



# R051-24-09-104775-3/A Ed. 0

# **FCC CERTIFICATION RADIO Measurement Technical Report**

standard to apply: **FCC Part 15.247** 

**Equipment under test:** PROBE RMP40M

> FCC ID: **KQGRMP40M**

**Company: RENISHAW SAS** 

**DISTRIBUTION: Mr CRESSON Company: RENISHAW SAS** 

Number of pages: 41 including 5 annexes

| Ed. | Date     | Modified | Written by  | ,      | Technical Ve<br>Quality Ap |      |
|-----|----------|----------|-------------|--------|----------------------------|------|
|     |          | pages    | Name        | Visa   | Name                       | Visa |
| 0   | 7-Dec-09 | Creation | M. DUMESNIL | M. D . |                            |      |

Duplication of this test report is only permitted for an integral photographic facsimile. It includes the number of pages referenced here above.

This document is the result of testing a specimen or a sample of the product submitted. It does not imply an assessment of the conformity of the whole manufactured products of the tested sample.





**PRODUCT:** PROBE

**Reference / model:** RMP40M

*Trade mark:* RENISHAW

Serial number: 8W6972

MANUFACTURER: RENISHAW PLC (United Kingdom)

**COMPANY SUBMITTING THE PRODUCT:** 

**Company:** RENISHAW SAS

Address: 15 rue Albert Einstein

Champ-sur-Marne

77447 MARNE LA VALLEE Cedex 2

FRANCE

**Responsible:** Mr CRESSON

**DATE(S) OF TEST:** 6, 7 and 24 November 2009

23 December 2009

**TESTING LOCATION:** EMITECH ATLANTIQUE laboratory at ANGERS (49) FRANCE

EMITECH ATLANTIQUE open area test site in LA POUEZE (49)

**FRANCE** 

Registration Number by FCC: 101696/FRN: 0006 6490 08

TESTED BY: M. DUMESNIL

**TUTOR:** P. BONNENFANT



# **CONTENTS**

| TITLE                                                    | PAGE |
|----------------------------------------------------------|------|
| 1. INTRODUCTION                                          | 4    |
| 2. PRODUCT DESCRIPTION                                   | 4    |
| 3. NORMATIVE REFERENCE                                   | 5    |
| 4. TEST METHODOLOGY                                      | 5    |
| 5. ADD ATTACHMENTS FILES                                 | 5    |
| 6. TESTS AND CONCLUSIONS                                 | 6    |
| 7. RADIATED EMISSION LIMITS                              | 8    |
| 8. MAXIMUM PEAK OUTPUT POWER                             | 10   |
| 9. INTENTIONAL RADIATOR                                  | 12   |
| 10. BAND EDGE COMPLIANCE                                 | 16   |
| ANNEX 1: OCCUPIED POWER BANDWIDTH AND CHANNEL SEPARATION |      |
| ANNEX 2: AVERAGE TIME OF OCCUPANCY ON ANY FREQUENCY      | 24   |
| ANNEX 3: NUMBER OF HOPPING FREQUENCIES                   | 33   |
| ANNEX 4: PHOTOS OF THE EQUIPMENT UNDER TEST              | 37   |
| ANNEX 5. TEST SET UP AND OPEN AREA TEST SITE             | 40   |



#### 1. INTRODUCTION

This document presents the result of RADIO test carried out on the following equipment: <u>PROBE RMP40M</u> in accordance with normative reference.

# 2. PRODUCT DESCRIPTION

ITU Emission code: 1M00F7D

Class: A (commercial, industrial or business environment)

Utilization: probe for machine tools with Bluetooth function

Antenna type: incorporated antenna

Operating frequency range: from 2403 MHz to 2481 MHz

Number of channels: 79

Channel spacing: 1 MHz

Frequency generation: O SAW Resonator O Crystal O Synthetiser

Modulation: Frequency Hopping Spread Spectrum (FHSS)

O Amplitude O Digital O Frequency O Phase

Power source: batteries Li-S0Cl<sub>2</sub> (2x3.6 Vd.c)

Power level, frequency range and channels characteristics are not user adjustable.

The details pictures of the product and the circuit boards are joined with this file.



## 3. NORMATIVE REFERENCE

The standards and testing methods related throughout this report are those listed below.

They are applied on the whole test report even though the extensions (version, date and amendment) are not repeated.

FCC Part 15 (2007) Code of Federal Regulations

Title 47 - Telecommunication

Chapter 1 - Federal Communications Commission

Part 15 - Radio frequency devices Subpart C - Intentional Radiators

ANSI C63.10 (2009) Methods of Measurement of Radio-Noise Emissions from Low-

voltage Electrical and Electronics Equipment in the range

of 9 kHz to 40 GHz.

Public Notice DA 00-705 Filing and Measurement Guideline for Frequency Hopping Spread

Spectrum Systems.

#### 4. TEST METHODOLOGY

Radio performance tests procedures given in part 15:

Paragraph 33: frequency range of radiated measurements

Paragraph 35: measurement detector functions and bandwidths

Paragraph 107: conducted limits

Paragraph 109: radiated emission limits

Paragraph 111: antenna power conducted limits for receivers

Paragraph 203: antenna requirement

Paragraph 205: restricted bands of operation

Paragraph 207: conducted limits

Paragraph 209: radiated emission limits; general requirements

Paragraph 247: operation within the bands 902-928 MHZ, 2400-2483.5 MHz and

5725-5850 MHz

#### 5. ADD ATTACHMENTS FILES

"Synoptic "

"Block diagram"

"External photos and Product labeling"

"Assembly of components"

Internal photos

"Layout pcb"

"Bil of materials"

"Schematics"

"Product description"

"User guide"



