

Test Report

Report Number:

F145298E6

Applicant:

u-blox Malmö AB

Manufacturer:

u-blox Malmö AB

Equipment under Test (EUT):

ODIN-W161

Laboratory accredited by
Deutsche Akkreditierungsstelle GmbH (DAkkS)
in compliance with DIN EN ISO/IEC 17025
under the Reg. No. D-PL-17186-01-02,
FCC Test site registration number 90877 and
Industry Canada Test site registration IC3469A-1

REFERENCES

- [1] **ANSI C63.10-2013** American National Standard for Methods of Measuring of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- [2] **FCC CFR 47 Part 15 (December 2014)** Radio Frequency Devices
- [3] **Publication Number 558074 (June 2014)** DTS Meas Guidance v03r02
- [4] **RSS-210 Issue 8 (December 2010)** Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
- [5] **RSS-Gen Issue 4 (November 2014)** General Requirements for Compliance of Radio Apparatus

TEST RESULT

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test.

The complete test results are presented in the following.

Test engineer:	Wolfgang KASALOWSKY		25 June 2015
	Name	Signature	Date
Authorized reviewer:	Bernd STEINER		25 June 2015
	Name	Signature	Date

RESERVATION

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

Contents:	Page
1 IDENTIFICATION	4
1.1 Applicant.....	4
1.2 Manufacturer.....	4
1.3 Test laboratory.....	4
1.4 EUT (Equipment Under Test)	5
1.5 Dates	6
2 OPERATIONAL STATES.....	7
3 ADDITIONAL INFORMATION.....	10
4 OVERVIEW	10
5 TEST RESULTS	11
5.1 Maximum peak output power.....	11
5.1.1 Method of measurement.....	11
5.1.2 Test results	12
5.2 DTS Bandwidth.....	13
5.2.1 Method of measurement.....	13
5.2.2 Test result	14
5.3 Peak Power Spectral Density	15
5.3.1 Method of measurement.....	15
5.3.2 Test result	16
5.4 Band-edge compliance.....	17
5.4.1 Method of measurement (band edges next to unrestricted bands (radiated)).....	17
5.4.2 Test result (band edges next to unrestricted bands (radiated))	18
5.4.3 Method of measurement (band edges next to restricted bands (radiated))	20
5.4.4 Test result (band edges next to restricted bands (radiated))	20
5.5 Maximum unwanted emissions.....	24
5.5.1 Method of measurement (radiated emissions)	24
5.5.2 Test results (radiated emissions)	31
5.5.2.1 Preliminary radiated emission measurement.....	31
5.5.2.2 Final radiated emission measurement (9 kHz to 1 GHz).....	37
5.5.2.3 Final radiated emission measurement (1 GHz to 25 GHz).....	37
5.6 Conducted emissions on power supply lines (150 kHz to 30 MHz).....	41
5.6.1 Method of measurement.....	41
5.6.2 Test results (conducted emissions on power supply lines)	42
6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS.....	44
7 REPORT HISTORY	45
8 LIST OF ANNEXES	45

1 IDENTIFICATION

1.1 Applicant

Name:	u-blox Malmö AB
Address:	Östra Varvsgatan 4, 5 tr, SE-211 75 Malmö
Country:	Sweden
Name for contact purposes:	Mr. Mats ANDERSSON
Phone:	+ 46 40 63 07 100
Fax:	+ 46 40 23 71 37
eMail Address:	mats.andersson@u-blox.com
Applicant represented during the test by the following person:	None

1.2 Manufacturer

Name:	u-blox Malmö AB
Address:	Östra Varvsgatan 4, 5 tr, SE-211 75 Malmö
Country:	Sweden
Name for contact purposes:	Mr. Mats ANDERSSON
Phone:	+ 46 40 63 07 100
Fax:	+ 46 40 23 71 37
eMail Address:	mats.andersson@u-blox.com
Applicant represented during the test by the following person:	None

1.3 Test laboratory

The tests were carried out at: **PHOENIX TESTLAB GmbH**
Königswinkel 10
32825 Blomberg
Germany

accredited by Deutsche Akkreditierungsstelle GmbH (DAkkS) in compliance with DIN EN ISO/IEC 17025 under the Reg. No. D-PL-17186-01-02, FCC Test site registration number 90877 and Industry Canada Test site registration IC3469A-1.

1.4 EUT (Equipment Under Test)

Test object: *	WLAN module
Model: *	ODIN-W161
FCC ID: *	KQ9-W161A
IC: *	1317A-W161A
Serial number: *	WLAN: 292006260209, 292006260218, 292006259621, 292006259601, 292006260221
PCB identifier: *	0953-03
Hardware version: *	3.1
Software version: *	cB-2282(wlan_pcti_release_1.0.13605)

Fulfils WLAN specification: *	IEEE, 802.11b, 802.11g, 802.11n, 802.11a				
Antenna type: *	Integral antenna				
	TE connectivity P/N: 1513164-1				
Antenna gain: *	4 dBi				
Antenna connector: *	temporary UFL connector for test purposes only				
Power supply - EUT	3.3 V DC				
Power supply Host	U _{nom} =	5 V DC	U _{min} =	3.6 V DC	U _{max} =
Type of modulation: *	802.11a: OFDM 802.11b: CCK, DQPSK, DBPSK 802.11g: OFDM 802.11n: OFDM				
Operating frequency range: *	2412 MHz to 2462 MHz, 5180 MHz to 5240 MHz, 5260 MHz to 5320 MHz, 5500 MHz to 5700 MHz, 5745 to 5825 MHz				
Number of channels: *	32				
Temperature range: *	-40 °C to +85 °C				
Lowest / highest internal clock frequency: *	32768 Hz / 26.000 MHz				

* declared by the applicant.

Channel 01	RX:	2412 MHz	TX:	2412 MHz
Channel 02	RX:	2417 MHz	TX:	2417 MHz
Channel 03	RX:	2422 MHz	TX:	2422 MHz
Channel 04	RX:	2427 MHz	TX:	2427 MHz
Channel 05	RX:	2432 MHz	TX:	2432 MHz
Channel 06	RX:	2437 MHz	TX:	2437 MHz
Channel 07	RX:	2442 MHz	TX:	2442 MHz
Channel 08	RX:	2447 MHz	TX:	2447 MHz
Channel 09	RX:	2452 MHz	TX:	2452 MHz
Channel 10	RX:	2457 MHz	TX:	2457 MHz
Channel 11	RX:	2462 MHz	TX:	2462 MHz
Channel 36	RX:	5180 MHz	TX:	5180 MHz
Channel 40	RX:	5200 MHz	TX:	5200 MHz
Channel 44	RX:	5220 MHz	TX:	5220 MHz
Channel 48	RX:	5240 MHz	TX:	5240 MHz
Channel 52	RX:	5260 MHz	TX:	5260 MHz
Channel 56	RX:	5280 MHz	TX:	5280 MHz
Channel 60	RX:	5300 MHz	TX:	5300 MHz
Channel 64	RX:	5320 MHz	TX:	5320 MHz
Channel 100	RX:	5500 MHz	TX:	5500 MHz
Channel 104	RX:	5520 MHz	TX:	5520 MHz
Channel 108	RX:	5540 MHz	TX:	5540 MHz
Channel 112	RX:	5560 MHz	TX:	5560 MHz
Channel 116	RX:	5580 MHz	TX:	5580 MHz
Channel 132	RX:	5660 MHz	TX:	5660 MHz
Channel 136	RX:	5680 MHz	TX:	5680 MHz
Channel 140	RX:	5700 MHz	TX:	5700 MHz
Channel 149	RX:	5745 MHz	TX:	5745 MHz
Channel 153	RX:	5765 MHz	TX:	5765 MHz
Channel 157	RX:	5785 MHz	TX:	5785 MHz
Channel 161	RX:	5805 MHz	TX:	5805 MHz
Channel 165	RX:	5825 MHz	TX:	5825 MHz

The following external I/O cables were used:

Identification	Length
DC power cable	2 m *
RS232 cable	2 m *

*: Length during the test if not other specified.

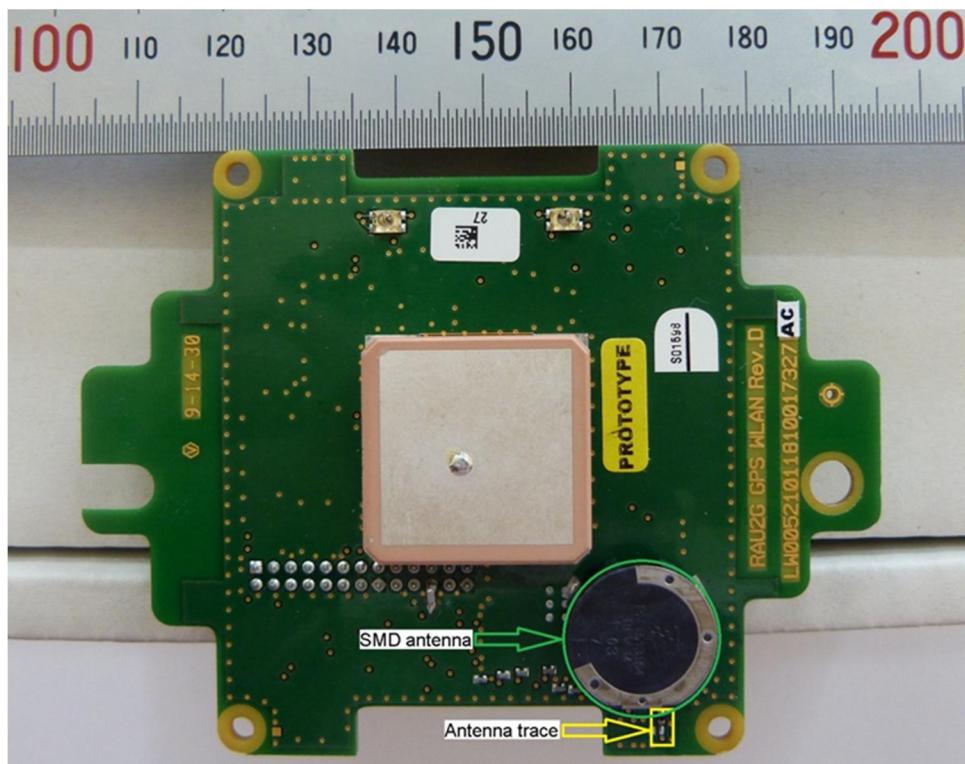
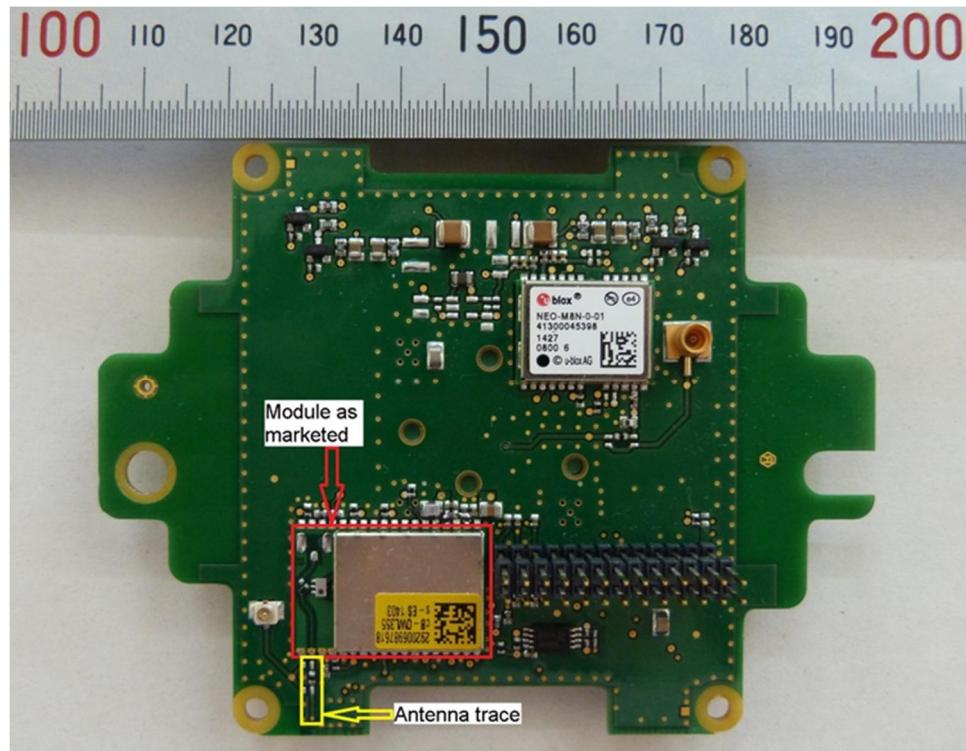
1.5 Dates

Date of receipt of test sample:	03 September 2014
Start of test:	10 September 2014
End of test:	19 September 2014

