyzer Video BW: 100 kHz / 1 MHz

Measurement Span:

(requirement 2 to 5 times OBW)

3~MHz / 5~MHz

Measurement Detector: Peak

Environmental Conditions (Normal Environment)

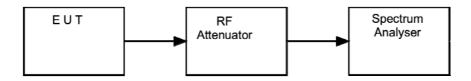
Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 29 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.0 Vdc

17.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: The maximum allowed -20 dB bandwidth of the hopping channel is 500 kHz.
- Frequency hopping systems operating in the band 5725 to 5850 MHz: The maximum -20 dB bandwidth of the hopping channel shall be 1 MHz
- For DTS the minimum -6 dB bandwidth shall be at least 500 kHz.


RF916 10.0 Page 50 of 68

17.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vii, the bandwidth of the EUT was measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure vii Test Setup

17.5 Test Equipment

Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	R&S	FSU26	REF909	2021-07-09

RF916 10.0 Page 51 of 68

17.6 Test Results

	Mode 1: 1 Mbps 20 dB Bandwidth					
Channel Frequency (MHz)	requency FL FH Bandwidth Result					
2403.0	2402.530500	2403.5694	1038.9	PASS		
2442.0	2441.535500	2442.5794	1043.9	PASS		
2481.0	2480.535500	2481.5844	1048.9	PASS		

08:13:01 07.08.2020

2403

RF916 10.0 Page 52 of 68

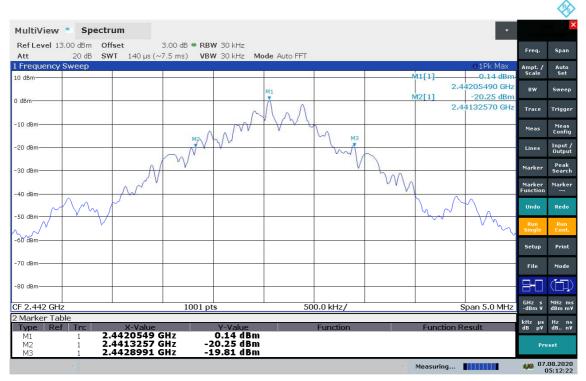
08:26:37 07.08.2020

2442

08:11:08 07.08.2020

2481

RF916 10.0 Page 53 of 68


Mode 2: 2Mbps 20 dB Bandwidth						
Channel F _L F _H 20dB Bandwidth Result (MHz) (MHz)						
2404.0	2403.325700	2404.9041	1578.4	PASS		
2442.0	2441.325700	2442.8991	1573.4	PASS		
2480.0	2479.325700	2480.9041	1578.4	PASS		

04:44:37 07.08.2020

2404

RF916 10.0 Page 54 of 68

05:12:22 07.08.2020

2442

05:09:38 07.08.2020

2480

RF916 10.0 Page 55 of 68

Mode 2: 2 Mbps 6 dB DTS bandwidth						
Channel Frequency (MHz)	F_L F_H 6dB Bandwidth Result (MHz)					
2404.0	2403.780200	2404.4895	709.3	PASS		
2442.0	2441.795200	2442.4895	694.3	PASS		
2480.0	2479.795200	2480.4895	694.3	PASS		

03:49:00 07.08.2020

2404

RF916 10.0 Page 56 of 68

03:50:31 07.08.2020

2442

03:51:27 07.08.2020

2480

RF916 10.0 Page 57 of 68

18 Out-of-band and conducted spurious emissions

18.1 Definition

Out-of-band emission.

Emission on a frequency or frequencies immediately outside the necessary bandwidth that results from the modulation process but excluding spurious emissions.

Spurious emission.

Emission on a frequency or frequencies that are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products, and frequency conversion products, but exclude out-of-band emissions.

18.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.8

ANSI C63.10-2013, Clause 11.11

Frequencies Measured: Mode 1: 2403 MHz/2442 MHz/2481 MHz

Mode 2: 2404 MHz/2442 MHz/2480 MHz

EUT Channel Bandwidths: Mode 1: 1 MHz

Mode 2: 2 MHz

Deviations From Standard: None

Measurement BW: 100 kHz
Spectrum Analyzer Video BW: 300 kHz

(requirement at least 3x RBW)

Measurement Detector: Peak

Measurement Range: 30 MHz to 25 GHz

Environmental Conditions (Normal Environment)

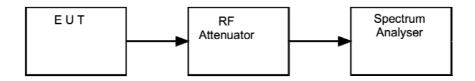
Temperature: 23°C +15 °C to +35 °C (as declared)

Humidity: 32 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.0 Vdc

18.3 Test Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in FCC 47CFR15.209(a) / RSS-Gen is not required.


RF916 10.0 Page 58 of 68

18.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure viii, the emissions from the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure viii Test Setup

