

RR051-19-100039-6-A Ed. 0

Certification Radio test report

According to the standard:
CFR 47 FCC PART 15

Equipment under test:
Wing Field Monitor

FCC ID: KQ9-0804A

Company:
SERCEL Inc

Distribution: Mr TIJOU

(Company: SERCEL NANTES)

Number of pages: 30 with 5 appendixes

Ed.	Date	Modified Page(s)	Technical Verification and Quality Approval	
			Name and Function	Visa
0	27-May-22	Creation	M. DUMESNIL, Radio Technical Manager	

*Duplication of this document is only permitted for an integral photographic facsimile. It includes the number of pages referenced here above.
This document is the result of testing a specimen or a sample of the product submitted. It does not imply an assessment of the conformity of the whole manufactured products of the tested sample.*

Siège Social : Emitech - 3, rue des Coudriers - Z.A. de l'Observatoire - 78180 MONTIGNY LE BX - France
Siret : 344 545 645 00022 - Tél. : 33 (0)1 30 57 55 55 - Fax : 33 (0)1 30 43 74 48 - E-mail : contact@emitech.fr - URL : www.emitech.fr
S.A. au capital de 1 560 000 € - R.C.S. VERSAILLES 344 545 645 - APE 7112B

DESIGNATION OF PRODUCT: Wing Field Monitor

Serial number (S/N): 2

Reference / model (P/N): FM

Software version: 0.8.0Ext1

MANUFACTURER: SERCEL Inc

COMPANY CERTIFYING THE PRODUCT:

Company: SERCEL Inc

Address: 17200 Park Row
TEXAS 77084
UNITED STATES

Responsible: Mr PARRISH

COMPANY SUBMITTING THE PRODUCT:

Company: SERCEL NANTES

Address: 16, RUE DU BEL AIR
BP 30439
44470 CARQUEFOU
FRANCE

Responsible: Mr TIJOU

DATES OF TEST: From 11-May-20 to 13-May-20

TESTING LOCATION: EMITECH ANGERS laboratory at JUIGNE SUR LOIRE (49) FRANCE
FCC Accredited under US-EU MRA Designation Number: FR0009
Test Firm Registration Number: 873677

TESTED BY: T. LEDRESSEUR

VISA:

WRITTEN BY: T. LEDRESSEUR

CONTENTS

	TITLE	PAGE
1.	INTRODUCTION.....	4
2.	PRODUCT DESCRIPTION	4
3.	NORMATIVE REFERENCE.....	5
4.	TEST METHODOLOGY.....	5
5.	TEST EQUIPMENT CALIBRATION DATES	6
6.	TESTS RESULTS SUMMARY.....	7
7.	MEASUREMENT UNCERTAINTY.....	8
8.	ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS	9
9.	MAXIMUM PEAK CONDUCTED OUTPUT POWER.....	10
10.	INTENTIONAL RADIATOR	12
11.	MAXIMUM PEAK CONDUCTED POWER DENSITY	17
	APPENDIX 1: TEST EQUIPMENT LIST	20
	APPENDIX 2: 6 DB BANDWIDTH	22
	APPENDIX 3: 99% BANDWIDTH	25
	APPENDIX 4: BAND EDGE	28
	APPENDIX 5: SPECTRAL DENSITY.....	29

1. INTRODUCTION

This report presents the results of radio test carried out on the following radio equipment: ***Wing Field Monitor***, in accordance with normative reference.

The equipment under test integrates:

- SRD Multifrequencies proprietary transceiver operational in the band (2400MHz – 2483.5MHz).
- Wi-Fi module already certified, using 2.4 GHz and 5GHz U-NII 1 (FCCID: Z64-WL18DBMOD).
- GNSS module operational in the band 1559MHz – 1610MHz

This report refers only of proprietary transceiver radio part.