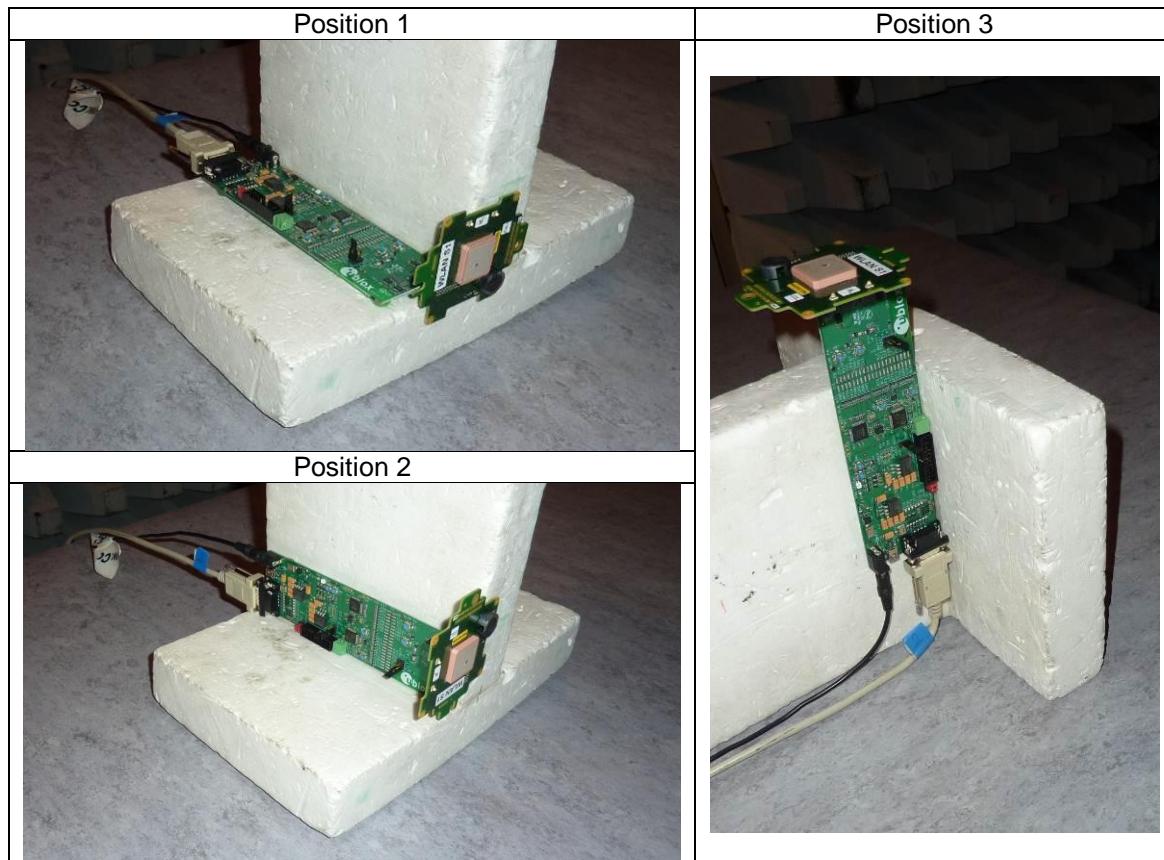
2 OPERATIONAL STATES

The equipment under test (EUT) is a WLAN dual band module soldered on to a reference design board. The WLAN module is equipped with an integral antenna on the reference design board. The reference design board is connected to an adaptor board. A RS232 connector and the power supply connector are located at the adaptor board.

The tests were carried out with an unmodified sample of the EUT. Some tests were carried out conducted at the temporary UFL connector at the radio board. Other tests were carried out radiated with the integral antenna on the reference design.



The adaptor board was connected via a RS232 connection to a laptop computer. With test software running on the laptop the operation mode as shown in the table below could be chosen.

During the tests, the test samples were powered with 5 V via the power supply connection of the adaptor board from a laboratory power supply.


The following operation modes were identified as worst case condition and used during the tests:

Operation mode	Description of the operation mode	WLAN mode	WLAN channel	Modulation	Data rate / Mbps
1	Continuous transmitting on 2412 MHz	b	1	CCK	1 MBit/s
2	Continuous transmitting on 2437 MHz	b	6	CCK	1 MBit/s
3	Continuous transmitting on 2462 MHz	b	11	CCK	1 MBit/s
4	Continuous transmitting on 2412 MHz	g	1	OFDM	6 MBit/s
5	Continuous transmitting on 2437 MHz	g	6	OFDM	6 MBit/s
6	Continuous transmitting on 2462 MHz	g	11	OFDM	6 MBit/s
7	Continuous transmitting on 2412 MHz	n 20 MHz	1	OFDM	6.5 MBit/s
8	Continuous transmitting on 2437 MHz	n 20 MHz	6	OFDM	6.5 MBit/s
9	Continuous transmitting on 2462 MHz	n 20 MHz	11	OFDM	6.5 MBit/s
10	Normal operation Mode with automatic channel selection from Access Points	-	-	OFDM	-

Physical boundaries of the ODIN-W161 and integral antenna on the reference design:

Table 1 Worst case test setup

Preliminary tests were performed to find worst-case configuration and position. The radiated emission measurements were carried out in the orthogonal direction that emits the highest spurious emission levels.

The following test modes were adjusted during the tests:

Test items	Operation mode
Maximum Peak Output Power	1 - 9
DTS Bandwidth	1 - 9
Peak Power Spectral Density	1 - 9
Band Edge Compliance	1, 3, 4, 6, 7, 9
Maximum Unwanted Emissions	1 - 9
Conducted emission on power supply line	10

3 ADDITIONAL INFORMATION

The power was set to the values shown in the table below.

Channel	1 - 11
Power 1 MBps	14.5
Power 2/5.5/11 MBps	15.5
Power all g and n20 modes	16.5

This report contains the results of the EUT operating in the 2.4 GHz band only.

4 OVERVIEW

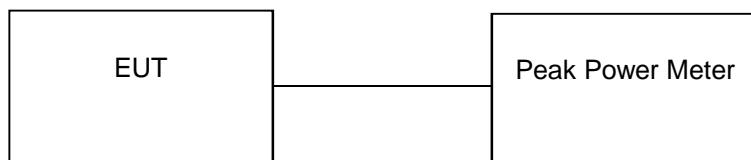
Application	Frequency range [MHz]	FCC 47 CFR Part 15 section [2]	RSS 210, Issue 8 [4] or RSS-Gen, Issue 4 [5]	Status	Refer page
Maximum Peak Output Power	2400.0 - 2483.5	15.247 (b) (3), (4)	A8.4 (4) [4]	Passed	11 et seq
DTS Bandwidth	2400.0 - 2483.5	15.247 (a) (2)	A8.2 (a) [4]	Passed	13 et seq
Peak Power Spectral Density	2400.0 - 2483.5	15.247 (e)	A8.2 (b) [4]	Passed	15 et seq
Band edge compliance	2400.0 - 2483.5	15.247 (d)	A8.5 [4]	Passed	17 et seq.
Radiated emissions (transmitter)	0.009 – 26,500	15.247 (d) 15.205 (a) 15.209 (a)	A8.5 [4] 8.9 [5], 2.5 [4]	Passed	24 et seq.
Conducted emissions on supply line	0.15 - 30	15.207 (a)	8.8 [5]	Passed	41 et seq.

5 TEST RESULTS

5.1 Maximum peak output power

5.1.1 Method of measurement

The EUT has to be connected to the power meter via a low loss cable.


Acceptable measurement configurations

The measurement procedures described herein are based on the use of an antenna-port conducted test configuration.

PKPM1 – Peak power meter method was used for this test. The procedure is described in chapter 9.1.2 of document [3].

The measurement was performed at the upper and lower end and the middle of the assigned frequency band.

Test set-up:

5.1.2 Test results

Ambient temperature	22 °C	Relative humidity	62 %
---------------------	-------	-------------------	------

The highest antenna gain is 4.0 dBi. Therefore no reduction of the Peak power limit is necessary.

Operation Mode	Antenna gain combined [dBi]	Maximum peak output power [dBm]	Margin [dB]	Peak power limit [dBm]
1	4.0	15.1	14.9	30
2	4.0	15.3	14.7	30
3	4.0	15.3	14.7	30
4	4.0	21.7	8.3	30
5	4.0	22.5	7.5	30
6	4.0	22.3	7.7	30
7	4.0	21.3	8.7	30
8	4.0	22.5	7.5	30
9	4.0	21.9	8.1	30
Measurement uncertainty		+0.66 dB / -0.72 dB		

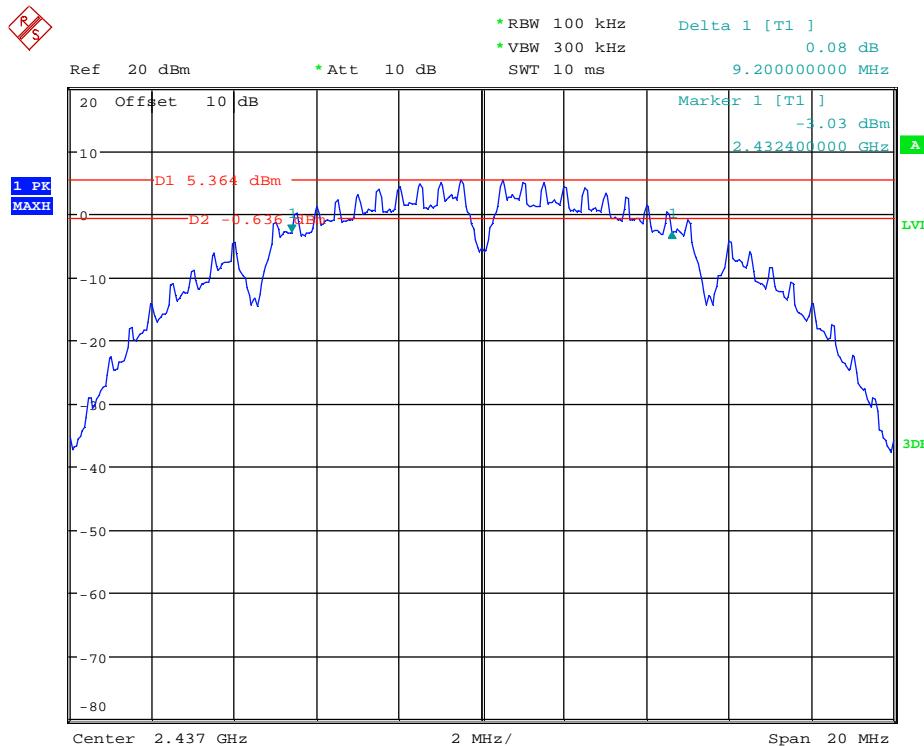
Test: Passed

TEST EQUIPMENT USED FOR THE TEST:
26, 27

5.2 DTS Bandwidth

5.2.1 Method of measurement

The relating measurements were carried out in a conducting manner. Therefore, the antenna connector was directly connected to a spectrum analyser. The measurement procedure refers to part 8.1 of document [3].


- Set RBW = 100 kHz.
- Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
- Detector = Peak.
- Trace mode = max hold.
- Sweep = auto couple.
- Allow the trace to stabilize.
- Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.2.2 Test result

Ambient temperature	22 °C	Relative humidity	59 %
---------------------	-------	-------------------	------

The following results were measured at the antenna port of the EUT. The plot shows an exemplary measurement result for the worst documented case. The other results are listed in the following table.

136117_6dB-BW_b_6: DTS Bandwidth (operation mode 2):

Operation Mode	Center Frequency [MHz]	Minimum 6-dB Bandwidth Limit [MHz]	6 dB Bandwidth [MHz]	Result
1	2412	0.5	9.200	Passed
2	2437	0.5	9.200	Passed
3	2462	0.5	9.200	Passed
4	2412	0.5	15.900	Passed
5	2437	0.5	15.800	Passed
6	2462	0.5	15.900	Passed
7	2412	0.5	15.900	Passed
8	2437	0.5	15.750	Passed
9	2462	0.5	15.550	Passed
Measurement uncertainty		+0.66 dB / -0.72 dB		

Test: Passed

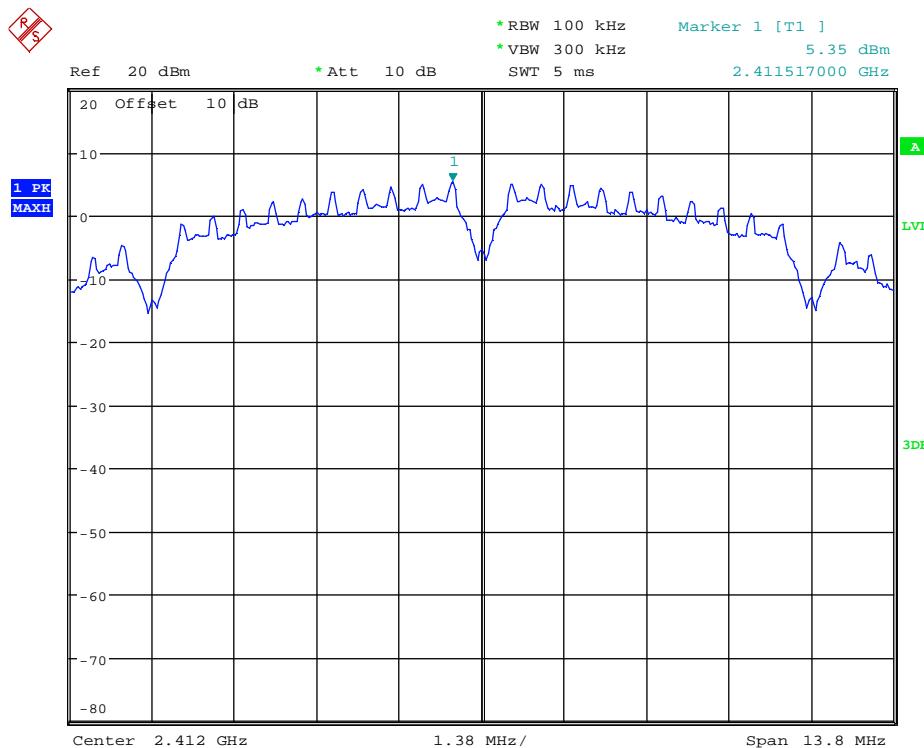
TEST EQUIPMENT USED FOR THE TEST:

7

5.3 Peak Power Spectral Density

5.3.1 Method of measurement

The relating measurements were carried out in a conducting manner. Therefore, the antenna connector was directly connected to a spectrum analyser. The measurement procedure refers to part 10.2 of document [3].