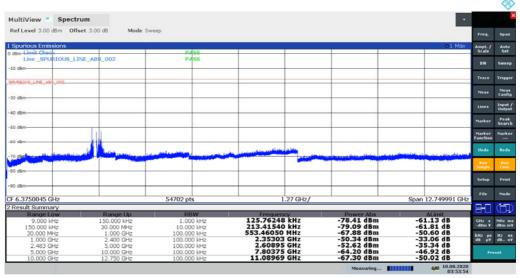
18.5 Test Equipment

Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	R&S	FSU26	REF909	2021-07-09

RF916 10.0 Page 59 of 68

18.6 Test Results

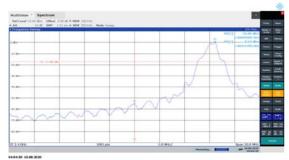
Mode 1: 1MBps GFSK


03:50:51 10.08.2020

Bottom

03:52:13 10.08.2020

Middle

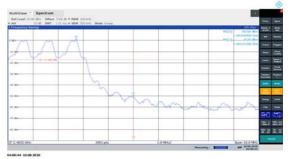


03:53:55 10.08.2020

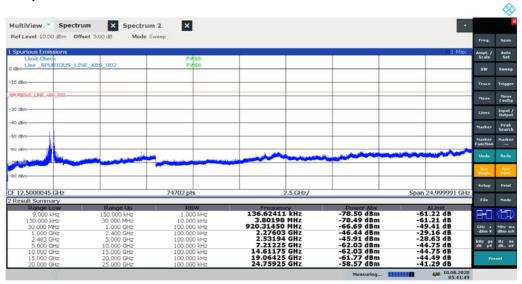
Top

RF916 10.0 Page 60 of 68

Band edge Mode 1:


Lower band edge single hopping channel

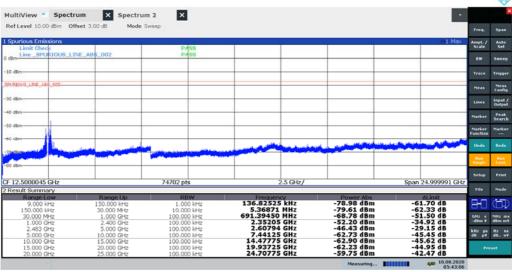
Lower band edge hopping channel


Upper band edge single hopping channel

Upper band edge hopping channel


RF916 10.0 Page 61 of 68

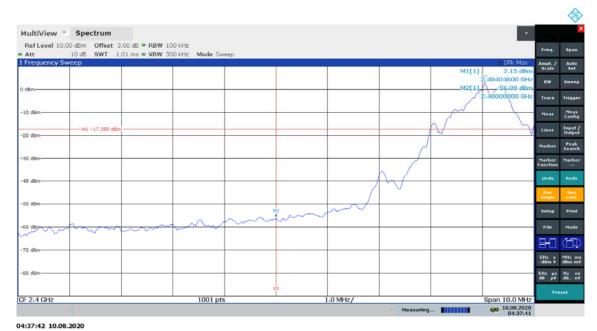
Mode 2: 2MBps GFSK


05:41:50 10.08.2020

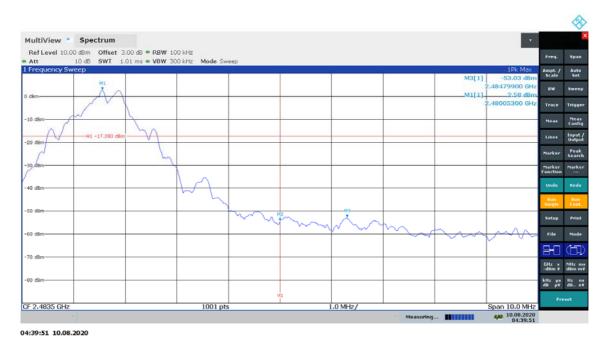
Bottom

05:33:12 10.08.2020

Middle

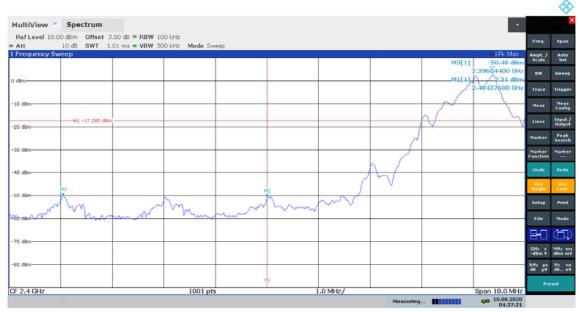


05:43:06 10.08.2020


Top

RF916 10.0 Page 62 of 68

Band edge Mode 2:



Lower band edge single hopping channel

Upper band edge single hopping channel

RF916 10.0 Page 63 of 68

04:27:21 10.08.2020

Lower band edge hopping channel

04:41:45 10.08.2020

Upper band edge hopping channel

RF916 10.0 Page 64 of 68

19 Measurement Uncertainty

Calculated Measurement Uncertainties

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence:

[1] Radiated spurious emissions

Uncertainty in test result (30 MHz to 1 GHz) = **4.6 dB** Uncertainty in test result (1 GHz to 18 GHz) = **4.7 dB**