#### 6. TESTS AND CONCLUSIONS

6.1 intentional radiator (subpart C)

| Test             | Description of test                                                      | Cri | iteria | Comment |     |         |
|------------------|--------------------------------------------------------------------------|-----|--------|---------|-----|---------|
| procedure        |                                                                          | Yes | No     | NAp     | NAs |         |
| FCC Part 15.203  | ANTENNA REQUIREMENT                                                      | X   |        |         |     | Note 1  |
| TCC 1 att 13.203 | ANTENNA REQUIREMENT                                                      | Λ.  |        |         |     | Ivote 1 |
| FCC Part 15.205  | RESTRICTED BANDS OF OPERATION                                            | X   |        |         |     |         |
| FCC Part 15.207  | CONDUCTED LIMITS                                                         |     |        | X       |     |         |
| FCC Part 15.209  | RADIATED EMISSION LIMITS; general requirements                           | X   |        |         |     | Note 2  |
| FCC Part 15.247  | OPERATION WITHIN THE BAND 902-928 MHZ, 2400-2483.5 MHz and 5725-5850 MHz |     |        |         |     |         |
|                  | (a) (1) hopping systems                                                  | X   |        |         |     | Note 3  |
|                  | (a) (1) (i) 902 – 928 MHz                                                |     |        | X       |     | 11010 5 |
|                  | (a) (1) (ii) 5725 – 5850 MHz                                             |     |        | X       |     |         |
|                  | (a) (1) (iii) 2400 – 2483.5 MHz                                          | X   |        |         |     | Note 4  |
|                  | (a) (2) digital modulation techniques                                    |     |        | X       |     |         |
|                  | (b) max output power                                                     | X   |        |         |     | Note 5  |
|                  | (c) operation with directional antenna gains > 6 dBi                     |     |        | X       |     | Note 6  |
|                  | (d) intentional radiator                                                 | X   |        |         |     | Note 7  |
|                  | (e) peak power spectral density                                          |     |        | X       |     |         |
|                  | (f) hybrid system                                                        |     |        | X       |     |         |
|                  | (g)                                                                      | X   |        |         |     |         |
|                  | (h)                                                                      | X   |        |         |     |         |
|                  | (i) RF exposure compliance                                               | X   |        |         |     | Note 8  |
| DA 00-705        | BAND EDGE COMPLIANCE                                                     | X   |        |         |     |         |

NAp: Not Applicable

NAs: Not Asked

Note 1: internal antenna (pcb antenna), see photos in annex 4.

*Note 2: see FCC part 15.247 (d).* 

Note 3: the system hops to channel frequencies from a pseudo randomly ordered list of hopping frequencies. Each frequency is used equally on the average by the transmitter, and separated by a minimum of 20 dB bandwidth of the hopping channel (738 kHz; see annex 1).

Note 4: the frequency hopping system uses 79 channels (see annex 3). The timing by channel is 666  $\mu$ s. During 79 channels  $\times$  0.4 s (part 15) = 31.6 s, any channel is used 411 times, then 411  $\times$  666  $\mu$ s = 273.73 ms, thus the average time of occupancy on any channel is less than 400 ms within a period of 0.4 s multiplied by the number of hopping channels employed, in normal operating mode (see annex 2).

<u>Note 5</u>: conducted measurement is not possible (integral antenna), so we used the radiated method in open field.

*Note* 6: the antenna gain is less than 6 dBi.

Note 7: pulsed modulated devices.

For average measurements a correction duty cycle is calculated. Equipment during transmit 666  $\mu$ s twice in a time interval of 100 ms.

So, the duty cycle correction factor is  $20 \log \frac{(2 \times 666 \times 10^{-6})}{100 \times 10^{-3}} = -37.51 \text{ dB}.$ 

See curves in annex 2.

<u>Note 8</u>: this type of equipment uses less than 0.5 W of output power with a high signal transmitting duty factor (section 3 from Oet 65c).



**6.2** unintentional radiator (subpart B)

| Test            | Description of test                         |   | iteria | Comment |     |  |
|-----------------|---------------------------------------------|---|--------|---------|-----|--|
| procedure       |                                             |   | No     | NAp     | NAs |  |
| FCC Part 15.107 | CONDUCTED LIMITS                            |   |        | X       |     |  |
| FCC Part 15.109 | RADIATED EMISSION LIMITS                    | X |        |         |     |  |
| FCC Part 15.111 | ANTENNA POWER CONDUCTED LIMITS FOR RECEIVER |   |        | X       |     |  |

NAp: Not Applicable

NAs: Not Asked

# **Conclusion:**

The sample of <u>PROBE RMP40M</u> submitted to the tests complies with the regulations of the standard FCC Part 15 in accordance with the limits or criteria defined in this report.



## **7. RADIATED EMISSION LIMITS**

**Standard:** FCC Part 15 B

Test procedure: paragraph 109

Limit class: Class A

**Standard deviation:** The measurement is carried out at 3 m, instead of 10 m

# **Test equipments:**

| ТҮРЕ                        | BRAND                   | EMITECH<br>NUMBER |
|-----------------------------|-------------------------|-------------------|
| Test receiver               | Rohde & Schwarz ESVS 10 | 1219              |
| Biconical antenna           | Hewlett Packard 11966 C | 728               |
| Log periodic antenna        | Rohde & Schwarz HL 223  | 1999              |
| Double ridged guide antenna | Electrometrics EM 6961  | 1204              |
| Spectrum analyzer           | Rohde & Schwarz FSP40   | 4088              |
| Open area test site         | EMITECH                 | 1274              |
| Preamplifier 1 to 18 GHz    | DBS Microwave DB97-1852 | 2648              |
| High pass filter            | Micro-tronics HPM11630  | 6609              |
| Multimeter 77-2             | Fluke                   | 0812              |
| Meteo station AB 888        | Oregon scientific       | 1539              |

# Test set up:

The system is tested in an open area test site (OATS).

The test unit is placed on a rotating table, 0.8 m from a ground plane. Zero degree azimuths correspond to the front of the equipment under test.