- Set analyser center frequency to DTS channel center frequency
- Set the span to 1.5 times the DTS bandwidth.
- Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- Set the VBW $\geq 3 \times \text{RBW}$.
- Detector = peak.
- Sweep time = auto couple.
- Trace mode = max hold.
- Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level within the RBW.
- If measured value exceeds limit, reduce RBW (not less than 3 kHz) and repeat.

5.3.2 Test result

Ambient temperature	22 °C	Relative humidity	59 %
---------------------	-------	-------------------	------

The following results were measured at the antenna port of the EUT. The plot shows an exemplary measurement result for the worst documented case. The other results are listed in the following table.

136117_PwrSpecDens_b_1.wmf: Power Spectral Density (operation mode 1):

Operation Mode	Peak Frequency [MHz]	Power Spectral Density Limit [dBm/3kHz]	Power Spectral Density Reading [dBm/100kHz]	Array Gain [dB]	Power Spectral Density Level [dBm/100kHz]	Margin [dB]	Result
1	2.411.517	8	5.35	0.00	5.35	2.65	Passed
2	2.437.483	8	5.32	0.00	5.32	2.68	Passed
3	2.462.483	8	5.48	0.00	5.48	2.52	Passed
4	2.413.288	8	3.19	0.00	3.19	4.81	Passed
5	2.438.232	8	4.83	0.00	4.83	3.17	Passed
6	2.464.528	8	4.33	0.00	4.33	3.67	Passed
7	2413.240	8	2.61	0.00	2.61	5.39	Passed
8	2438.276	8	4.82	0.00	4.82	3.18	Passed
9	2463.260	8	3.94	0.00	3.94	4.06	Passed
Measurement uncertainty				+0.66 dB / -0.72 dB			

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

7

5.4 Band-edge compliance

5.4.1 Method of measurement (band edges next to unrestricted bands (radiated))

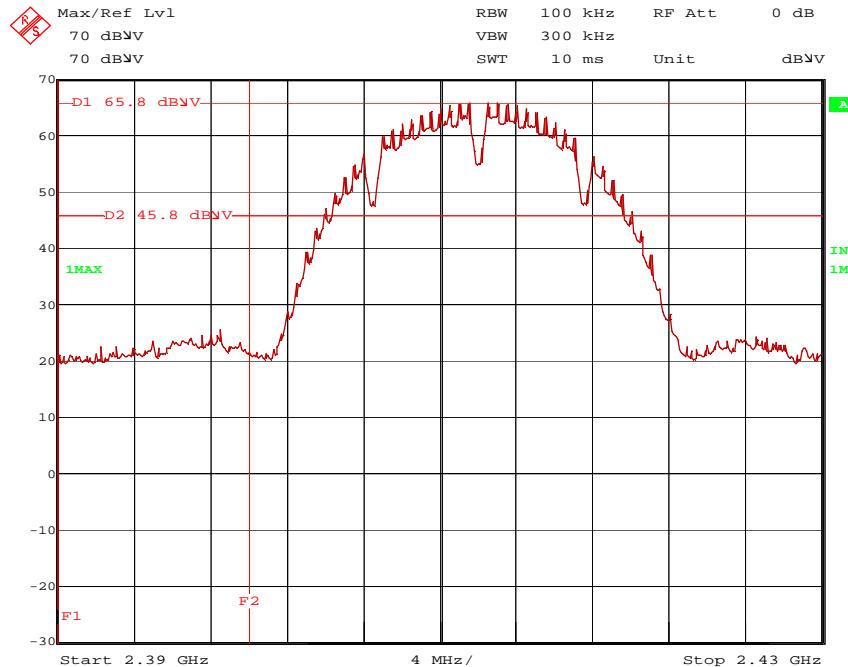
The related measurements were carried out in a radiated manner. The measurement procedure refers to part 11.2 and 11.3 of document [3].

Measurement Procedure – Reference Level:

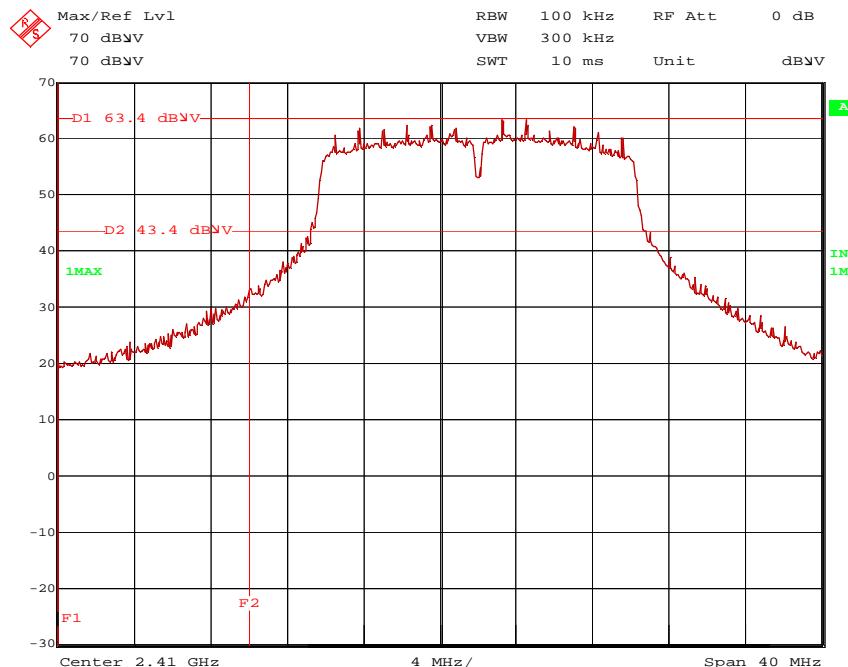
- RBW = 100 kHz.
- VBW \geq 300 kHz.
- Set the span to \geq 1.5 times the DTS Bandwidth.
- Detector = Peak.
- Sweep time = auto couple.
- Trace mode = max hold.
- Allow trace to fully stabilise.
- Use the peak marker function to determine the the maximum amplitude level.

Measurement Procedure – Unwanted Emissions

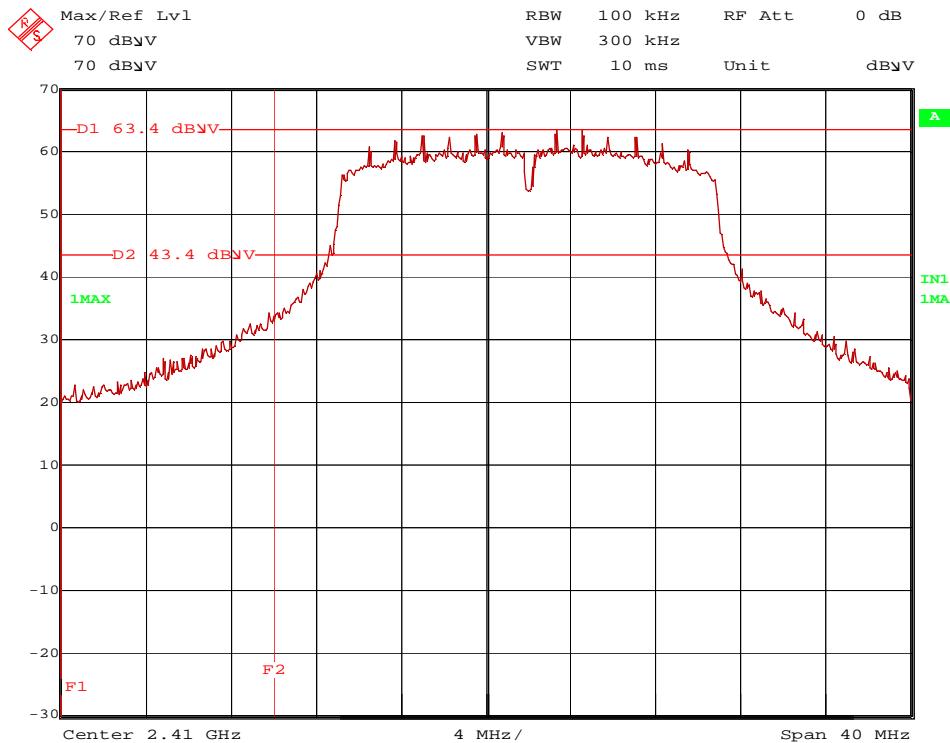
- Set the center frequency and span to encompass the frequency range to be measured.
- RBW = 100 kHz.
- VBW \geq 300 kHz.
- Detector = Peak.
- Ensure that the number of measurement points \geq span/RBW.
- Sweep time = auto couple.
- Trace Mode = max hold.
- Allow the trace to stabilise.
- Use the peak marker function to determine the maximum amplitude level.


The measurement procedure at the band edges was simplified by performing the measurement in just one plot. Both, the in-band-emission and the unwanted emission were be encompassed by the span. After trace stabilization, the maximum peak was be determined by a peak detector and the value was marked by an appropriate limit line. The second limit line, which is 20 dB below the first, marks the limit for the emissions in the unrestricted band. A maximum-peak-detector marks the highest emission in the unrestricted band next to the band edge.

The measurements were performed at the lower end of the 2.4 GHz band.


5.4.2 Test result (band edges next to unrestricted bands (radiated))

Ambient temperature	22 °C	Relative humidity	51 %
---------------------	-------	-------------------	------


145298_S_bandedge_unrestr_ch1_1Mbps.wmf: radiated band-edge compliance (operation mode 1):

145298_S_bandedge_unrestr_ch1_6Mbps_1.wmf: radiated band-edge compliance (operation mode 4):