2. PRODUCT DESCRIPTION

Class:	A
Utilization:	Industrial
Antenna type and gain:	2 dBi / integral antenna
Operating frequency range:	From 2400 MHz to 2483.5 MHz
Frequency tested:	2402.5 MHz, 2439.5 MHz and 2478.5 MHz
Number of channels:	77
Channel spacing:	1MHz
Modulation:	GFSK
Power source:	3.6Vdc by internal Li-ion Batteries Pack
Power soft adjusted to	9dBm

Power level, frequency range and channels characteristics are not user adjustable.
The details pictures of the product and the circuit boards are joined with this file.

3. NORMATIVE REFERENCE

The standards and testing methods related throughout this report are those listed below. They are applied on the whole test report even though the extensions (version, date and amendment) are not repeated.

CFR 47 FCC Part 15 (2020)	Radio Frequency Devices
ANSI C63.10	2013 Procedures for Compliance Testing of Unlicensed Wireless Devices.
558074 D01 DTS v05 r02	Guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules.

4. TEST METHODOLOGY

Radio performance tests procedures given in CFR 47 part 15:

Subpart C – Intentional Radiators

- Paragraph 203: Antenna requirement
- Paragraph 205: Restricted bands of operation
- Paragraph 209: Radiated emission limits; general requirements
- Paragraph 215: Additional provisions to the general radiated emission limitations
- Paragraph 247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

5. TEST EQUIPMENT CALIBRATION DATES

Emitech Number	Model	Type	Last calibration	Calibration interval (years)	Next calibration due
0	BAT-EMC V3.17.0.25	Software	/	/	/
1406	EMCO 6502	Loop antenna	24/04/2020	1	24/04/2021
4087	Filtek LP03/1000-7GH	Low Pass Filter	25/02/2020	3	24/02/2023
6884	Suhner 1.5m	Cable	30/05/2018	2	29/05/2020
7124	A.H. Systems SAS-572	Antenna	05/01/2019	3	04/01/2022
7299	Microtronics BRM50702	Reject band filter	04/09/2019	3	03/09/2022
8511	HP 8447D	Low-noise amplifier	25/02/2020	1	24/02/2021
8526	Schwarzbeck VHBB 9124	Biconical antenna	17/08/2018	3	16/08/2021
8528	Schwarzbeck VHA 9103	Biconical antenna	09/03/2019	3	08/03/2022
8534	EMCO 3115	Antenna	16/07/2019	3	16/07/2022
8543	Schwarzbeck UHALP 9108A	Log periodic antenna	17/08/2018	3	16/08/2021
8593	SIDT Cage 2	Anechoic chamber	/	/	/
8704	LUCIX Corp S180265L3201 LNA	Low-noise amplifier	17/09/2019	1	16/09/2020
8707	R&S ESI7	Test receiver	05/07/2019	1	04/07/2020
8732	Emitech	OATS	03/07/2019	3	02/07/2022
8750	La Crosse Technology WS-9232	Meteo station	25/09/2018	2	24/09/2020
8855	EMITECH	Turntable and mat controller	/	/	/
8896	ACQUISYS GPS8	Satellite synchronized frequency standard	/	/	/
8974	STORM MICROWAE k-20cm	cable	14/11/2019	2	13/11/2021
8975	STORM MICROWAE k-20cm	cable	14/11/2019	2	13/11/2021
12911	Huber + Suhner N-2m	cable	30/05/2018	2	29/05/2020
14736	MATURO	Turntable and mat controller MCU	/	/	/
14903	Fluke 177	Multimeter	25/02/2020	2	24/02/2022
15666	R&S FSV40	Spectrum Analyzer	20/07/2018	2	19/07/2020
15812	COMP-POWER PAM-118A	Low-noise amplifier 18GHz	04/09/2019	1	03/09/2020
15882	SUCOFLEX	cable N 5m	28/11/2018	2	27/11/2020
16109	C&C HPF180400	High pass filter	26/03/2019	3	25/03/2022

(1) With a tolerance of 2 months for all equipments.