**Frequency range:** The highest frequency generated in the device is f = 2481 MHz

According the Sec.15.33 of the FCC Part 15 standard, the frequency range

measured is indicated in the following table:

For unintentional radiator, including a digital device (Sec.15.33, §(b)(1) of the FCC Part 15standard):

| Above 1000                                                                           | 5 <sup>th</sup> harmonic of the highest frequency or 40GHz, whichever is lower |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Highest frequency generated or used in the device or on which the device operates or | Upper frequency of measurement range (MHz)                                     |

**Bandwidth:** 120 kHz (F < 1 GHz)

1 MHz (F > 1 GHz)

**Detection mode:** Quasi-peak (F < 1 GHz)

Average (F > 1 GHz)



**Distance of antenna:** 3 meters

Antenna height: 1 to 4 meters

**Antenna polarization:** vertical and horizontal (only the highest level is recorded)

# **Equipment under test operating condition:**

The equipment is blocked in continuous reception mode.

#### **Results:**

Ambient temperature (°C): 17.5 Relative humidity (%): 49

#### Power source:

We used for power source the internal battery(ies) of the equipment and we noted:

Voltage at the beginning of test (V): 7.14

Voltage at the end of test (V): 7.11

Percentage of voltage drop during the test (%): 0.42

Not any spurious has been detected during this test.

Note: any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily reported.

Applicable limits: For 30 MHz  $\leq$  F  $\leq$  88 MHz: 49.54 dB $\mu$ v/m at 3 m

For 88 MHz  $\leq$  F < 216 MHz: 53.98 dB $\mu$ v/m at 3 m For 216 MHz  $\leq$  F < 960 MHz: 56.90 dB $\mu$ v/m at 3 m

Above 960 MHz: 60 dBµv/m at 3 m

#### **TEST CONCLUSION:**

RESPECTED STANDARD



#### 8. MAXIMUM PEAK OUTPUT POWER

Standard: FCC Part 15 C

**Test procedure:** paragraph 15.247

#### **Test equipments:**

| ТҮРЕ                     | BRAND             | EMITECH<br>NUMBER |
|--------------------------|-------------------|-------------------|
| Spectrum analyzer FSP 40 | Rohde & Schwarz   | 4088              |
| Antenna RGA60            | Electrometrics    | 1204              |
| Open site                | EMITECH           | 1274              |
| Multimeter 77-2          | Fluke             | 0812              |
| Meteo station AB888      | Oregon scientific | 1539              |

## Test set up:

The system is tested in an open area test site (OATS).

The test unit is placed on a rotating table, 0.8 m from a ground plane. Zero degree azimuth corresponds to the front of the equipment under test.

We use for this measure outdoor test site. The measuring distance between the equipment and the test antenna is 3 m. The test antenna has been oriented in the two polarizations, we have recorded only the highest level.

A measurement of the electro-magnetic field is realized, with a resolution bandwidth and video bandwidth adjusted at 1 MHz.

**Distance of antenna:** 3 meters

Antenna height: 1 to 4 meters

Antenna polarization: vertical and horizontal

#### **Equipment under test operating condition:**

The equipment under test is blocked in continuous transmission mode, modulated by internal data signal, at the highest output power level which the transmitter is intended to operate.



#### **Results:**

Ambient temperature (°C): 17.5 Relative humidity (%): 65

Power source:

We used for power source the internal battery(ies) of the equipment and we noted:

Voltage at the beginning of test (V): 7.33
Voltage at the end of test (V): 7.13
Percentage of voltage drop during the test (%): 2.73

# Sample n° 1 Channel 1

|                        |                               | Level<br>dBµV | Cable loss<br>dB | Antenna<br>factor dB | Electro-magnetic field (dBμV/m): | P*<br>(W)              | Limit<br>(W) |
|------------------------|-------------------------------|---------------|------------------|----------------------|----------------------------------|------------------------|--------------|
| Normal test conditions | Nominal power source (V): 7.2 | 55.07         | 4.97             | 28.61                | 88.65                            | $0.133 \times 10^{-3}$ | 1            |

Polarization of test antenna: vertical (height: 220 cm)

Position of equipment: vertical position (azimuth: 13 degrees)

# Sample n° 1 Channel 40

|                        |                               | Level<br>dBµV | Cable loss<br>dB | Antenna<br>factor dB | Electro-magnetic field (dBµV/m): | P*<br>(W)              | Limit (W) |
|------------------------|-------------------------------|---------------|------------------|----------------------|----------------------------------|------------------------|-----------|
| Normal test conditions | Nominal power source (V): 7.2 | 55.03         | 5.01             | 28.73                | 88.77                            | $0.137 \times 10^{-3}$ | 1         |

Polarization of test antenna: vertical (height: 214 cm)

Position of equipment: vertical position (azimuth: 29 degrees)

# Sample n° 1 Channel 79

| _                      |                               | Level<br>dBµV | Cable loss<br>dB | Antenna<br>factor dB | Electro-magnetic field (dBµV/m): | P*<br>(W)              | Limit<br>(W) |
|------------------------|-------------------------------|---------------|------------------|----------------------|----------------------------------|------------------------|--------------|
| Normal test conditions | Nominal power source (V): 7.2 | 55.37         | 5.06             | 28.84                | 89.27                            | 0.154x10 <sup>-3</sup> | 1            |

Polarization of test antenna: vertical (height: 180 cm)

Position of equipment: vertical position (azimuth: 42 degrees)

\*  $P = (E \times d)^2 / (30 \times Gp)$  with d = 3 m and Gp = 1.65

#### **Test conclusion:**

RESPECTED STANDARD



# 9. INTENTIONAL RADIATOR

Standard: FCC Part 15 C

**Test procedure:** paragraph 15.205

paragraph 15.209 paragraph 15.247

# **Test equipments:**

| ТҮРЕ                             | BRAND             | EMITECH |
|----------------------------------|-------------------|---------|
|                                  |                   | NUMBER  |
| Test receiver ESH3               | Rohde & Schwarz   | 1058    |
| Test receiver ESVS 10            | Rohde & Schwarz   | 1219    |
| Spectrum analyzer FSP 40         | Rohde & Schwarz   | 4088    |
| Loop antenna                     | EMCO              | 1406    |
| Biconical antenna HP 11966C      | Hewlett Packard   | 728     |
| Log periodic antenna HL 223      | Rohde & Schwarz   | 1999    |
| Open site                        | Emitech           | 1274    |
| Antenna RGA-60                   | Electrometrics    | 1204    |
| Low-noise amplifier 2 to 18 GHz  | Microwave DB      | 1922    |
| High pass filter HP12/3200-5AA   | Filtek            | 1922    |
| Antenna WR42                     | IMC               | 1939    |
| Low-noise amplifier 18 to 26 GHz | ALC               | 3036    |
| Multimeter 77-2                  | Fluke             | 0812    |
| Meteo station AB 888             | Oregon scientific | 1539    |

# Test set up:

The system is tested in an open area test site (OATS).