[2] AC power line conducted emissions

Uncertainty in test result = 3.4 dB

[3] Occupied bandwidth

Uncertainty in test result = 15.5 %

[4] Conducted carrier power

Uncertainty in test result (Power Meter) = 1.08 dB

[5] Conducted / radiated RF power out-of-band

Uncertainty in test result – up to 8.1 GHz = 3.31 dBUncertainty in test result – 8.1 GHz to 15.3 GHz = 4.43 dBUncertainty in test result (30 MHz to 1 GHz) = 4.75 dBUncertainty in test result (1 GHz to 18 GHz) = 4.7 dB

[6] Frequency separation

Uncertainty in test result (Spectrum Analyser) = 3.6 kHz

[7] Accumulated channel occupancy time

Uncertainty in test result = 7.98 %

[8] Radiated RF power out-of-band

Uncertainty in test result (30 MHz to 1 GHz) = **4.75 dB** Uncertainty in test result (1 GHz to 18 GHz) = **4.46 dB**

[9] Power spectral density

Uncertainty in test result (Spectrum Analyser) = 3.11 dB

[10] ERP / EIRP

Uncertainty in test result (Laboratory) = **4.71 dB**Uncertainty in test result (Pershore OATS) = **4.26 dB**

RF916 10.0 Page 65 of 68

20 RF Exposure

KDB 447498

Section 4.3 General SAR test reduction and exclusion guidance

For Standalone SAR exclusion consideration, when SAR Exclusion Threshold requirement in KDB 447498 is satisfied, standalone SAR evaluation for general population exposure conditions by measurement or numerical simulation is not required.

In the frequency range below 100 MHz to 6 GHz and test separation distance of 50mm, the SAR Test Exclusion Threshold for operation in the 2400 – 2483.5 MHz band will be determined as follows

SAR Exclusion Threshold (SARET)

SAR Exclusion Threshold = Step 1 + Step 2

Step 1

 $NT = [(MP/TSD^A) * \sqrt{f_{GHz}}]$

NT = Numeric Threshold (3.0 for 1-g SAR and 7.5 for 10-g SAR)

MP = Max Power of channel (mW) (inc tune up)

TSD^A = Min Test separation Distance or 50mm (whichever is lower) = 50

We can transpose this formula to allow us to find the maximum power of a channel allowed and compare this to the measured maximum power.

=
$$[(NT \times TSD^A) / \sqrt{f_{GHz}}]$$

For Distances Greater than 50 mm Step 2 applies

Step 2

$$(TSD^B - 50mm) * 10$$

Where:

TSD^B = Min Test separation Distance (mm) = 50

RF916 10.0 Page 66 of 68

Operating Frequency 2.403 GHz

SARET = $[(3.0 \times 50) / \sqrt{2.402}] + \{(50 - 50) \times 10\}$ SARET = $[150 / 1.55] + (0 \times 10\}$

SARET = 96.77mW

Operating Frequency 2.442 GHz

SARET = $[(3.0 \times 50) / \sqrt{2.442}] + \{(50 - 50) \times 10\}$

SARET = [150 / 1.56] + (0 * 10)

SARET = 96.15mW

Operating Frequency 2.481 GHz

SARET = $[(3.0 \times 50) / \sqrt{2.481}] + \{(50 - 50) \times 10\}$

SARET = [150 / 1.57] + (0 * 10)

SARET = 95.54mW

Mode 1					
Evaluation Frequency	2403	2442	2481	MHz	
SAR Exclusion Threshold	96.77	96.15	95.54	Watts	
Conducted Power	-0.2	0.05	0.31	dBm	
Antenna Gain	1.3	1.3	1.3	dBi	
EIRP	1.29	1.36	1.45	mW	
SAR Evaluation		Exe	empt		

Therefore standalone SAR evaluation for general population exposure conditions by measurement or numerical simulation is not required.

RF916 10.0 Page 67 of 68

Operating Frequency 2.404 GHz

SARET = $[(3.0 \times 50) / \sqrt{2.404}] + \{(50 - 50) \times 10\}$ SARET = $[150 / 1.55] + (0 \times 10\}$

SARET = 96.77mW

Operating Frequency 2.440 GHz

SARET = $[(3.0 \times 50) / \sqrt{2.44}] + \{(50 - 50) \times 10\}$

SARET = [150 / 1.56] + (0 * 10)

SARET = 96.15mW

Operating Frequency 2.480 GHz

SARET = $[(3.0 \times 50) / \sqrt{2.48}] + \{(50 - 50) * 10\}$

SARET = [150 / 1.57] + (0 * 10)

SARET = 95.54mW

Mode 2				
Evaluation Frequency	2404	2440	2480	MHz
SAR Exclusion Threshold	96.77	96.15	95.54	Watts
Conducted Power	2.31	2.44	2.90	dBm
Antenna Gain	1.3	1.3	1.3	dBi
EIRP	2.30	2.37	2.63	mW
SAR Evaluation	Exempt			

Therefore standalone SAR evaluation for general population exposure conditions by measurement or numerical simulation is not required.

RF916 10.0 Page 68 of 68