145298 S bandedge unrestr ch1 6.5Mbps.wmf: radiated band-edge compliance (operation mode 7):

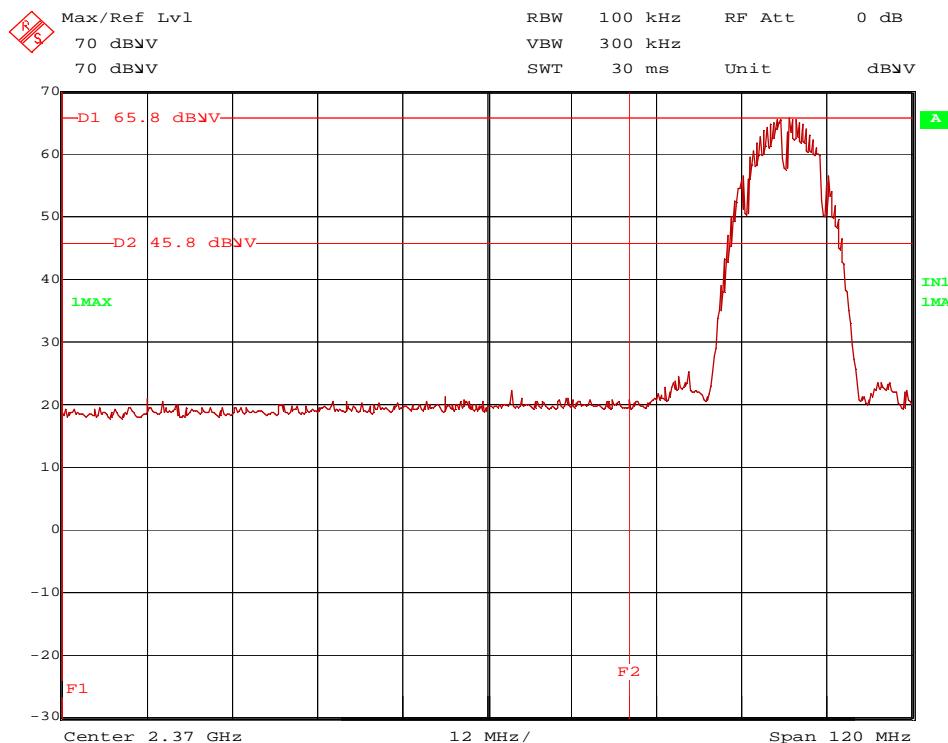
Test: Passed

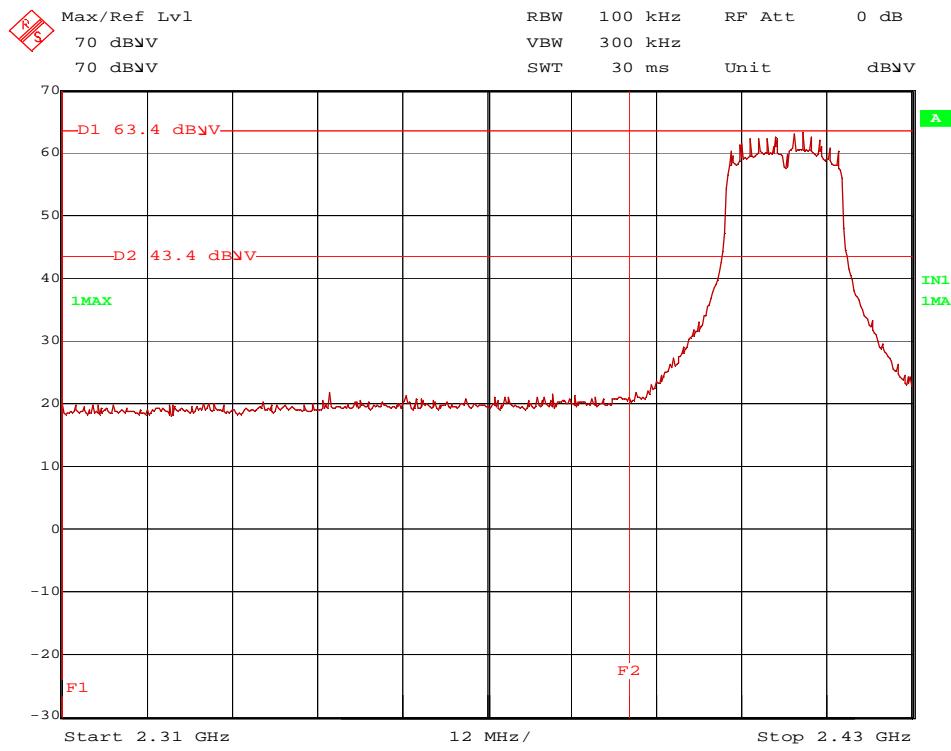
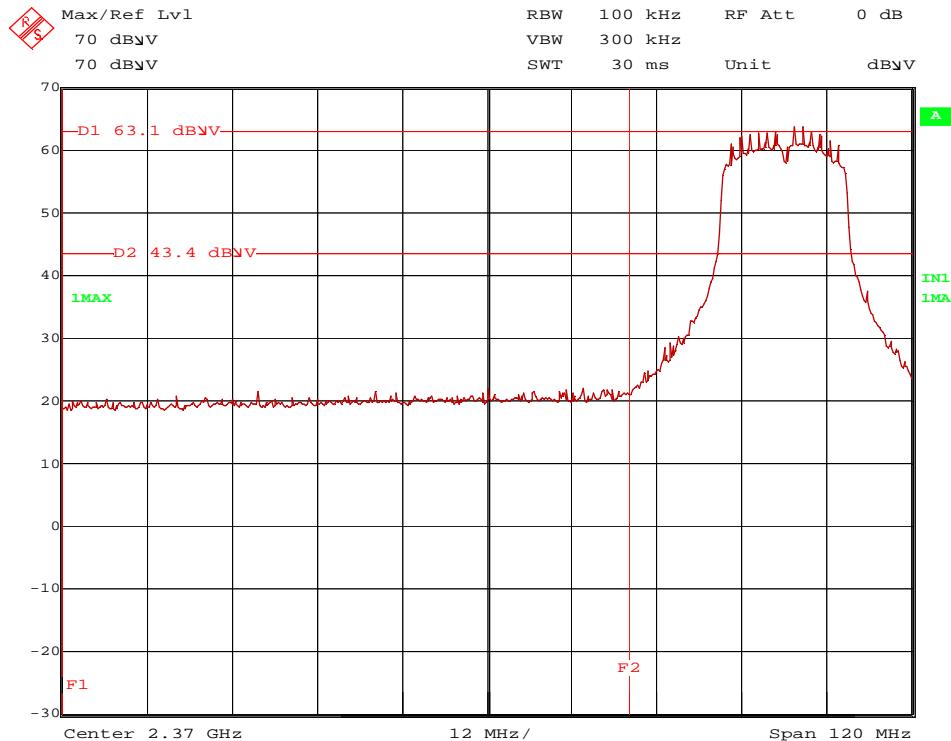
TEST EQUIPMENT USED FOR THE TEST:

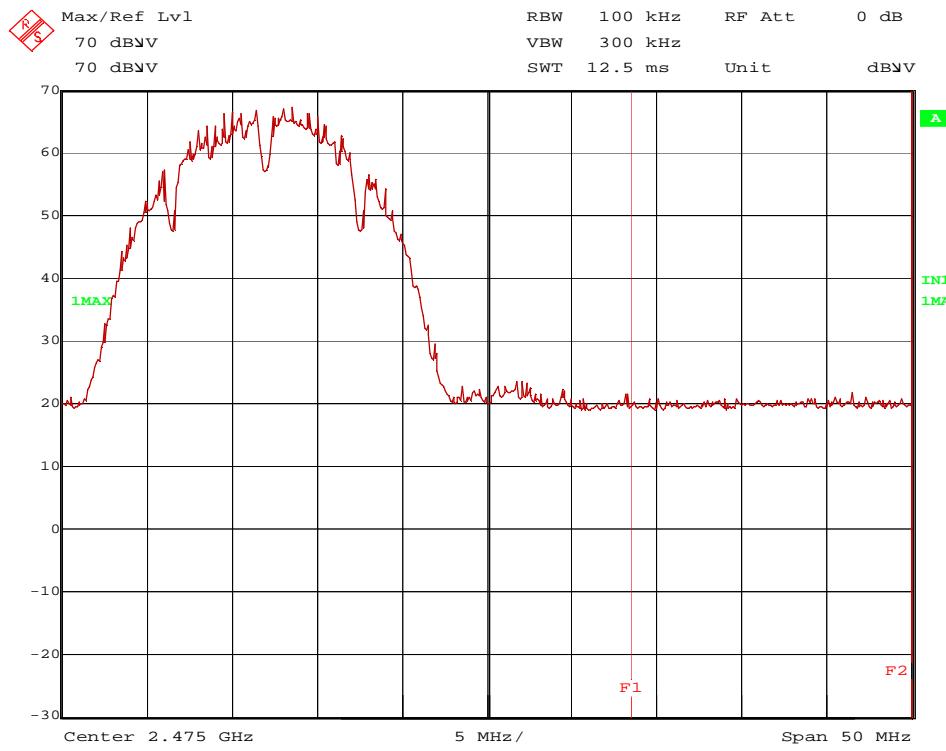
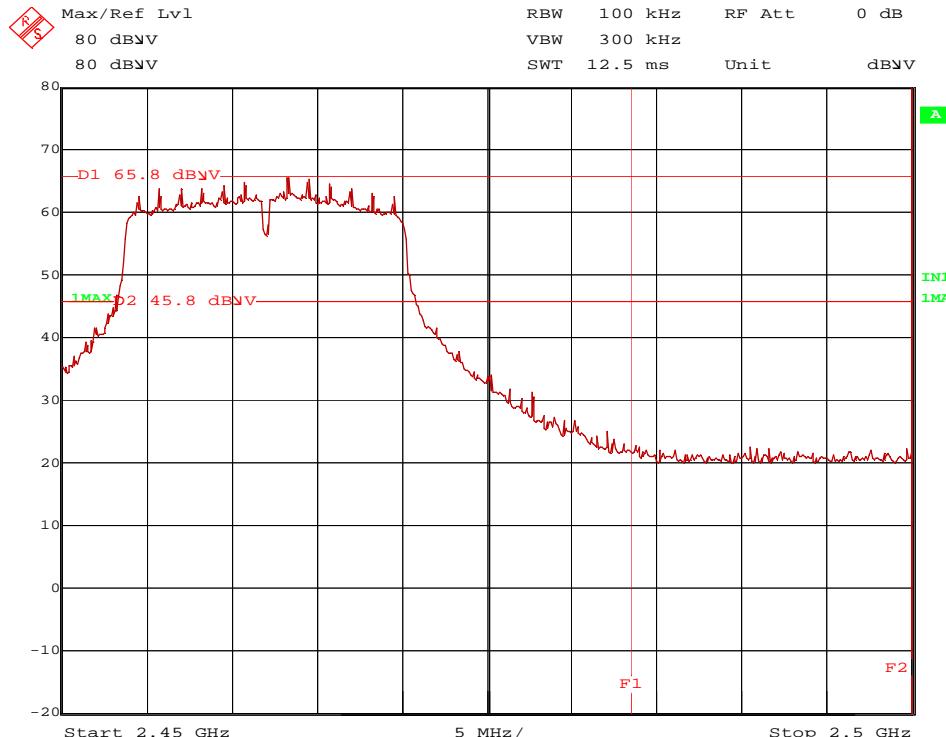
6, 8 - 15, 17-25

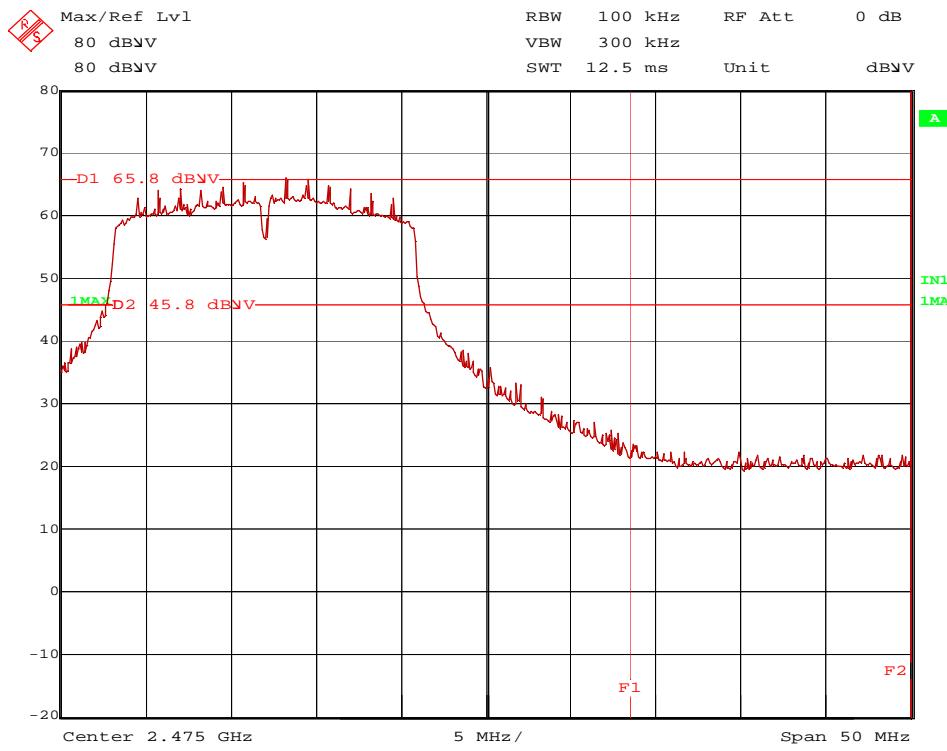
5.4.3 Method of measurement (band edges next to restricted bands (radiated))

The same test set-up and test method as used for the final radiated emission measurement shall be used (refer also subclause 5.5.1 of this test report).


The measurement was performed at the lower and upper end of the 2.4 GHz band.



5.4.4 Test result (band edges next to restricted bands (radiated))



Ambient temperature	22 °C	Relative humidity	51 %
---------------------	-------	-------------------	------


The plots show the pre measurement results. The final results are listed in the following table.

145298_S_bandedge_restr_ch1_1Mbps.wmf: radiated band-edge compliance (operation mode 1):

145298 S bandedge restr ch1 6Mbps.wmf: radiated band-edge compliance (operation mode 4):

145298 S bandedge restr ch1 6.5Mbps.wmf: radiated band-edge compliance (operation mode 7):

145298 S bandedge restr ch11 1Mbps.wmf: radiated band-edge compliance (operation mode 3):

145298 S bandedge restr ch11 6Mbps.wmf: radiated band-edge compliance (operation mode 7):

145298 S bandedge restr ch11 6.5Mbps.wmf: radiated band-edge compliance (operation mode 9):

No spurious emissions were found in the restricted bands during the preliminary measurements. Therefore no final measurements were necessary.

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

6, 8 - 15, 17-25

5.5 Maximum unwanted emissions

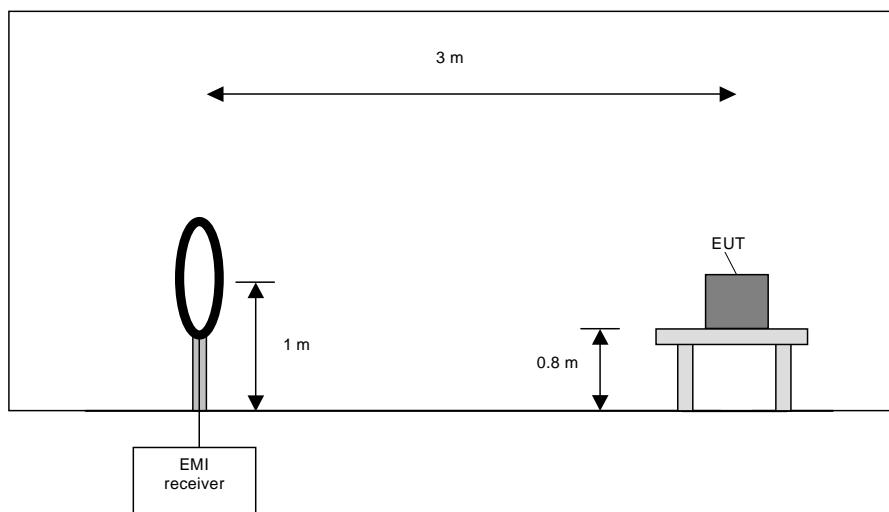
5.5.1 Method of measurement (radiated emissions)

The radiated emission measurement is subdivided into four stages.

- A preliminary measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 30 MHz to 1 GHz.
- A final measurement carried out on an open area test side with reflecting ground plane and various antenna heights in the frequency range 30 MHz to 1 GHz.
- A preliminary measurement carried out in a fully anechoic chamber with a variable antenna distance and height in the frequency range 1 GHz to 110 GHz.
- A final measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 1 GHz to 110 GHz.