The test unit is placed on a rotating table, 0.8 m from a ground plane. Zero degree azimuth corresponds to the front of the equipment under test.

**Frequency range:** from 9 kHz to harmonic 10 ( $F_{carrier} \le 10 \text{ GHz}$ )

**Bandwidth:** 120 kHz (F < 1 GHz) or 100 kHz, following 15.205 or 15.247

1 MHz (F > 1 GHz) or 100 kHz, following 15.205 or 15.247



**Detection mode:** Quasi-Peak (F< 1GHz)

Average (F> 1 GHz)

**Distance of antenna:** between 30 m and 3 m according the frequencies and the limits.

Antenna height: 1 to 4 meters

**Antenna polarization:** vertical and horizontal, only the highest level is recorded.

# **Equipment under test operating condition:**

The equipment under test is blocked in continuous transmission mode, modulated by internal data signal, at the highest output power level which the transmitter is intended to operate. The equipment is fitted with an internal antenna, without connector.

#### **Results:**

Ambient temperature (°C): 16.5 Relative humidity (%): 60

#### Power source:

We used for power source the internal battery(ies) of the equipment and we noted:

Voltage at the beginning of test (V): 7.30 Voltage at the end of test (V): 7.14 Percentage of voltage drop during the test (%): 2.19

The polarity column refers to the antenna polarity at which the maximum emissions level is measured.

#### Channel 1

| FR | EQUENCIES | Detector       | Antenna | Azimuth  | resolution | Polarization  | Field strength | Limits   | Margin |
|----|-----------|----------------|---------|----------|------------|---------------|----------------|----------|--------|
|    | (MHz)     | P: Peak        | height  | (degree) | bandwidth  | H: Horizontal | $(dB\mu V/m)$  | (dBµV/m) | (dB)   |
|    |           | QP: Quasi-Peak | (cm)    |          | (kHz)      | V: Vertical   | Note 1         |          |        |
|    |           | Av: Average    |         |          |            |               |                |          |        |
|    | 4806      | P              | 109     | 138      | 1000       | V             | 62.61          | 73.98*   | 11.37  |
|    | 4806      | Av             | 109     | 138      | 1000       | V             | 14.37          | 53.98*   | 39.61  |
|    | 7209      | P              | 137     | 296      | 100        | V             | 67.84          | 69.01    | 1.17   |

#### Channel 40

|    | initer to |                |         |          |            |               |                |          |        |
|----|-----------|----------------|---------|----------|------------|---------------|----------------|----------|--------|
| FR | EQUENCIES | Detector       | Antenna | Azimuth  | resolution | Polarization  | Field strength | Limits   | Margin |
|    | (MHz)     | P: Peak        | height  | (degree) | bandwidth  | H: Horizontal | $(dB\mu V/m)$  | (dBµV/m) | (dB)   |
|    |           | QP: Quasi-Peak | (cm)    |          | (kHz)      | V: Vertical   | Note 1         |          |        |
|    |           | Av: Average    |         |          |            |               |                |          |        |
|    | 4884      | P              | 146     | 112      | 1000       | V             | 63.95          | 73.98*   | 10.03  |
|    | 4884      | Av             | 146     | 112      | 1000       | V             | 15.29          | 53.98*   | 38.69  |
|    | 7326      | P              | 139     | 312      | 1000       | V             | 68.27          | 73.98*   | 5.71   |
|    | 7326      | Av             | 139     | 312      | 1000       | V             | 19             | 53.98*   | 34.98  |



#### Channel 79

| FREQUENCIES | Detector       | Antenna | Azimuth  | resolution | Polarization  | Field strength | Limits   | Margin |
|-------------|----------------|---------|----------|------------|---------------|----------------|----------|--------|
| (MHz)       | P: Peak        | height  | (degree) | bandwidth  | H: Horizontal | $(dB\mu V/m)$  | (dBµV/m) | (dB)   |
|             | QP: Quasi-Peak | (cm)    |          | (kHz)      | V: Vertical   | Note 1         |          |        |
|             | Av: Average    |         |          |            |               |                |          |        |
| 4962        | P              | 147     | 279      | 1000       | V             | 64.85          | 73.98*   | 9.13   |
| 4962        | Av             | 147     | 279      | 1000       | V             | 15.31          | 53.98*   | 38.67  |
| 7443        | P              | 138     | 318      | 1000       | V             | 73.01          | 73.98*   | 0.97   |
| 7443        | Av             | 138     | 318      | 1000       | V             | 22.13          | 53.98*   | 31.85  |

<sup>\*</sup> restricted bands of operation in 15.205, this limit corresponding at the 15.209 section.

Note 1: All average value were taken using peak detector function with VBW= 10 Hz and the duty cycle correction factor. (see § 15.35; pulsed modulated device)

For average measurements a correction duty cycle is calculated.

Equipment during transmit 666 μs twice in a time interval of 100 ms.

So, the duty cycle correction factor is 
$$20 \log \frac{(2 \times 666 \times 10^{-6})}{100 \times 10^{-3}} = -37.51 \text{ dB}.$$

See curves in annex 2.

Note: any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily reported.

**Applicable limits**: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

> The highest level recorded in a 100 kHz bandwidth is 89.01 dBµV/m on channel 79. So the applicable limit is  $69.01 \text{ dB}\mu\text{V/m}$ .

