

RE051-20-104233-3-A Ed. 0

MPE test report

According to the standard:

CFR 47 FCC PART 15

Equipment under test:

S-LYNKS NODE

FCC ID: KQ9-0A00A

Company:

SERCEL Inc

Distribution: Mr TIJOU

(Company: SERCEL NANTES)

Number of pages: 8

Ed.	Date	Modified Page(s)	Technical Verification and Quality Approval	
			Name and Function	Visa
0	26-Jan-24	Creation	M. DUMESNIL, Radio Laboratory Manager	

*Duplication of this document is only permitted for an integral photographic facsimile. It includes the number of pages referenced here above.
This document is the result of testing a specimen or a sample of the product submitted. It does not imply an assessment of the conformity of the whole manufactured products of the tested sample.*

Siège Social : Emitech - 3, rue des Coudriers - Z.A. de l'Observatoire - 78180 MONTIGNY LE BX - France
Siret : 344 545 645 00022 - Tél. : 33 (0)1 30 57 55 55 - Fax : 33 (0)1 30 43 74 48 - E-mail : contact@emitech.fr - URL : www.emitech.fr
S.A. au capital de 1 560 000 € - R.C.S. VERSAILLES 344 545 645 - APE 7112B

DESIGNATION OF PRODUCT: S-LYNKS NODE
Serial number (S/N): EDE567C20251E0001
Reference / model (P/N): NODE
Software version: SLBB_F V4 S36/20
MANUFACTURER: SERCEL Inc

COMPANY CERTIFYING THE PRODUCT:

Company: SERCEL Inc
Address: 17200 Park Row
TEXAS 77084
UNITED STATES
Responsible: Mr WENTZLER

COMPANY SUBMITTING THE PRODUCT:

Company: SERCEL NANTES
Address: 16, RUE DU BEL AIR
BP 30439
44470 CARQUEFOU
FRANCE
Responsible: Mr TIJOU

DATES OF TEST: From 8-Dec-20 to 14-Dec-20

TESTING LOCATION: EMITECH ANGERS laboratory at JUIGNE SUR LOIRE (49) FRANCE
FCC Accredited under US-EU MRA Designation Number: FR0009
Test Firm Registration Number: 873677

TESTED BY: S. LOUIS **VISA:**

WRITTEN BY: S. LOUIS

CONTENTS

<i>TITLE</i>	<i>PAGE</i>
1. <i>INTRODUCTION</i>	4
2. <i>PRODUCT DESCRIPTION</i>	4
3. <i>NORMATIVE REFERENCE</i>	6
4. <i>RF EXPOSURE</i>	7

1. INTRODUCTION

This report presents the results of radio test carried out on the following radio equipment: **S-LYNKS NODE**, in accordance with normative reference.

The device under test integrates/

- LoRa radio part not already certified,
- WiFi radio part not already certified,
- GNSS receiver.

2. PRODUCT DESCRIPTION

Class: A
Utilization: Industrial
Power source: 7.2Vdc Li-ion battery

LoRa Radio part:

Antenna type and gain: Integral antenna
Gain at 903MHz => -0.01dBi
Gain at 915MHz => +1.01dBi
Gain at 927MHz => +2.93dBi

Operating frequency range: From 902 MHz to 928 MHz

Frequencies tested: 903MHz, 915MHz, 927MHz

Number of channels: 41

Channel spacing: 600kHz

Modulation: LoRa 500kHz / SF12

Power level adjusted to +18dBm by software

WiFi Radio part:

Antenna type and gain:

For mode b and g the product emit on chains one (SISO), however the mode n the product can emit on the chain one (SISO) or chain one and two (MIMO).