All measurements will be carried out with the EUT working on the middle of the assigned frequency band.

Preliminary measurement (9 kHz to 30 MHz):


In the first stage a preliminary measurement will be performed in a shielded room with a measuring distance of

3 meters. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The setup of the Equipment under test will be in accordance to [1].

The frequency range 9 kHz to 30 MHz will be monitored with a spectrum analyser while the system and its cables will be manipulated to find out the configuration with the maximum emission levels if applicable. The EMI Receiver will be set to MAX Hold mode. The EUT and the measuring antenna will be rotated around their vertical axis to found the maximum emissions.

The resolution bandwidth of the spectrum analyser will be set to the following values:

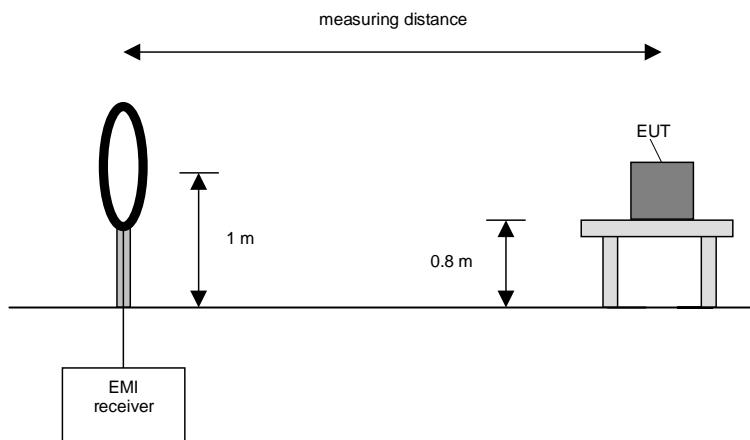
Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	10 kHz

Preliminary measurement procedure:

Prescans were performed in the frequency range 9 kHz to 150 kHz and 150 kHz to 30 MHz.

The following procedure will be used:

- 1) Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2) Manipulate the system cables within the range to produce the maximum level of emission.
- 3) Rotate the EUT by 360 ° to maximize the detected signals.
- 4) Make a hardcopy of the spectrum.
- 5) Measure the frequencies of highest detected emission with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 6) Repeat steps 1) to 5) with the other orthogonal axes of the EUT (only if the EUT is a module or is used in a handheld application).
- 7) Rotate the measuring antenna and repeat steps 1) to 5).


Final measurement (9 kHz to 30 MHz):

In the second stage a final measurement will be performed on an open area test site with no conducting ground plane in a measuring distances of 3 m, 10 m and 30 m whichever is appropriate. In the case where larger measuring distances are required the results will be extrapolated based on the values measured on the closer distances according to [2]. The final measurement will be performed with a EMI Receiver set to Quasi Peak detector except for the frequency bands 9 kHz to 90 kHz and 110 kHz to 490 kHz where an average detector will be used according to [2].

On the during the preliminary measurement detected frequencies the final measurement will be performed while rotating the EUT and the measuring antenna in the range of 0 ° to 360 ° around their vertical axis until the maximum value is found.

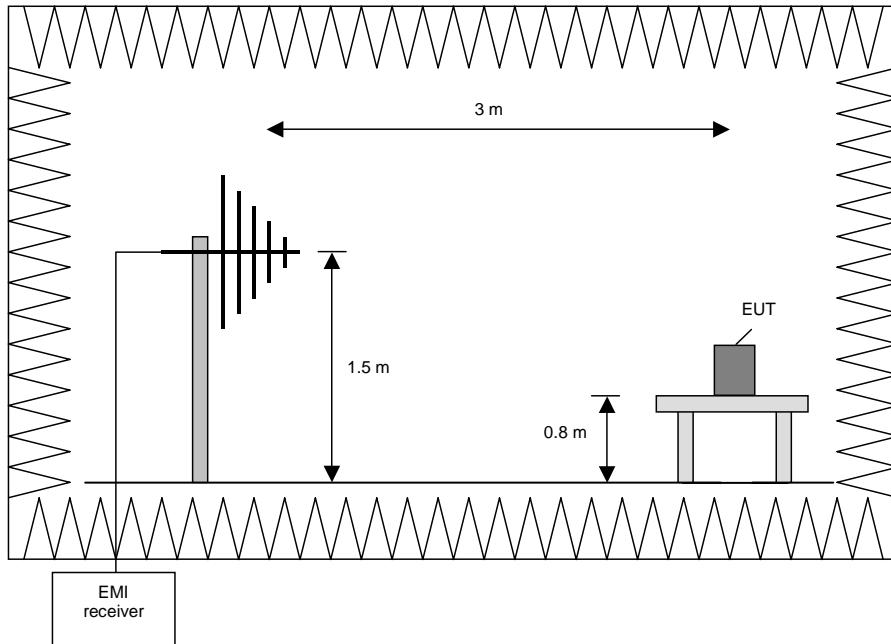
The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz

Final measurement procedure:

The following procedure will be used:

- 1) Monitor the frequency range with the measuring antenna at vertical orientation parallel to the EUT at an azimuth of 0 °.
- 2) Rotate the EUT by 360 ° to maximize the detected signals and note the azimuth and orientation.
- 3) Rotate the measuring antenna to find the maximum and note the value.
- 4) Rotate the measuring antenna and repeat steps 1) to 3) until the maximum value is found.
- 5) Repeat steps 1) to 4) with the other orthogonal axes of the EUT (only if the EUT is a module or is used in a handheld application).


Preliminary measurement (30 MHz to 1 GHz)

In the first stage a preliminary measurement will be performed in a fully anechoic chamber with a measuring distance of 3 meter. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The setup of the Equipment under test will be in accordance to [1].

The frequency range 30 MHz to 1 GHz will be measured with an EMI Receiver set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 °.

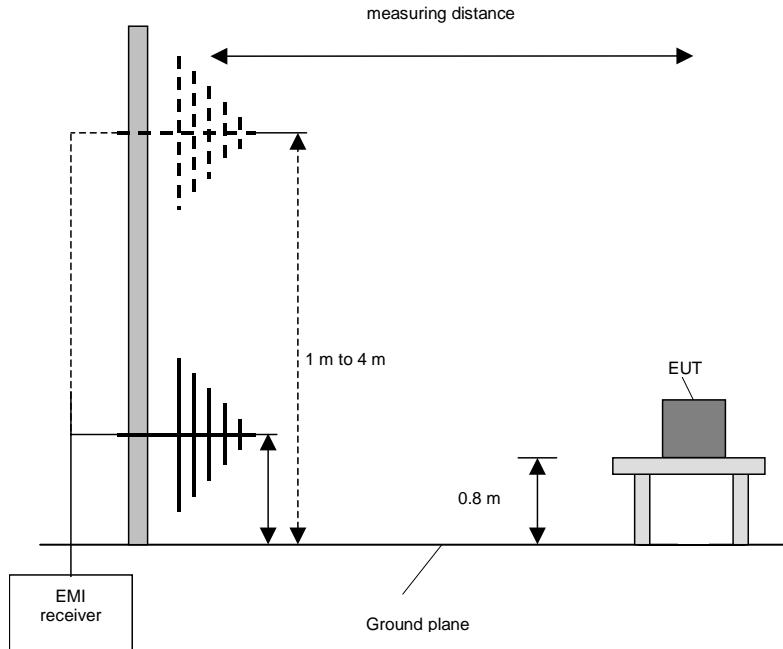
The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
30 MHz to 230 MHz	100 kHz
230 MHz to 1 GHz	100 kHz

Procedure preliminary measurement:

Prescans were performed in the frequency range 30 MHz to 230 MHz and 230 MHz to 1 GHz.

The following procedure will be used:


1. Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
2. Manipulate the system cables within the range to produce the maximum level of emission.
3. Rotate the EUT by 360 ° to maximize the detected signals.
4. Make a hardcopy of the spectrum.
5. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
6. Repeat 1) to 4) for each orthogonal axes of the EUT (only if the EUT is a module or is used in a handheld application).
7. Repeat 1) to 5) with the vertical polarisation of the measuring antenna.

Final measurement (30 MHz to 1 GHz)

A final measurement on an open area test site will be performed on selected frequencies found in the preliminary measurement. During this test the EUT will be rotated in the range of 0 ° to 360 °, the measuring antenna will be set to horizontal and vertical polarisation and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

The resolution bandwidth of the EMI Receiver will be set to the following values:

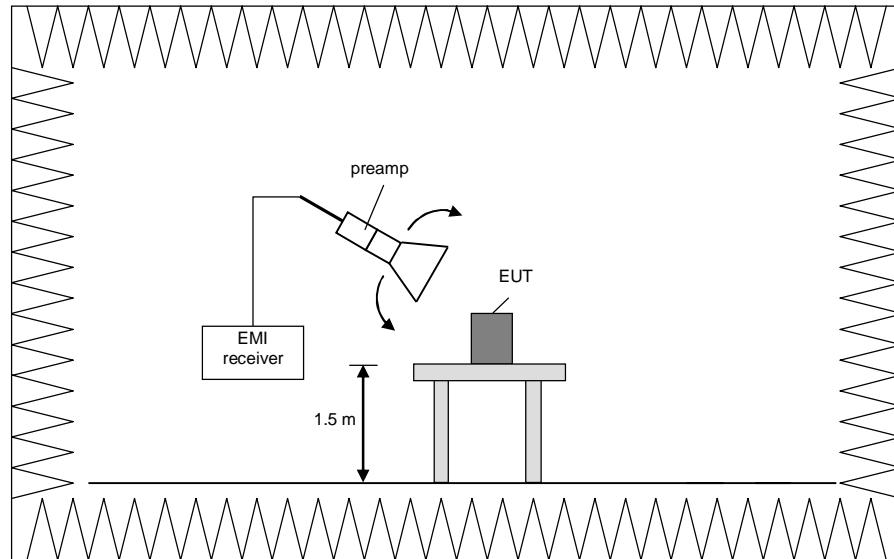
Frequency range	Resolution bandwidth
30 MHz to 1 GHz	120 kHz

Procedure final measurement:

The following procedure will be used:

- 1) Measure on the selected frequencies at an antenna height of 1 m and a EUT azimuth of 23 °.
- 2) Move the antenna from 1 m to 4 m and note the maximum value at each frequency.
- 3) Rotate the EUT by 45 ° and repeat 2) until an azimuth of 337 ° is reached.
- 4) Repeat 1) to 3) for the other orthogonal antenna polarization.
- 5) Move the antenna and the turntable to the position where the maximum value is detected.
- 6) Measure while moving the antenna slowly +/- 1 m.
- 7) Set the antenna to the position where the maximum value is found.
- 8) Measure while moving the turntable +/- 45 °.
- 9) Set the turntable to the azimuth where the maximum value is found.
- 10) Measure with Final detector (QP and AV) and note the value.
- 11) Repeat 5) to 10) for each frequency.
- 12) Repeat 1) to 11) for each orthogonal axes of the EUT (only if the EUT is a module or is used in a handheld application).

Preliminary and final measurement (1 GHz to 110 GHz)

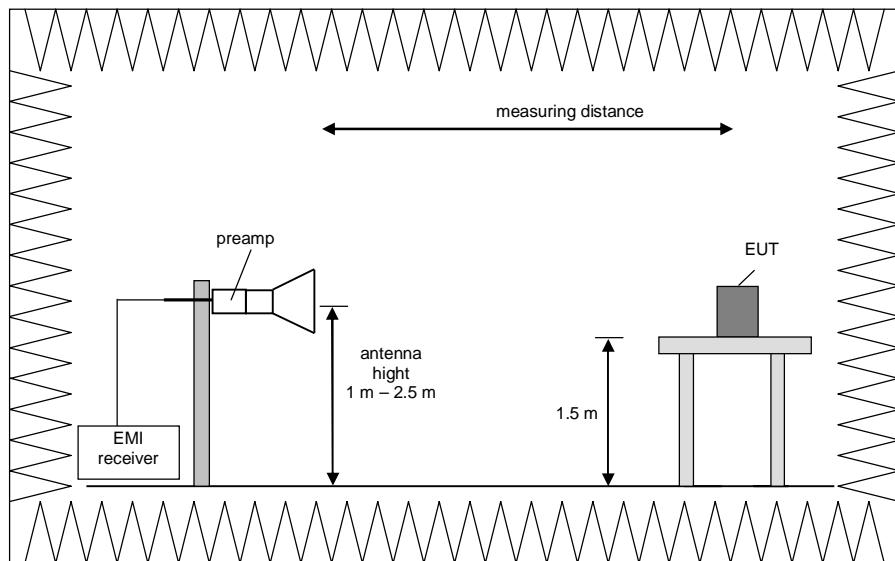

This measurement will be performed in a fully anechoic chamber. Tabletop devices will set up on a non-conducting support a height of 150 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.10-2013 [1].