In addition, radiated emissions which fall in the restricted band, as defined in section 15.205 (a), must also comply with the radiated emission limits specified in section 15.209 (a) (see section 15.205 (c)).

#### **TEST CONCLUSION:**

RESPECTED STANDARD



# 10. BAND EDGE COMPLIANCE

**Standard:** FCC part 15.247

**Test procedure:** Public Notice DA 00-705, Delta Marker method.

## Test equipment used:

| ТҮРЕ                    | MANUFACTURER    | EMITECH<br>NUMBER |  |  |
|-------------------------|-----------------|-------------------|--|--|
| Spectrum analyzer FSP 7 | Rohde & Schwarz | 6796              |  |  |
| Antenna RGA-60          | Electrometrics  | 1204              |  |  |
| Multimeter 77-2         | Fluke           | 0812              |  |  |

### Test set up:

Test realized in near field. All field strength measurements are correlated with the radiated maximum peak output power.

# **Test operating condition of the equipment:**

The equipment is locked in frequency hopping mode.

#### **Results:**

Lower Band Edge: from 2398 MHz to 2400 MHz, Curve N° 1 Upper Band Edge: from 2483.5 MHz to 2485.5 MHz, Curve N° 2

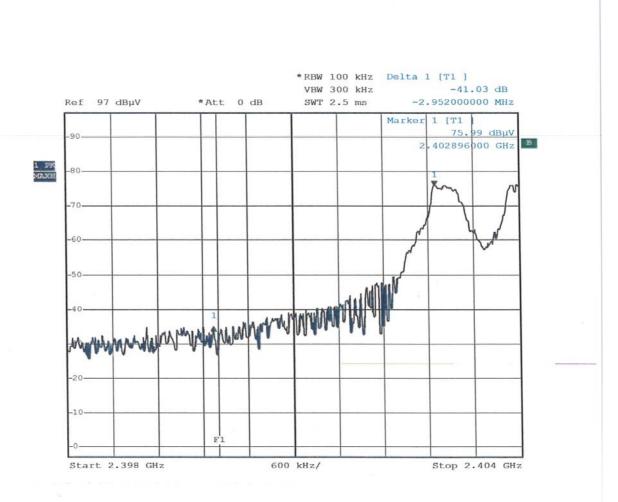
#### Sample n° 1:

| Fundamental | Field         | Peak    | Frequency | Delta  | Calculated      | Limit         | Margin |
|-------------|---------------|---------|-----------|--------|-----------------|---------------|--------|
| Frequency   | Strength      | Or      | of        | Marker | Max Out of      | $(dB\mu V/m)$ | (dB)   |
| (MHz)       | Level of      | Average | maximum   | (dB)*  | Band            |               |        |
|             | fundamental   |         | Band-     |        | Emission        |               |        |
|             | $(dB\mu V/m)$ |         | edges     |        | Level           |               |        |
|             |               |         | Emission  |        | $(dB\mu V/m)**$ |               |        |
|             |               |         | (MHz)     |        |                 |               |        |
| 2402.896    | 88.65         | Peak    | 2399.944  | -41.03 | 47.62 (1)       | 73.98         | 26.36  |
| 2481.012    | 89.27         | Peak    | 2483.551  | -39.43 | 49.84 (1)       | 73.98         | 24.14  |

<sup>\*</sup> According to step 2 of Marker-Delta Method DA 00-705

Calculated Emission Level = Field Strength Level – Delta Marker Level

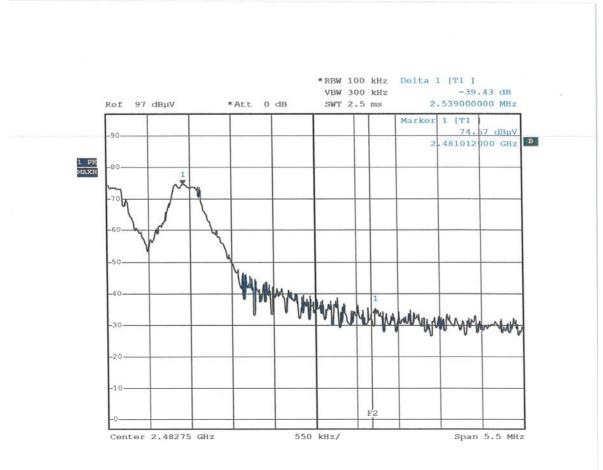
(1) the peal level is lower than the average limit (53.98  $dB\mu V/m$ ).


## **Test conclusion:**

RESPECTED PUBLIC NOTICE

<sup>\*\*</sup> According to step 3 of Marker-Delta Method:




## CURVE N°: 1.

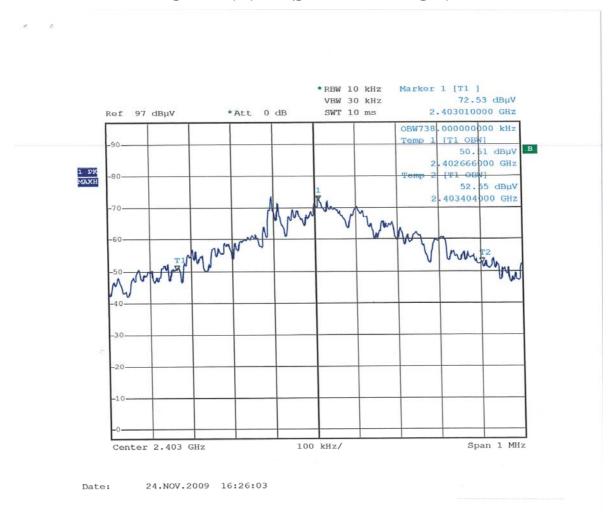


Date: 23.DEC.2009 17:54:17



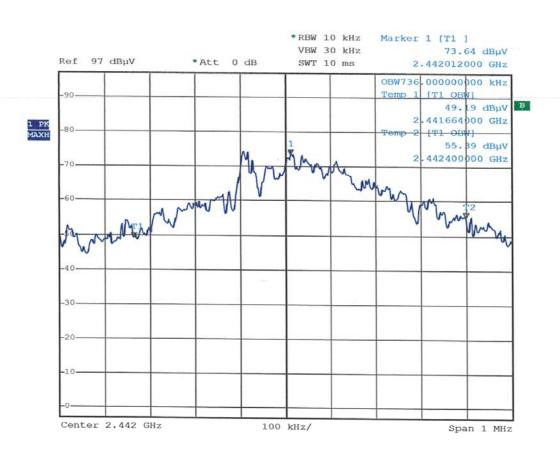
## CURVE N°: 2.