(2) The equipment is not verified; instead, the output voltage is checked before each measurement with the calibrated multimeter.

6. TESTS RESULTS SUMMARY

Test procedure	Description of test	Respected criteria?				Comment
		Yes	No	NAp	NAs	
FCC Part 15.203	ANTENNA REQUIREMENT	X				Note 1
FCC Part 15.205	RESTRICTED BANDS OF OPERATION	X				
FCC Part 15.207	CONDUCTED LIMITS			X		
FCC Part 15.209	RADIATED EMISSION LIMITS; general requirements	X				Note 2
FCC Part 15.212	MODULAR TRANSMITTERS			X		
FCC part 15.215	ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS					
	(a) Alternative to general radiated emission limits	X				
	(b) Unwanted emissions outside of §15.247 frequency bands	X				Note 3
	(c) 20 dB bandwidth and band-edge compliance	X				
FCC Part 15.247	OPERATION WITHIN THE BANDS 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz					
	(a) (1) Hopping systems			X		Note 4
	(a) (2) Digital modulation techniques	X				Note 4
	(b) Maximum peak output power	X				Note 5
	(c) Operation with directional antenna gains > 6 dBi			X		
	(d) Intentional radiator	X				
	(e) Peak power spectral density	X				
	(f) Hybrid system			X		
	(g) Frequency hopping requirements			X		
	(h) Frequency hopping intelligence			X		
	(i) RF exposure compliance	X				See MPE report

NAp: Not Applicable

NAs: Not Asked

Note 1: Integral antenna without standard connector.

Note 2: See FCC part 15.247 (d).

Note 3: See FCC part 15.209. Unwanted emissions levels are all below the fundamental emission field strength level.

Note 4: The minimum 6 dB bandwidth of the equipment is 660.73 kHz (see appendix 2).

Note 5: Conducted measurement is not possible (integral antenna), so we used the radiated method.

7. MEASUREMENT UNCERTAINTY

To declare, or not, the compliance with the specifications, it was not explicitly taken into account of uncertainty associated with the result(s)

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for normal distribution corresponds to a coverage probability of approximately 95%.

Parameter	Emitech Uncertainty
RF power, conducted	± 0.75 dB
Radiated emission valid to 26 GHz $F < 62.5$ MHz:	± 5.14 dB
62.5 MHz $< F < 1$ GHz:	± 5.13 dB
1 GHz $< F < 26$ GHz:	± 5.16 dB
AC Power Lines conducted emissions	± 3.38 dB
Temperature	± 1 °C
Humidity	± 5 %

8. ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS
Temperature (°C) : 20
Humidity (%HR): 36
Date : May 11, 2020
Technician : T. LEDRESSEUR
Standard: FCC Part 15
Test procedure: Paragraph 15.215
Test set up:

Test realized in near field. All field strength measurements are correlated with the radiated maximum peak output power

Test operating condition of the equipment:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate (9dBm).

We used for power source the internal fully charged battery of the equipment.

Results:

Lower Band Edge: From 2398 MHz to 2400 MHz

Upper Band Edge: From 2483.5 MHz to 2485.5 MHz

Sample N° 1

Fundamental frequency (MHz)	Field Strength Level of fundamental (dB μ V/m)	Detector (Peak or Average)	Frequency of maximum Band-edges Emission (MHz)	Delta Marker (dB) (1)	Calculated Max Out-of-Band Emission Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
2402.5	106	Peak	2399.3083	52.2	53.8	86	32.2
2478.5	104	Peak	2484.6636	44.5	59.5	74	14.5
2478.5	104	Average	2484.6705	55	49	54	6

(1) Marker-Delta method

band-edge curves are given in appendix 4.