Preliminary measurement (1 GHz to 110 GHz)

The frequency range will be divided into different sub ranges depending on the frequency range of the used horn antenna. The spectrum analyser set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna, the antenna close to the EUT and while moving the antenna over all sides of the EUT. With the spectrum analyser in CLEAR / WRITE mode the cone of the emission should be found and then the measuring distance will be set to 3 m with the receiving antenna moving in this cone of emission. At this position the final measurement will be carried out.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
1 GHz to 4 GHz	100 kHz
4 GHz to 12 GHz	100 kHz
12 GHz to 18 GHz	100 kHz
18 GHz to 26.5 GHz	100 kHz
26.5 GHz to 40 GHz	100 kHz
40 GHz to 60 GHz	100 kHz
50 GHz to 75 GHz	100 kHz
75 GHz to 110 GHz	100 kHz



Final measurement (1 GHz to 110 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1 MHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 ° in order to have the antenna inside the cone of radiation.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
1 GHz to 4 GHz	1 MHz
4 GHz to 12 GHz	1 MHz
12 GHz to 18 GHz	1 MHz
18 GHz to 26.5 GHz	1 MHz
26.5 GHz to 40 GHz	1 MHz
40 GHz to 60 GHz	1 MHz
50 GHz to 75 GHz	1 MHz
75 GHz to 110 GHz	1 MHz

Procedure of measurement:

The measurements were performed in the frequency range 1 GHz to 4 GHz, 4 GHz to 12 GHz, 12 GHz to 18 GHz, 18 GHz to 26.5 GHz, 26.5 GHz to 40 GHz, 40 GHz to 60 GHz, 60 GHz to 75 GHz and 75 GHz to 110 GHz.

The following procedure will be used:

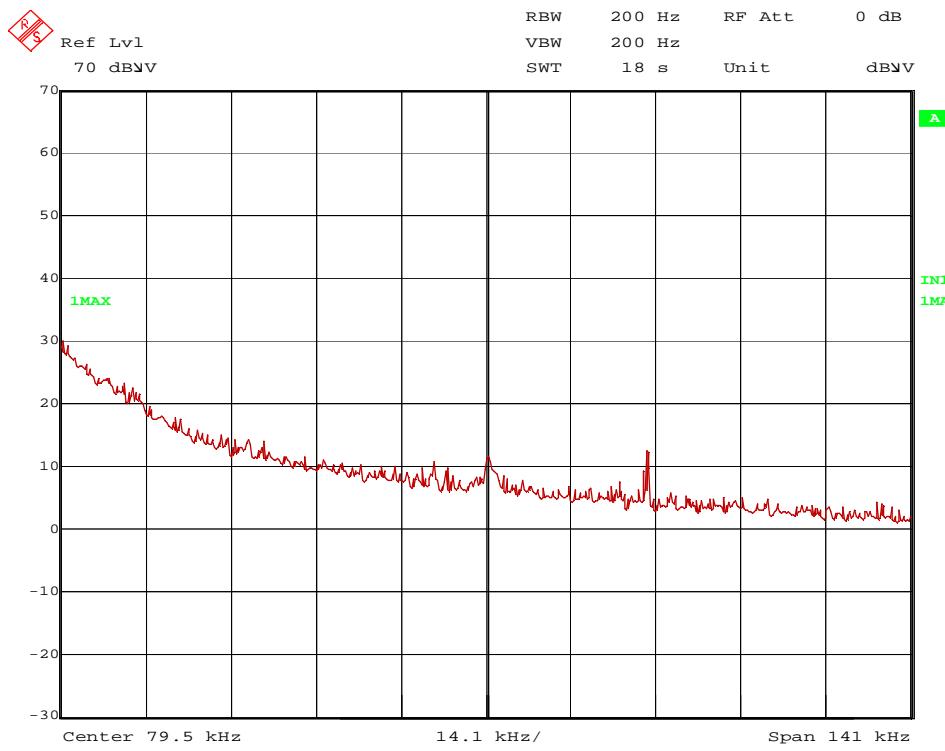
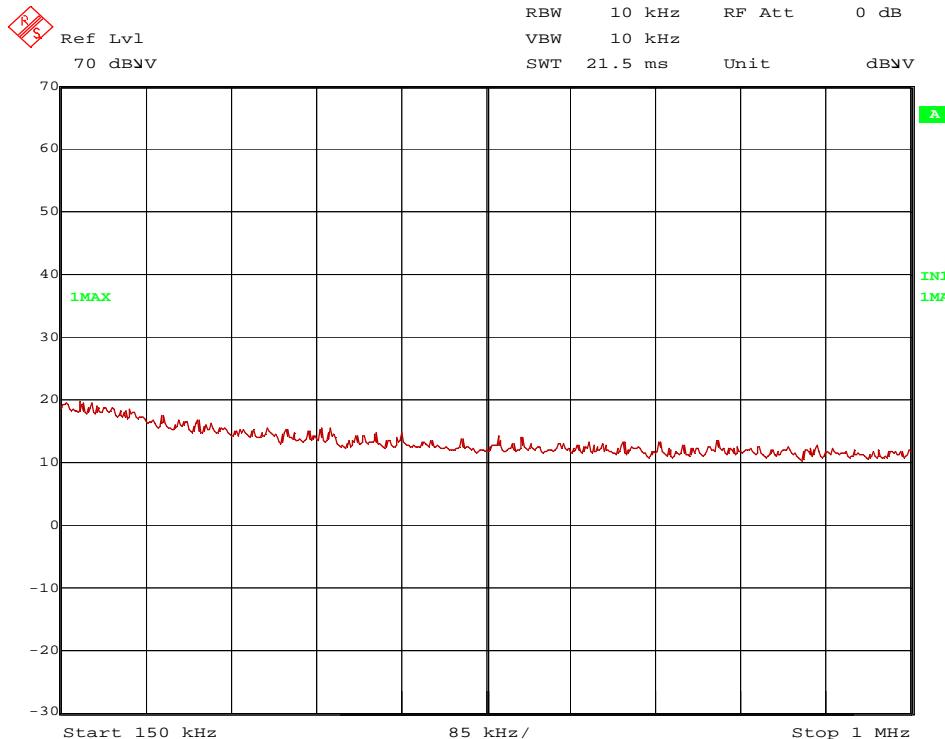
- 1) Monitor the frequency range at horizontal polarisation and move the antenna over all sides of the EUT (if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarisation and repeat 1) with vertical polarisation.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear / Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3 m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarisation and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

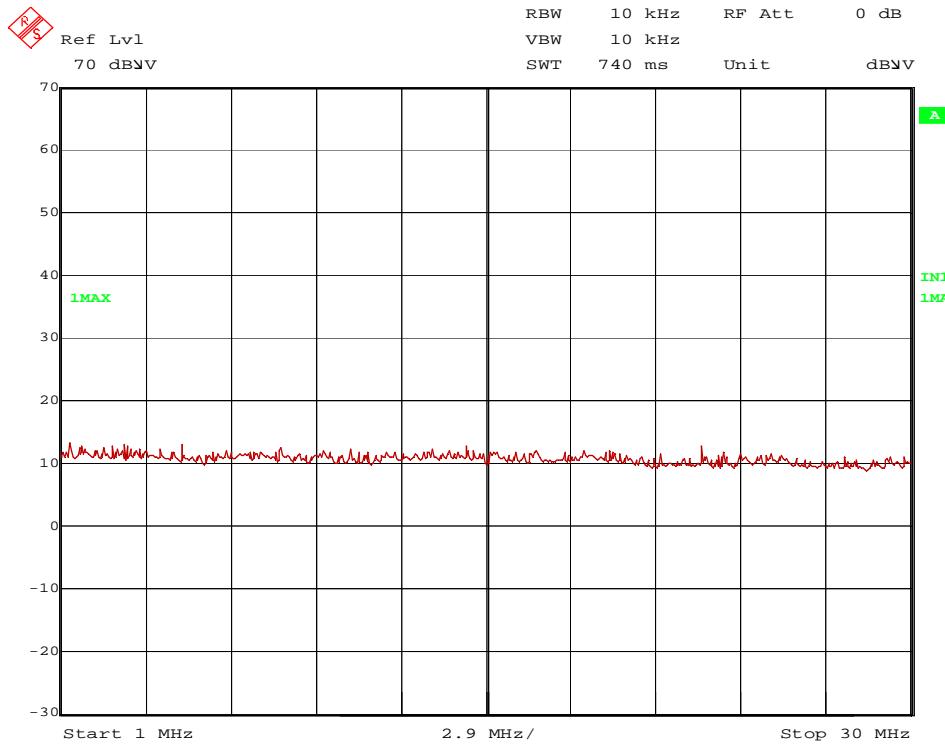
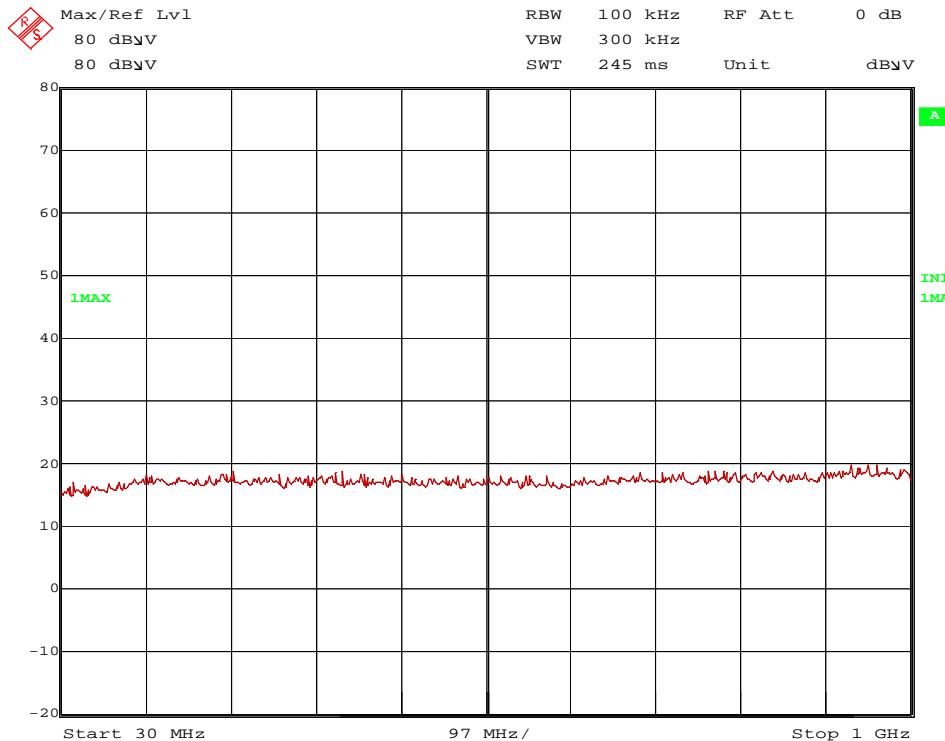
Steps 1) to 6) are defined as preliminary measurement.

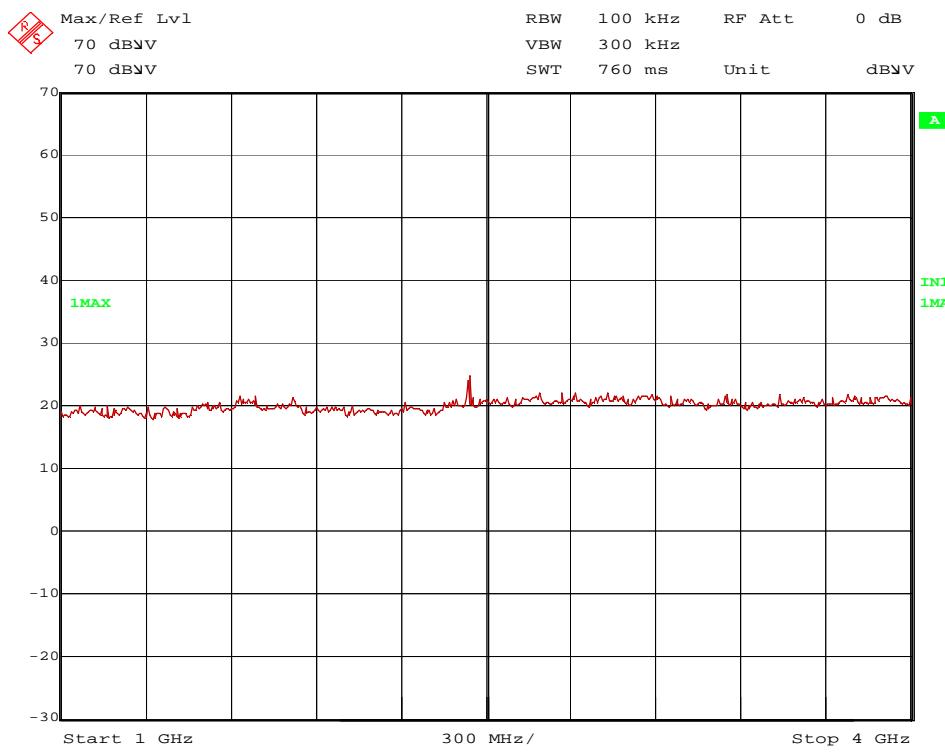
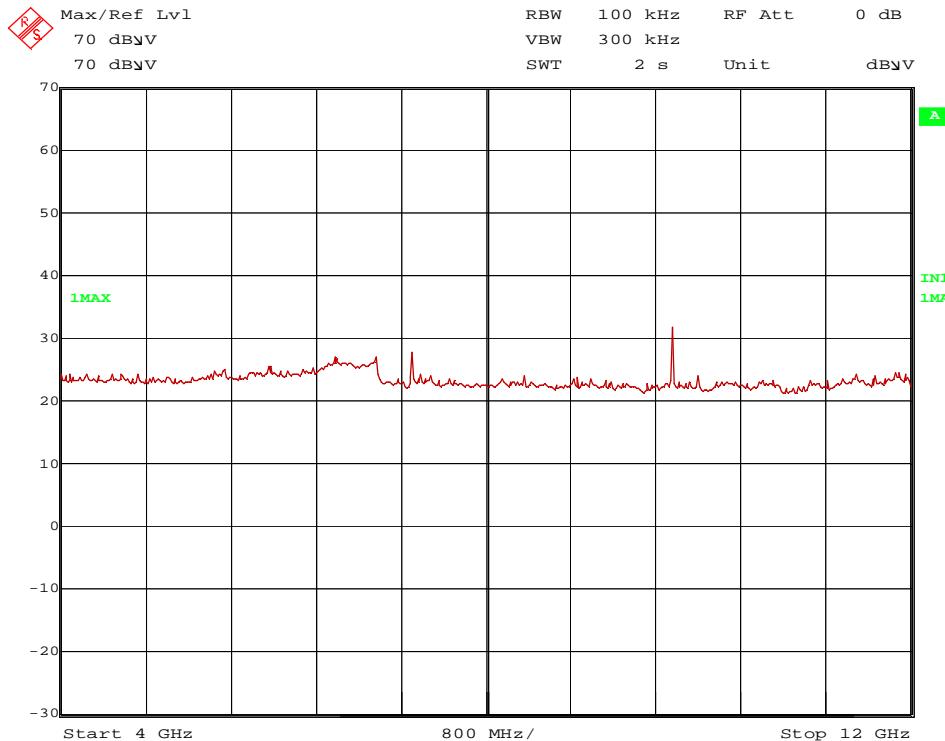
5.5.2 Test results (radiated emissions)