Date:

23.DEC.2009 17:51:08

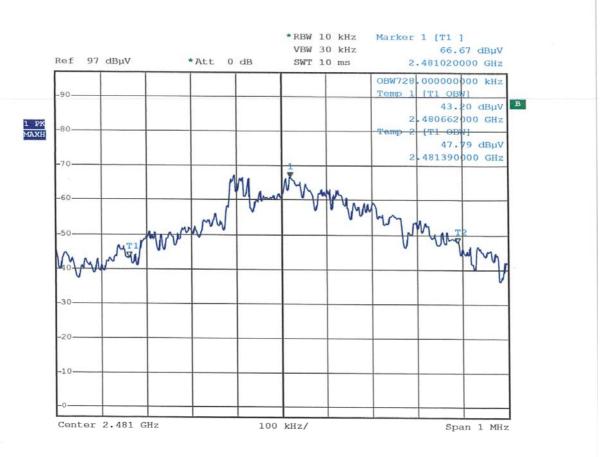
 $\Box\Box\Box$  End of report, 5 annexes to be forwarded  $\Box\Box\Box$ 




# ANNEX 1: OCCUPIED POWER BANDWIDTH AND CHANNEL SEPARATION

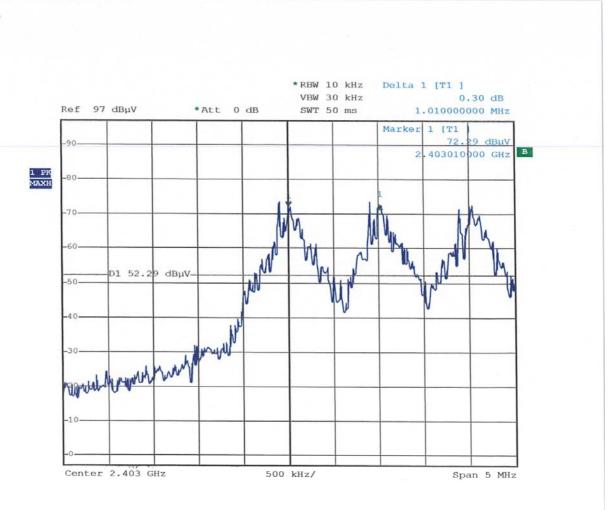




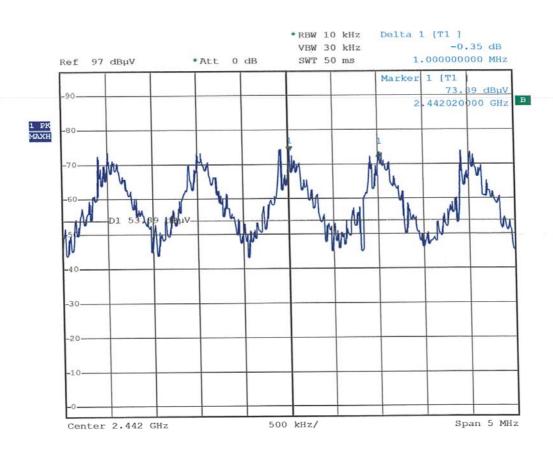

2 2



Date:

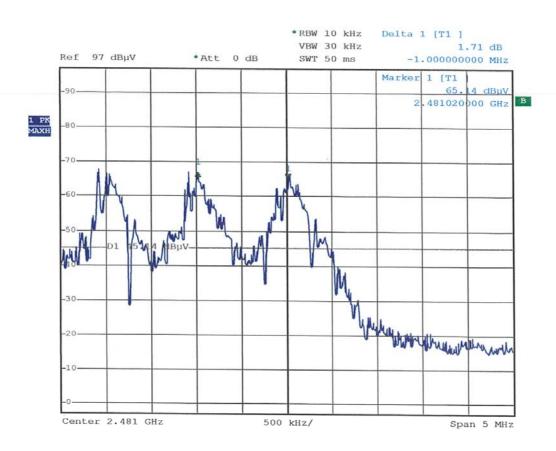

24.NOV.2009 16:27:35

SZ 90




Date:

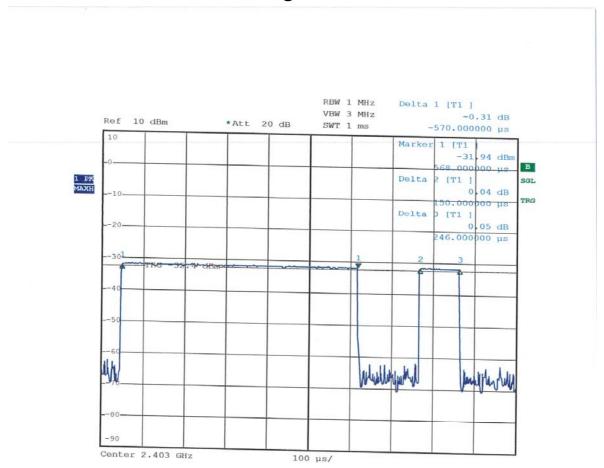
24.NOV.2009 16:29:20




Date: 24.NOV.2009 16:30:57



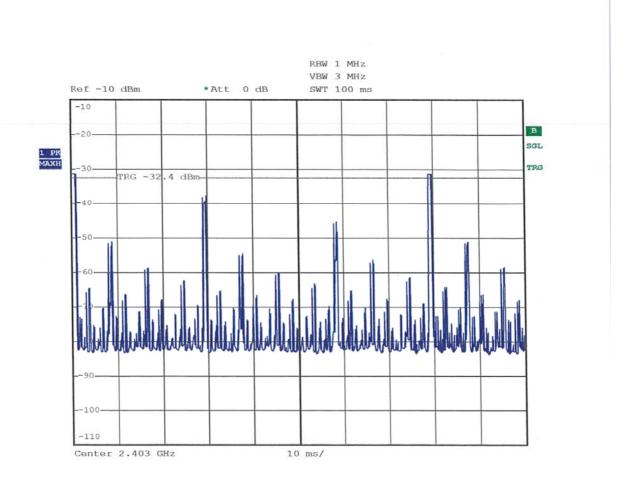
Date: 24.NOV.2009 16:33:31






Date: 24.NOV.2009 16:34:56

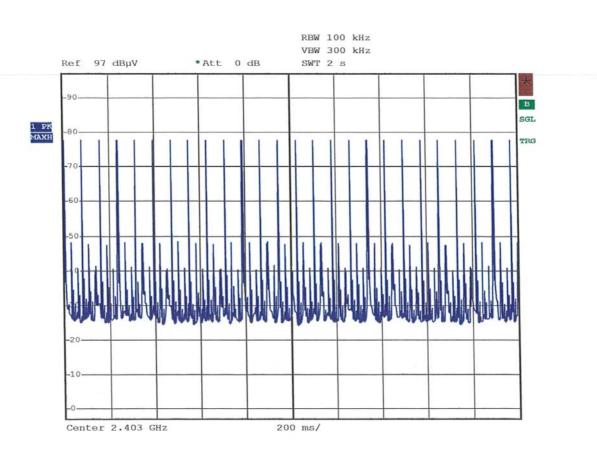



# ANNEX 2: AVERAGE TIME OF OCCUPANCY ON ANY FREQUENCY



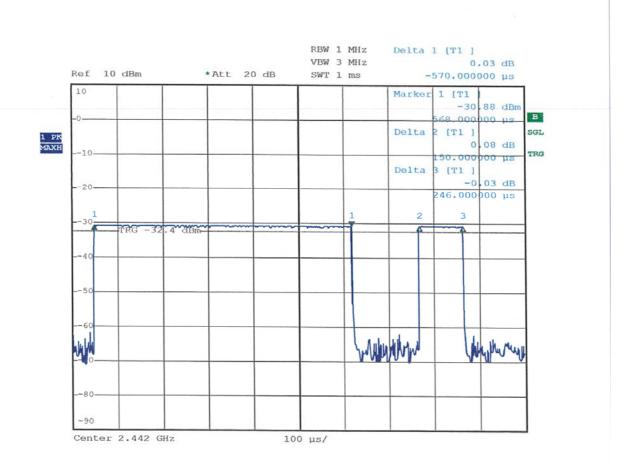
Date:

7.NOV.2009 17:04:09






Date:


7.NOV.2009 16:54:14

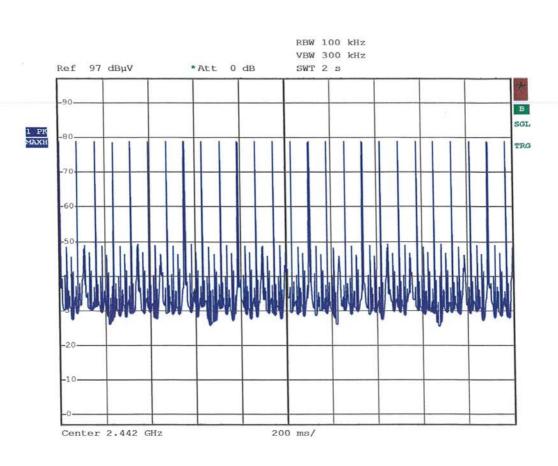




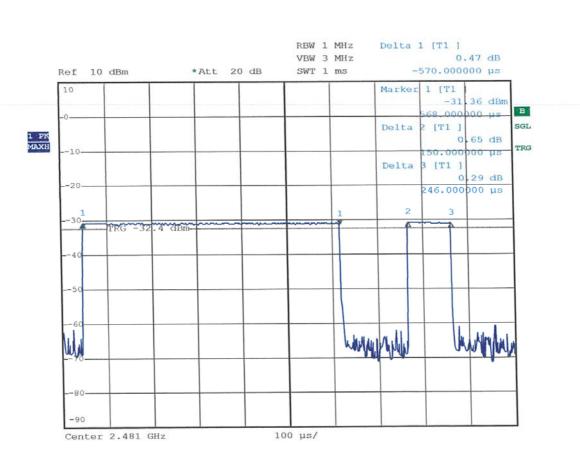

Date: 24.NOV.2009 16:37:48





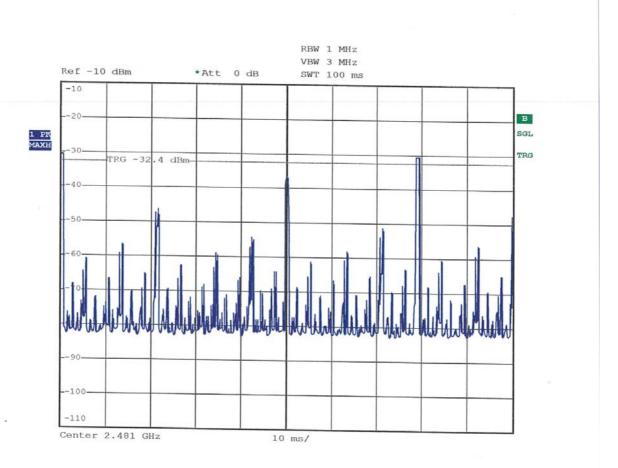

Date: 7.NOV.2009 17:02:24



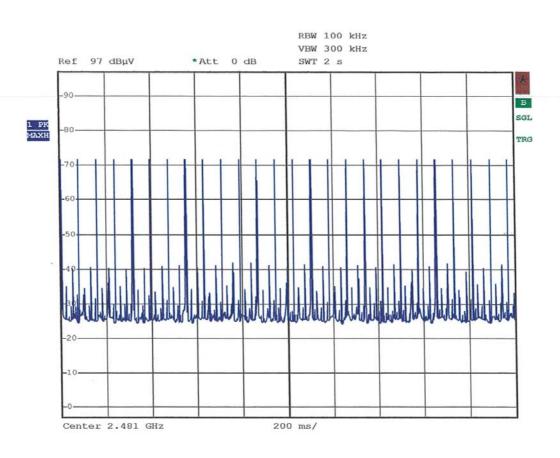



Date: 7.NOV.2009 16:56:07





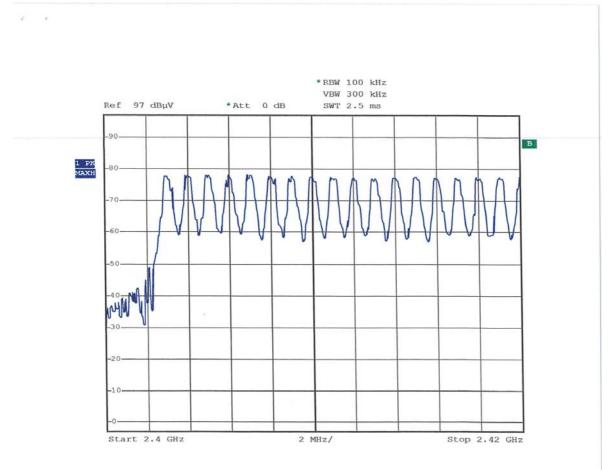

Date: 24.NOV.2009 16:39:24




Date: 7.NOV.2009 17:00:21





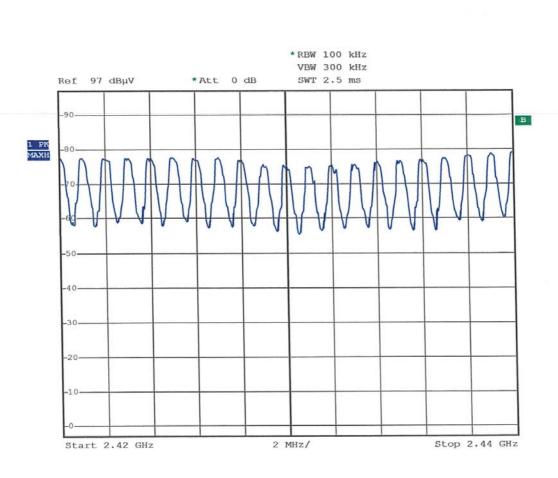

Date: 7.NOV.2009 16:57:50



Date: 24.NOV.2009 16:41:01



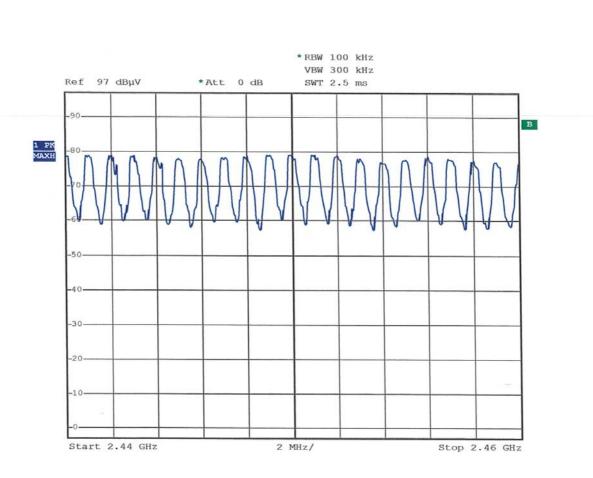
# **ANNEX 3: NUMBER OF HOPPING FREQUENCIES**




Date:

24.NOV.2009 16:42:42

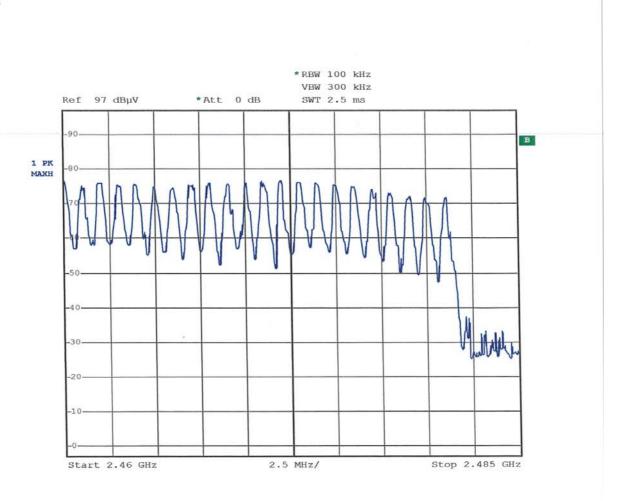



2 4



Date:

24.NOV.2009 16:44:22






Date:

24.NOV.2009 16:45:33





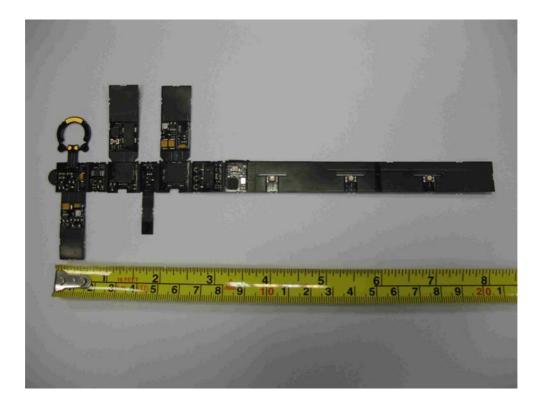
Date:

24.NOV.2009 16:47:35



# ANNEX 4: PHOTOS OF THE EQUIPMENT UNDER TEST

#### **GENERAL VIEW**










Printed circuit board: face 1





# Printed circuit board: face 2





# ANNEX 5: TEST SET UP AND OPEN AREA TEST SITE