Test conclusion:
RESPECTED STANDARD

9. MAXIMUM PEAK CONDUCTED OUTPUT POWER**Temperature (°C) : 20****Humidity (%HR): 36****Date : May 11, 2020****Technician : T. LEDRESSEUR****Standard: FCC Part 15****Test procedure:** paragraph 15.247 (b)RBW \geq DTS bandwidth method of paragraph 11.9.1.1 of ANSI C63.10**Test set up:**

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The system is tested in anechoic chamber; the EUT is placed on a rotating table, 1.5 m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

Distance of antenna: 3 meters (in anechoic room)**Antenna height:** 1.5 meter**Antenna polarization:** vertical and horizontal (only the highest level is recorded)

The measurement of the radiated electro-magnetic field is realized with an analyser and peak detector. The resolution bandwidth is adjusted at 3 MHz and video bandwidth at 10 MHz.

Finally the radiated electro-magnetic field is converted in dBm with the following formula:

$EIRP(dBm) = E (dB\mu V/m) + 20\log(D) - 104.8$; where D is the measurement distance in meters and antenna Gain = 2 dBi.

Equipment under test operating condition:

The equipment is blocked in continuous modulated transmission mode by an internal data signal at the highest power level at which the transmitter is intended to operate.

P Software adjusted to +9dBm

We used for power source the internal fully charged battery of the equipment.

Results:

Sample N° 1 Low Channel (F = 2402.5 MHz)

	Electro-magnetic field (dB μ V/m):	Maximum Peak conducted output power		Limit (W)
		(dBm)	(W)	
Nominal supply voltage: 3.6Vdc	106.2	8.97	0.0079	1

Polarization of test antenna: horizontal (height: 150 cm)

Position of equipment: Position 1 - (azimuth: 218 degrees)

Sample N° 1 Central Channel (F = 2439.5 MHz)

	Electro-magnetic field (dB μ V/m):	Maximum Peak conducted output power		Limit (W)
		(dBm)	(W)	
Nominal supply voltage: 3.6Vdc	106.7	9.47	0.0089	1

Polarization of test antenna: horizontal (height: 150 cm)

Position of equipment: Position 1 - (azimuth: 218 degrees)

Sample N° 1 High Channel (F = 2478.5 MHz)

	Electro-magnetic field (dB μ V/m):	Maximum Peak conducted output power		Limit (W)
		(dBm)	(W)	
Nominal supply voltage: 3.6Vdc	104.2	6.97	0.0050	1

Polarization of test antenna: horizontal (height: 150 cm)

Position of equipment: Position 1 - (azimuth: 218 degrees)

Maximum Peak conducted output power:

$EIRP(dBm) = E (dB\mu V/m) + 20\log(D) - 104.8$; where D is the measurement distance in meters and antenna Gain = 2 dB.

Test conclusion:

RESPECTED STANDARD

10. INTENTIONAL RADIATOR

Temperature (°C) : 21

Humidity (%HR): 36

Date : May 12, 2020 and
May 13, 2020

Technician : T. LEDRESSEUR

Standard: FCC Part 15

Test procedure: paragraph 15.205, paragraph 15.209, paragraph 15.247 (d)

DTS:

Emissions in non-restricted frequency bands method of paragraph 11.11 of ANSI C63.10

Emissions in restricted frequency bands method of paragraph 11.12 of ANSI C63.10

Test set up:

First an exploratory radiated measurement was performed.

During this phase the product is oriented in these two normal positions.

Then the final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5 m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

Frequency range: From 9 kHz to 26GHz / 10th harmonic of the highest fundamental frequency (2478.5MHz)

Detection mode: Quasi-peak ($F < 1$ GHz) Peak / Average ($F > 1$ GHz)

Bandwidth: 200Hz (9 kHz < F < 150kHz)
9 kHz (150 kHz < F < 30MHz)
120 kHz (30 MHz < F < 1 GHz)
100 kHz / 1 MHz (F > 1 GHz)

Distance of antenna: 10 meters (in open area test site) / 3 meters (in anechoic room) and 1 meter above 18 GHz

Antenna height: 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

Equipment under test operating condition:

The equipment is blocked in continuous modulated transmission mode by an internal data signal at the highest power level at which the transmitter is intended to operate.