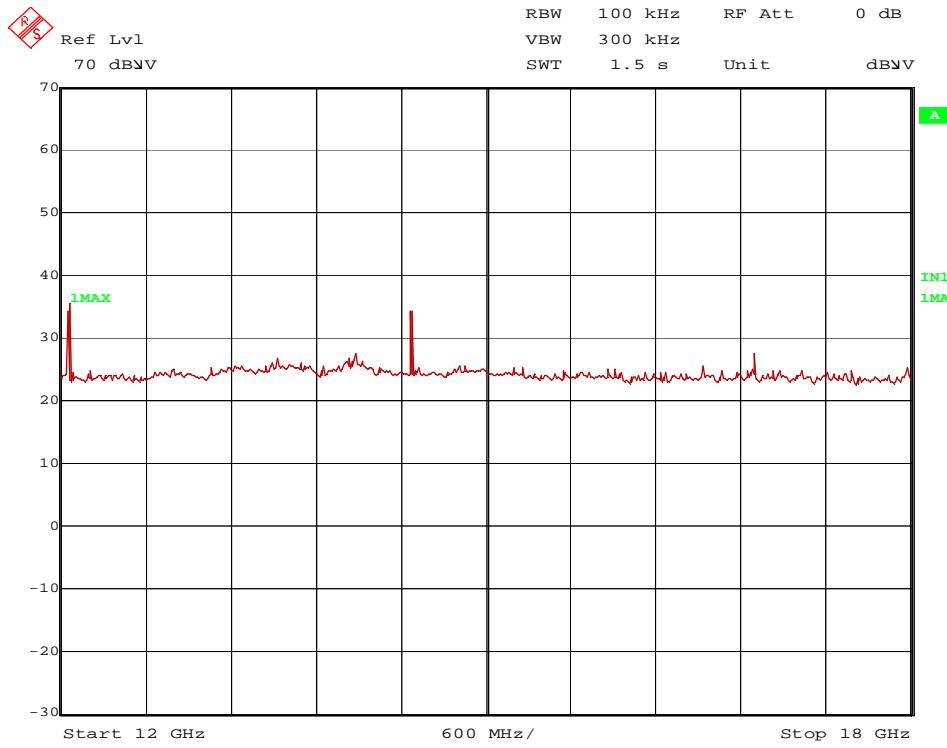
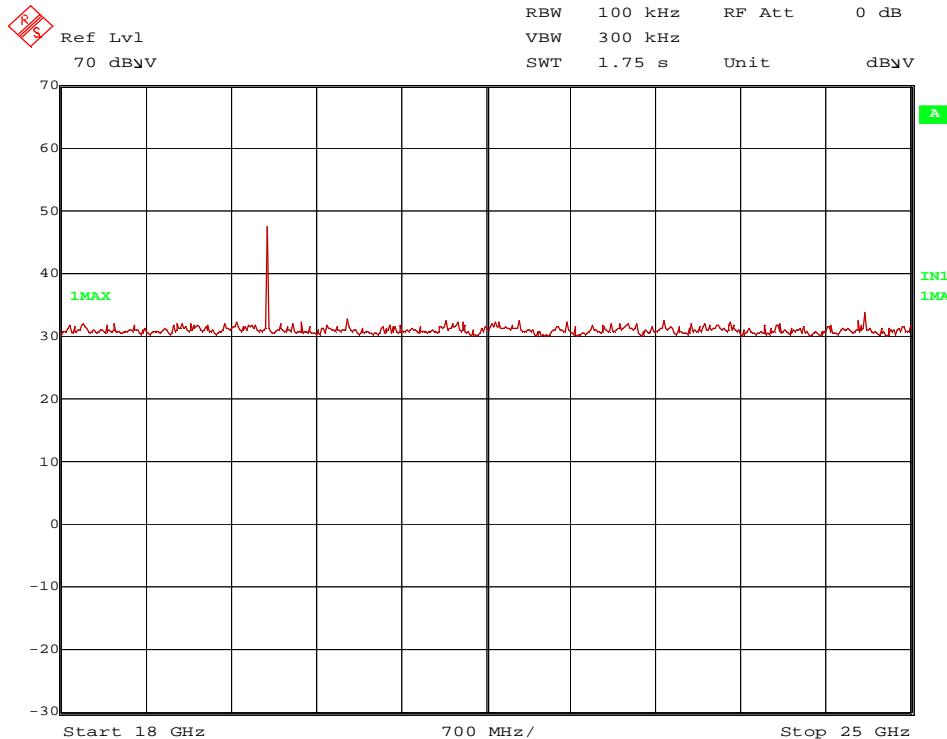
5.5.2.1 Preliminary radiated emission measurement

Ambient temperature	22°C	Relative humidity	70 %
---------------------	------	-------------------	------



Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m below 1 GHz and 1,5 m above 1 GHz. The distance between EUT and antenna was 3 m.



Cable guide: For detail information of test set-up and the cable guide refer to the pictures in the annex A.



Test record: All results are shown in the following.



Supply voltage: During all measurements the host of the EUT was powered with 5 V DC via a laboratory power supply.

Remark: Only the plots of the worst case emissions are submitted for every frequency range above 1 GHz in the preliminary results.
 The Emissions below 1 GHz were similar for all transmit frequencies, modulation schemes and data rates. Therefore only the results of an exemplary test case are submitted below.

145298_S_9-150k.wmf: Spurious emissions from 9 kHz to 150 kHz:

145298_S_150k-1M.wmf: Spurious emissions from 150 kHz to 1 MHz:

145298 S 1-30M: Spurious emissions from 1 MHz to 30 MHz:

145298 S 30M-1G WLAN ch6.wmf: Spurious emissions from 30 MHz to 1 GHz:

145298 S 1-4G WLAN ch6.wmf: Spurious emissions from 1 GHz to 4 GHz (operation mode 5):

145298 S 4-12G WLAN ch6.wmf: Spurious emissions from 4 GHz to 12 GHz (operation mode 5):

145298 S 12-18G WLAN ch1.wmf: Spurious emissions from 12 to 18 GHz (operation mode 4):

145298 S 18-25G WLAN ch11.wmf: Spurious emissions from 18 – 25 GHz (operation mode 6):

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

- 4924 MHz, 7311 MHz, 7386 MHz, 12060 MHz, 12185 MHz, 12310 MHz, 14472 MHz, 19296 MHz, 19496 MHz, 19696 MHz

The following frequencies were found outside the restricted bands during the preliminary radiated emission test:

- 7236 MHz, 9648 MHz, 9748 MHz, 14472MHz, 14622 MHz, 14772 MHz, 16844 MHz, 17059 MHz, 17234 MHz

These frequencies have to be measured in a final measurement. The results are presented in the following.

TEST EQUIPMENT USED FOR THE TEST:
6, 8 - 15, 17 – 25, 28, 29

5.5.2.2 Final radiated emission measurement (9 kHz to 1 GHz)

No emissions could be found in the final measurement on the open area test site, therefore no results for the final measurements are submitted.

5.5.2.3 Final radiated emission measurement (1 GHz to 25 GHz)

Ambient temperature	22 °C	Relative humidity	70 %
---------------------	-------	-------------------	------

Position of EUT: The EUT was set-up on a non-conducting table of a height of 1.5 m. The distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the host of the EUT was powered with 5 V via an laboratory power supply..

Resolution bandwidth: For all measurements a resolution bandwidth of 1 MHz was used.

Additional information: For simplification all values were compared to the restricted band limits. Position 2 was found to have the worst case spurious emissions.

Transmitter operates at the lower end of the assigned frequency band (operation mode 4)

Result measured with the peak detector:

Frequency MHz	Meas. Result dB μ V/m	Limit dB μ V/m	Margin dB	Readings dB μ V	Antenna factor 1/m	Preamp dB	Cable loss dB	Height cm	Pol.	Restr. Band
7236	51.4	74.0	22.6	34.5	35.8	24.4	5.5	150	Vert.	No
9648	56.1	74.0	17.9	35.8	37.3	23.3	6.3	150	Vert.	No
12060	53.8	74.0	20.2	43.4	33.6	26.3	3.0	150	Hor.	Yes
14472	53.4	74.0	20.6	43.1	33.7	26.9	3.5	150	Hor.	Yes
16884	49.1	74.0	24.9	39.8	33.8	28.3	3.8	150	Vert.	No
19296	50.8	74.0	23.2	47.4	37.1	37.8	4.1	150	Hor.	Yes
Measurement uncertainty				+2.2 dB / -3.6 dB						

Result measured with the average detector:

Frequency MHz	Meas. Result dB μ V/m	Limit dB μ V/m	Margin dB	Readings dB μ V	Antenna factor 1/m	Preamp dB	Cable loss dB	Height cm	Pol.	Restr. Band
7236	43.4	54.0	10.6	26.5	35.8	24.4	5.5	150	Vert.	No
9648	50.5	54.0	3.5	30.2	37.3	23.3	6.3	150	Vert.	No
12060	45.9	54.0	8.1	35.5	33.6	26.3	3.0	150	Hor.	Yes
14472	42.3	54.0	11.7	32.0	33.7	26.9	3.5	150	Hor.	Yes
16884	38.2	54.0	15.8	28.9	33.8	28.3	3.8	150	Vert.	No
19296	47.3	54.0	6.7	43.9	37.1	37.8	4.1	150	Hor.	Yes
Measurement uncertainty				+2.2 dB / -3.6 dB						

Transmitter operates at the middle of the assigned frequency band (operation mode 5)

Result measured with the peak detector:

Frequency MHz	Meas. Result dB μ V/m	Limit dB μ V/m	Margin dB	Readings dB μ V	Antenna factor 1/m	Preamp dB	Cable loss dB	Height cm	Pol.	Restr. Band
7311	52.6	74.0	21.4	34.8	36.2	23.9	5.5	150	Vert.	Yes
9748	56.5	74.0	17.5	36.4	37.3	23.6	6.4	150	Vert.	No
12185	50.8	74.0	23.2	40.6	33.6	26.5	3.1	150	Hor.	Yes
14622	50.8	74.0	23.2	40.7	33.7	27.0	3.4	150	Hor.	No
17059	45.4	74.0	28.6	36.1	33.8	28.4	3.9	150	Vert.	No
19496	52.4	74.0	21.6	48.6	37.1	37.5	4.2	150	Hor.	Yes
Measurement uncertainty					+2.2 dB / -3.6 dB					

Result measured with the average detector:

Frequency MHz	Meas. Result dB μ V/m	Limit dB μ V/m	Margin dB	Readings dB μ V	Antenna factor 1/m	Preamp dB	Cable loss dB	Height cm	Pol.	Restr. Band
7311	44.7	54.0	9.3	26.9	36.2	23.9	5.5	150	Hor.	Yes
9748	51.5	54.0	2.5	31.4	37.3	23.6	6.4	150	Hor.	No
12185	45.5	54.0	8.5	35.3	33.6	26.5	3.1	150	Vert.	Yes
14622	45.6	54.0	8.4	35.5	33.7	27.0	3.4	150	Vert.	No
17059	36.6	54.0	17.4	27.3	33.8	28.4	3.9	150	Hor.	No
19496	49.4	54.0	4.6	45.6	37.1	37.5	4.2	150	Hor.	Yes
Measurement uncertainty					+2.2 dB / -3.6 dB					

Transmitter operates at the upper end of the assigned frequency band (operation mode 6)

Result measured with the peak detector:

Frequency MHz	Meas. Result dB μ V/m	Limit dB μ V/m	Margin dB	Readings dB μ V	Antenna factor 1/m	Preamp dB	Cable loss dB	Height cm	Pol.	Restr. Band
4924	44.7	74.0	29.3	32.3	32.9	25.0	4.4	150	Hor.	Yes
7386	53.6	74.0	20.4	35.8	36.3	23.9	5.5	150	Hor.	Yes
12310	51.7	74.0	22.3	41.4	33.7	26.5	3.1	150	Vert.	Yes
14772	49.7	74.0	24.3	39.5	33.7	27.0	3.5	150	Hor.	No
17234	44.0	74.0	30.0	34.9	33.8	28.6	4.0	150	Vert.	No
19696	54.4	74.0	19.6	50.8	37.1	37.7	4.2	150	Hor.	Yes
Measurement uncertainty					+2.2 dB / -3.6 dB					