integral antenna

Antenna 1 Gain at 2412MHz => +1.53dBi

Antenna 1 Gain at 2437MHz => +2.07dBi

Antenna 1 Gain at 2462MHz => +2.20dBi

Antenna 2 Gain at 2412MHz => +2.78dBi

Antenna 2 Gain at 2437MHz => +2.28dBi

Antenna 2 Gain at 2462MHz => +2.29dBi

Operating frequency range: From 2400 MHz to 2483.5 MHz

Number of channels: 11

Channel spacing: 5MHz

Channel bandwidth: 20 MHz

Modulation:
 DBPSK
 OFDM: BPSK
 OFDM: 64-QAM

Channel tested:
 Channel 1: 2412 MHz
 Channel 6: 2437 MHz
 Channel 11: 2462 MHz

Mode tested:
 802.11 b SISO
 802.11 g SISO
 802.11 n SISO and MIMO

Data rate:
 For 802.11b: 1Mbit/s
 For 802.11g: 6Mbit/s
 For 802.11n: MCS0

Correlated signal:
 For mode n the signals are considered as correlated, the mode cyclic delay diversity (CDD) is used. (IEEE 802.11)
 The product is not using spatial multiplexing or intentional beamforming.

Power setting +16 dBm

Power level, frequency range and channels characteristics are not user adjustable.
 The details pictures of the product and the circuit boards are joined with this file.

3. NORMATIVE REFERENCE

The standards and testing methods related throughout this report are those listed below.

They are applied on the whole test report even though the extensions (version, date and amendment) are not repeated.

CFR 47 (2020)	Radio Frequency Devices
ANSI C63.10	2013 Procedures for Compliance Testing of Unlicensed Wireless Devices.
447498 D01 General RF Exposure Guidance v06	RF Exposure procedures and equipment authorization policies for mobile and portable equipment
OET BULLETIN 65	Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields

4. RF EXPOSURE**LoRa radio part in standalone:****MPE**

According Emitech test report n° RR051-20-104233-5-A Ed. 0:

Maximum measured power = 103.8 dB μ V/m at 10 m = 80mW at 927 MHz
with $P = (E \times d)^2 / (30 \times Gp)$ with $d = 3$ m and $Gp = 1$

In accordance with KDB 447498 D01 General RF Exposure Guidance v06:

$$PSD = EIRP / (4 \times \pi \times R^2)$$

$$\Rightarrow 80 / (4 \times \pi \times (20 \text{ cm})^2) = 0.016 \text{ mW/cm}^2 \text{ (limit = 0.618 mW/cm}^2)$$

$$MPE RATIO = 0.026$$

The equipment fulfils the requirements on power density for general population/uncontrolled exposure and therefore fulfils the requirements of 47 CFR §1.1310.

WiFi radio part in standalone:**MPE**

According Emitech test report n° RR051-20-104233-6-A Ed. 0:

Maximum measured power = 116.70 dB μ V/m at 3m = 140.32mW at 2437 MHz
Maximum measured power = 119.69 dB μ V/m at 3m = 279.33mW at 2437 MHz
with $P = (E \times d)^2 / (30 \times Gp)$ with $d = 3$ m and $Gp = 1$

Maximum measured power = 420 mW eirp at 2437 MHz (802.11.n – MIMO)

In accordance with KDB 447498 D01 General RF Exposure Guidance v06:

$$PSD = EIRP / (4 \times \pi \times R^2)$$

$$\Rightarrow 420 / (4 \times \pi \times (20 \text{ cm})^2) = 0.084 \text{ mW/cm}^2 \text{ (limit = 1 mW/cm}^2)$$

$$MPE RATIO = 0.084$$

The equipment fulfils the requirements on power density for general population/uncontrolled exposure and therefore fulfils the requirements of 47 CFR §1.1310.

Calculus for simultaneous transmission

$$\sum \text{ of MPE ratio} = \text{MPE ratio(LoRa)} + \text{MPE ratio(Wi-Fi)} = 0.026 + 0.084 = 0.11 \leq 1.0$$

The product meets the requirement for Simultaneous transmission MPE test exclusion from §7.2 of KDB 447498.