P Software adjusted to +9dBm

We used for power source the internal fully charged battery of the equipment.

Results:
Sample N° 1 Low Channel (F = 2402.5 MHz)

Frequencies (MHz)	Detector P QP Av	Antenna height (cm)	RBW (kHz)	Position	Polarization H: Horizontal V: Vertical	Field strength Measured at 3 m (dB μ V/m)	Limits (dB μ V/m) or (dBm)	Margin (dB)
4804.7 (1)	P	150	1000	3	H	45.19 (2)	74	28.81
7207.6	P	150	100	3	H	56.12	86	29.88
9609.6	P	150	100	3	H	50.88	86	35.12
19217.6 (1)	P	150	1000	2	V	50.18 (2)	74	23.82

P= Peak, QP=Quasi-peak, Av=Average

(1) Restricted bands of operation in 15.205

 (2) The peak level is lower than the average limit (54 dB μ V/m)

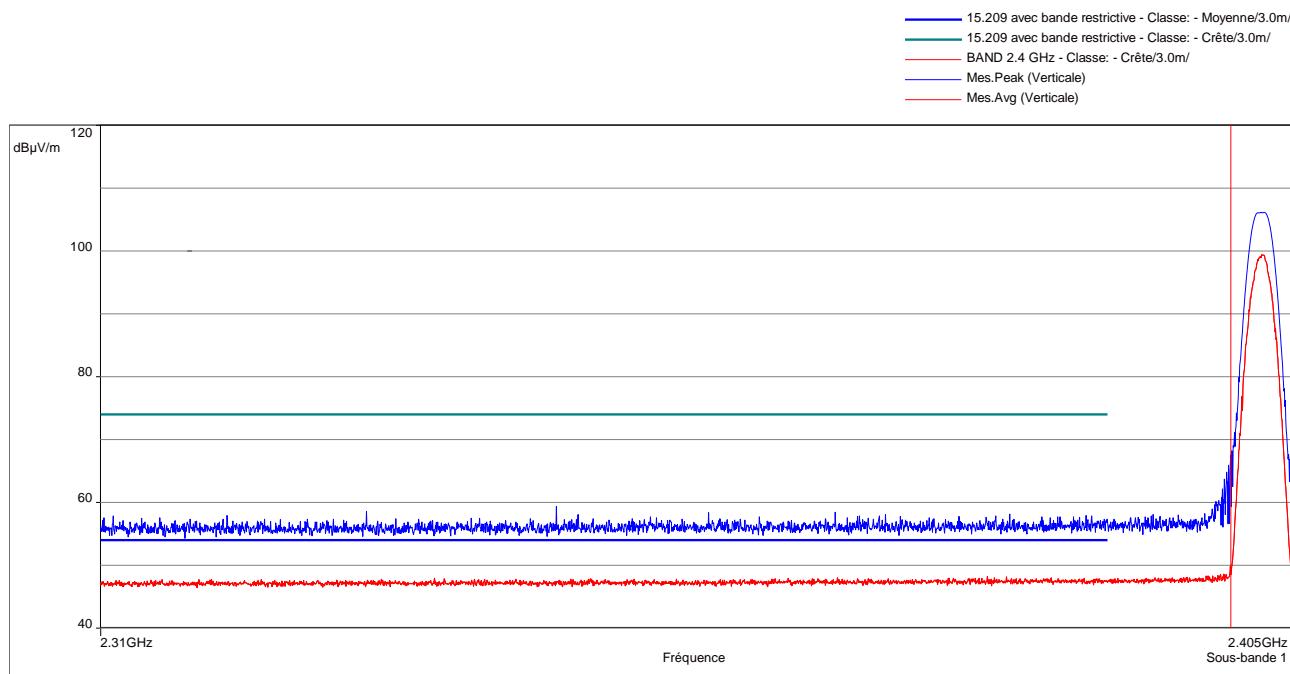
Sample N° 1 Central Channel (F = 2439.5 MHz)