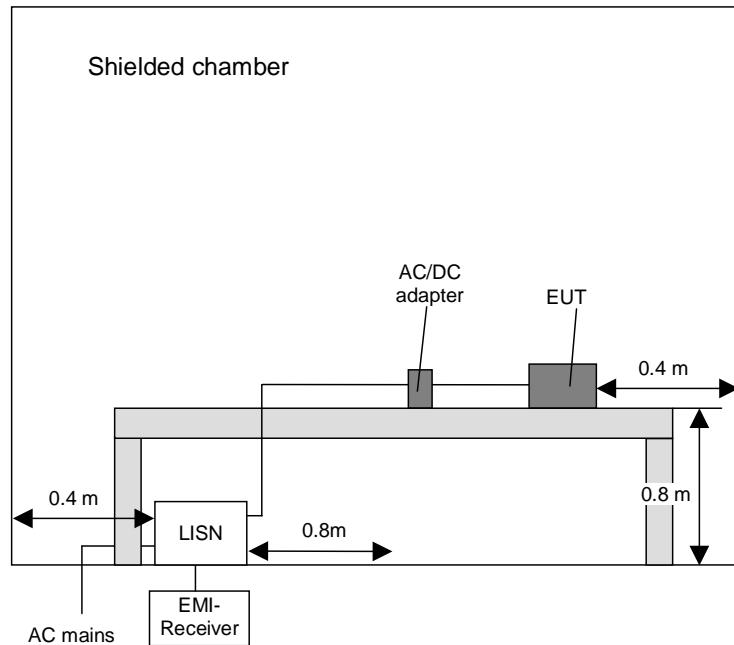
Result measured with the average detector:

Frequency MHz	Meas. Result dB μ V/m	Limit dB μ V/m	Margin dB	Readings dB μ V	Antenna factor 1/m	Preamp dB	Cable loss dB	Height cm	Pol.	Restr. Band
4924	32.6	54.0	21.4	20.2	32.9	25.0	4.4	150	Hor.	Yes
7386	45.9	54.0	8.1	28.1	36.3	23.9	5.5	150	Vert.	Yes
12310	45.5	54.0	8.5	35.2	33.7	26.5	3.1	150	Hor.	Yes
14772	44.9	54.0	9.1	34.7	33.7	27.0	3.5	150	Hor.	No
17234	35.5	54.0	18.5	26.4	33.8	28.6	4.0	150	Vert.	No
19696	50.6	54.0	3.4	47.0	37.1	37.7	4.2	150	Hor.	Yes

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

6, 8 - 15, 17 – 25, 28, 34


5.6 Conducted emissions on power supply lines (150 kHz to 30 MHz)

5.6.1 Method of measurement

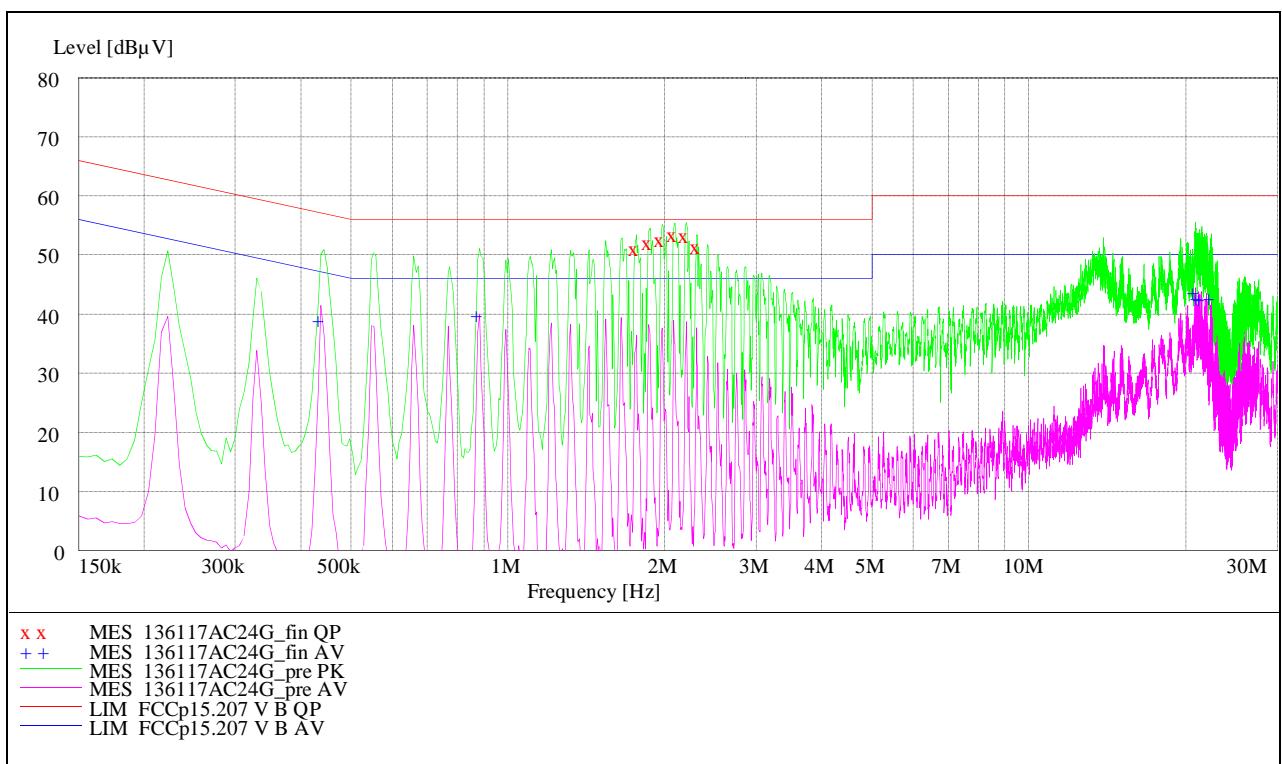
This test will be carried out in a shielded chamber. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm above the ground plane. Floor-standing devices will be placed directly on the ground plane. The setup of the Equipment under test will be in accordance to ANSI C63.10-2013 [1].

The frequency range 150 kHz to 30 MHz will be measured with an EMI Receiver set to MAX Hold mode with peak and average detector and a resolution bandwidth of 9 kHz. A scan will be carried out on the phase (or plus pole in case of DC powered devices) of the AC mains network. If levels detected 10 dB below the appropriate limit, this emission will be measured with the average and quasi-peak detector on all lines.

Frequency range	Resolution bandwidth
150 kHz to 30 MHz	9 kHz

5.6.2 Test results (conducted emissions on power supply lines)

Ambient temperature	20 °C	Relative humidity	52 %
---------------------	-------	-------------------	------


Position of EUT: For the test the EUT were plugged into a laptop PC via a RS232 cable. The EUT was set to continuous transmission on channel 6 (n20 mode. 6.5 Mbps. PWR: 16.5 dBm. operation mode 8) by the laptop PC. The laptop PC with the inserted EUT was set-up on a non-conducting table of a height of 0.8 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: Measurement performed with US 120V/60Hz. For the test a power supply type 2121 from Mascot was used.

The curves in the diagram only represent for each frequency point the maximum measured value of all preliminary measurements, which were made for each power supply line. The top-measured curve represents the peak measurement and the bottom-measured curve the average measurement. The quasi-peak measured points are marked by an x and the average measured points by an +.

Result measured with the quasipeak detector (marked by an x):

Frequency MHz	Level dB μ V	Transducer dB	Limit dB μ V	Margin dB	Line	PE
1.764000	51.50	0.7	56.0	4.5	L1	GND
1.872000	52.50	0.7	56.0	3.5	L1	GND
1.980000	52.90	0.8	56.0	3.1	L1	FLO
2.094000	53.70	0.7	56.0	2.3	L1	GND
2.202000	53.50	0.8	56.0	2.5	L1	GND
2.316000	51.70	0.7	56.0	4.3	L1	FLO

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

1 – 5

6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No,	Test equipment	Type	Manufacturer	Serial No,	PM, No,	Cal, Date	Cal, Due
1	Shielded chamber M47	-	Albatross Projects	B83117-C6439-T262	480662	Weekly verification (system cal.)	
2	EMI Receiver	ESIB 26	Rohde & Schwarz	1088,7490	481182	03/21/2014	03/2016
3	LISN	NSLK8128	Schwarzbeck	8128155	480058	12/20/2013	12/2014
4	High pass filter	HR 0,13-5ENN	FSY Microwave Inc,	DC 0109 SN 002	480340	Weekly verification (system cal.)	
5	EMI Software	ES-K1	Rohde & Schwarz	-	480111	-	-
6	Fully anechoic chamber M20	-	Albatross Projects	B83107-E2439-T232	480303	Weekly verification (system cal.)	
7	Spectrum analyser	FSU	Rohde & Schwarz	200125	480956	07/15/2013	07/2015
8	Measuring receiver	ESI 40	Rohde & Schwarz	100064	480355	02/26/2014	02/2016
9	Controller	MCU	Maturo	MCU/043/971107	480832	-	-
10	Turntable	DS420HE	Deisel	420/620/80	480315	-	-
11	Antenna support	AS615P	Deisel	615/310	480187	-	-
12	Antenna	CBL6112 B	Chase	2688	480328	04/14/2014	04/2017
13	Antenna	3115 A	EMCO	9609-4918	480183	11/10/2014	11/2017
14	Standard Gain Horn 11,9 GHz – 18 GHz	18240-20	Flann Microwave	483	480294	Six month verification (system cal.)	
15	Standard Gain Horn 17,9 GHz – 26,7 GHz	20240-20	Flann Microwave	411	480297	Six month verification (system cal.)	
16	Standard Gain Horn Antenne 26,4 – 40,1 GHz	22240-20	Flann Microwave	469	480229	Six month verification (system cal.)	
17	RF-cable No, 3	Sucoflex 106B	Huber&Suhner	0563/6B / Kabel 3	480670	Weekly verification (system cal.)	
18	RF-cable No, 40	Sucoflex 106B	Huber&Suhner	0708/6B / Kabel 40	481330	Weekly verification (system cal.)	
19	RF-cable No, 36	Sucoflex 106B	Huber&Suhner	500003/6B / Kabel 36-	481680	Weekly verification (system cal.)	
20	RF-cable 1 m	KPS-1533-400-KPS	Insulated Wire	-	480300	Six month verification (system cal.)	
21	RF-cable 2 m	KPS-1533-800-KPS	Insulated Wire		480302	Six month verification (system cal.)	
22	Preamplifier	JS3-00101200-23-5A	Miteq	681851	480337	Six month verification (system cal.)	
23	Preamplifier	JS3-12001800-16-5A	Miteq	571667	480343	Six month verification (system cal.)	
24	Preamplifier	JS3-18002600-20-5A	Miteq	658697	480342	Six month verification (system cal.)	
25	Loop antenna	HFH2-Z2	Rohde & Schwarz	832609/014	480059	02/18/2014	02/2016
26	Power Meter	NRVD	Rohde & Schwarz	833697/030	480589	07/2013	07/2015
27	Peak Power Sensor	NRV-Z32	Rohde & Schwarz	849745/016	480551	07/2013	07/2015
28	4 GHz High Pass Filter	WHKX4,0/18 G-8SS	Wainwright Instruments	1	480587	Weekly verification (system cal.)	
29	Single Control Unit	SCU	Maturo GmbH	SCU/006/971107	480831	Calibration not necessary	
30	High-pass Filter	H26G40G1	Microwave Circuits, Inc,	33471	480593	Six month verification (system cal.)	
31	Temperature Test Chamber	MK 240	Binder	05-79022	480462	02/18/2014	08/2015
32	High pass Filter	WHKX8,0/18 G-8SS	Wainwright Instruments		480586	12 month verification	

33	Tunable band reject	WRCJ5100/5 850-20/50- 8SSK	Wainwright Instruments		480681	Calibration not necessary
34	Band reject filter	WRCTF2402/ 2480- 2399/2483- 35/12+9EE	Wainwright Instruments		480748	Calibration not necessary

7 REPORT HISTORY

Report Number	Date	Comment
F145298E6	25 June 2015	Document created

8 LIST OF ANNEXES

ANNEX A TEST SET-UP PHOTOS 6 pages

145298_18.jpg: Test setup - Radiated emission (fully anechoic chamber)
 145298_19.jpg: Test setup - Radiated emission (fully anechoic chamber)
 145298_20.jpg: Test setup - Radiated emission (fully anechoic chamber)
 145298_21.jpg: Test setup - Radiated emission (fully anechoic chamber)
 145298_23.jpg: Test setup – Preliminary measurement 9 kHz to 30 MHz (fully anechoic chamber)
 145298_32.jpg: Test setup – conducted emissions on power supply lines

ANNEX B EXTERNAL PHOTOGRAPHS 2 pages

145298_26.jpg: Adaptor Board + Reference Design – 3D View
 145298_27.jpg: Adaptor Board – Top View
 145298_28.jpg: Adaptor Board – Bottom View
 145298_07.jpg: Adaptor Board – Connectors

ANNEX C INTERNAL PHOTOGRAPHS 5 pages

145298_24.jpg: EUT - top view, with shielding
 145298_25.jpg: EUT - top view, shielding removed
 145298_10.jpg: EUT – bottom view
 145298_29.jpg: Reference Design with EUT– Top View
 145298_30.jpg: Reference Design with EUT– Detail Top View
 145298_33.jpg: Reference Design with integral Antenna– Bottom View
 145298_34.jpg: Reference Design with EUT– Detail Bottom View