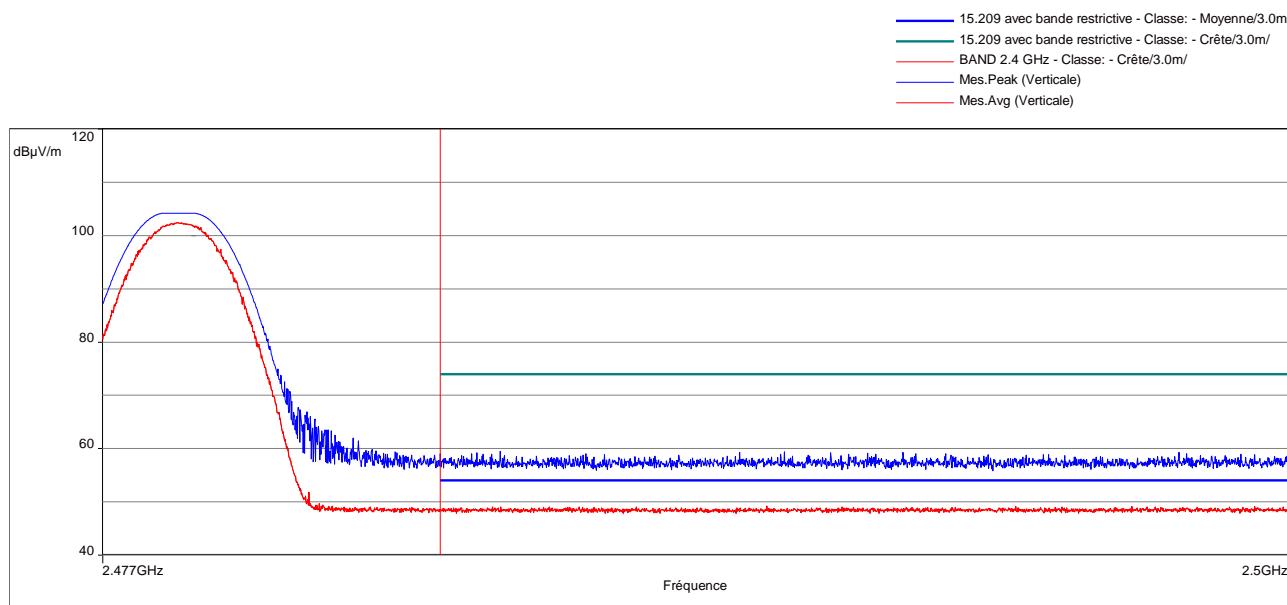
Frequencies (MHz)	Detector P QP Av	Antenna height (cm)	RBW (kHz)	Position	Polarization H: Horizontal V: Vertical	Field strength Measured at 3 m (dB μ V/m)	Limits (dB μ V/m) or (dBm)	Margin (dB)
4879.32 (1)	P	150	1000	3	H	45.27 (2)	74	28.73
7317.6 (1)	P	150	1000	2	H	57.38	74	16.62
7317.6 (1)	Av	150	1000	2	H	51.1	54	2.9
19513.6 (1)	P	150	1000	2	H	48.34 (2)	74	25.66

P= Peak, QP=Quasi-peak, Av=Average

(1) Restricted bands of operation in 15.205

 (2) The peak level is lower than the average limit (54 dB μ V/m)


Sample N° 1 High Channel (F = 2478.5 MHz)


Frequencies (MHz)	Detector P QP Av	Antenna height (cm)	RBW (kHz)	Position	Polarization H: Horizontal V: Vertical	Field strength Measured at 3 m (dB μ V/m)	Limits (dB μ V/m) or (dBm)	Margin (dB)
4957.3 (1)	P	150	1000	1	H	44.48 (2)	74	29.52
7435.6 (1)	P	150	1000	1	H	52.81 (2)	74	21.19

P= Peak, QP=Quasi-peak, Av=Average

(1) Restricted bands of operation in 15.205

(2) The peak level is lower than the average limit (54 dB μ V/m)

Band edge worst case measurement

Applicable limits: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

The highest level recorded in a 100 kHz bandwidth is 106 dB μ V/m on low channel. So the applicable limit is 86 dB μ V/m.

In addition, radiated emissions which fall in the restricted band, as defined in section 15.205 (a), must also comply with the radiated emission limits specified in section 15.209 (a) (see section 15.205 (c)).

Note: any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily reported.

Test conclusion:

RESPECTED STANDARD

11. MAXIMUM PEAK CONDUCTED POWER DENSITY**Temperature (°C) : 20****Humidity (%HR): 36****Date : May 11, 2020****Technician : T. LEDRESSEUR****Standard: FCC Part 15****Test procedure:** paragraph 15.247 (e), paragraph 15.247 (f)
PKPSD (Peak PSD) method of paragraph 11.10.2 of ANSI C63.10**Test set up:**

First an exploratory radiated measurement was performed.

During this phase the product is oriented in these two normal positions.

Then the final measurement is realized with the product on the most critical orientation.

The system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5 m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

Distance of antenna: 3 meters (in anechoic room)**Antenna height:** 1.5 meter (in anechoic room)**Antenna polarization:** vertical and horizontal (only the highest level is recorded)

The measurement of the radiated electro-magnetic field is realized with an analyser.

Span: 2MHz

Resolution bandwidth: 3kHz

Video bandwidth: 10kHz

Detector: Peak

Number of points: Auto

Sweep time: Auto

Trace mode: MaxHold

Then the peak marker function is used.

Finally the radiated electro-magnetic field is converted in dBm with the following formula:

$EIRP(dBm) = E (dB\mu V/m) + 20\log(D) - 104.8$; where D is the measurement distance in meters and antenna Gain = 2 dBi.

Equipment under test operating condition:

The equipment is blocked in continuous modulated transmission mode by an internal data signal at the highest power level at which the transmitter is intended to operate.

P Software adjusted to +9dBm

We used for power source the internal fully charged battery of the equipment.

Results:

Sample N° 1 Low Channel (F = 2402.5 MHz)

	Electro-magnetic field (dB μ V/m):	Maximum Peak conducted power density (dBm / 3 kHz)	Limit (dBm / 3 kHz)
Nominal supply voltage:	93.6	-3.65	8

Polarization of test antenna: horizontal (height: 150 cm)

Position of equipment: Position 1 - (azimuth: 218 degrees)

Sample N° 1 Central Channel (F = 2439.5 MHz)

	Electro-magnetic field (dB μ V/m):	Maximum Peak conducted power density (dBm / 3 kHz)	Limit (dBm / 3 kHz)
Nominal supply voltage:	93.6	-3.65	8

Polarization of test antenna: horizontal (height: 150 cm)

Position of equipment: Position 1 - (azimuth: 218 degrees)

Sample N° 1 High Channel (F = 2478.5 MHz)

	Electro-magnetic field (dB μ V/m):	Maximum Peak conducted power density (dBm / 3 kHz)	Limit (dBm / 3 kHz)
Nominal supply voltage:	91.6	-5.65	8

Polarization of test antenna: horizontal (height: 150 cm)

Position of equipment: Position 1 - (azimuth: 218 degrees)

Maximum Peak conducted power density:

EIRP(dBm / 3 kHz) = E (dB μ V/m / 3 kHz) + 20log(D) - 104.8; where D is the measurement distance in meters and antenna Gain = 2 dBi.

Declared maximum antenna gain: 2 dBi

Test conclusion:

RESPECTED STANDARD

□□□ *End of report, (5) appendixes to be forwarded □□□*

APPENDIX 1: Test equipment list

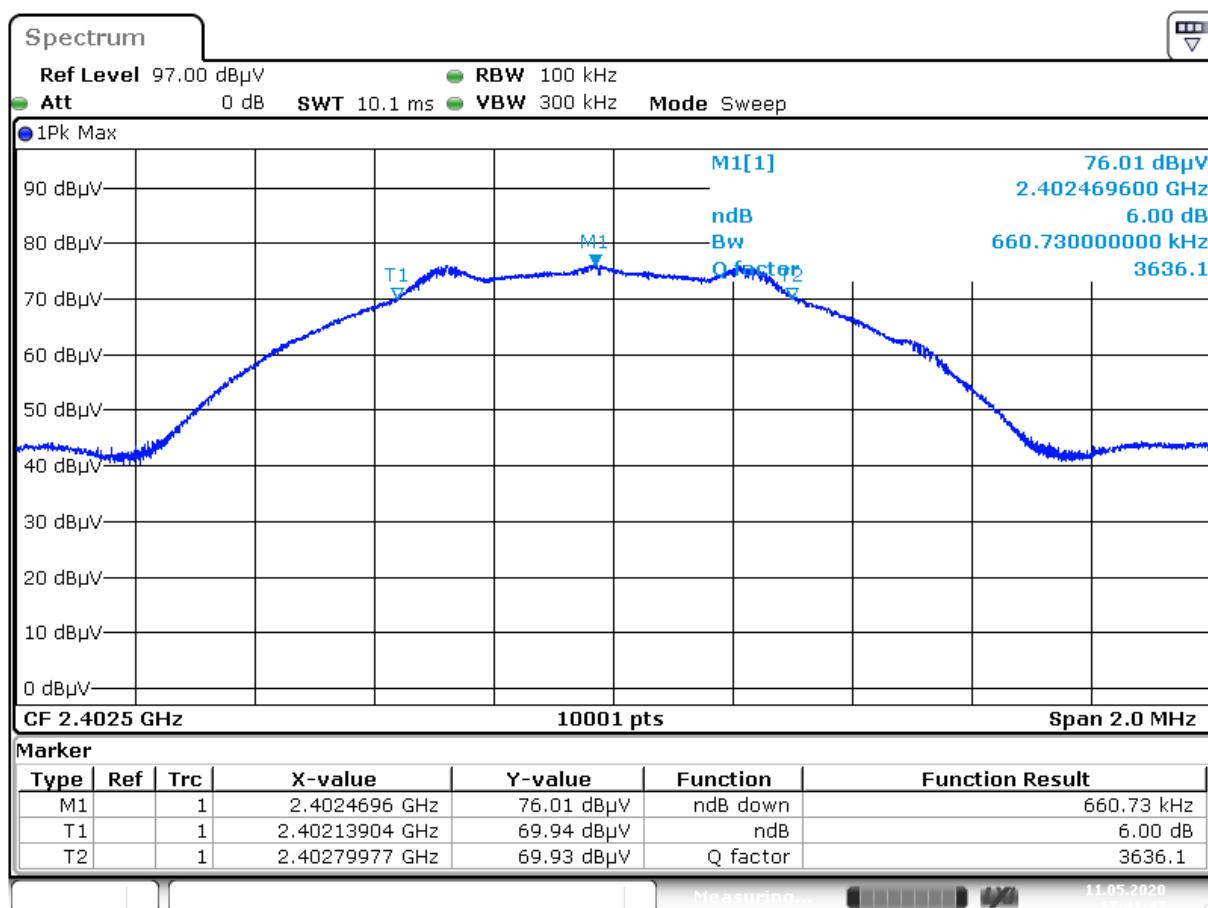
Additional provisions to the general radiated emission limitations

TYPE	MANUFACTURER	EMITECH NUMBER
Anechoic Chamber	EMITECH	8593
Turntable controller 1060C	MATURO	14736
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSV40	Rohde & Schwarz	15666
Antenna 3115	EMCO	8534
N-2M Cable	Huber + Suhner	12911
N-5M Cable	SUCOFLEX	15882
Multimeter 177	Fluke	14903
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.17.0.25	0000

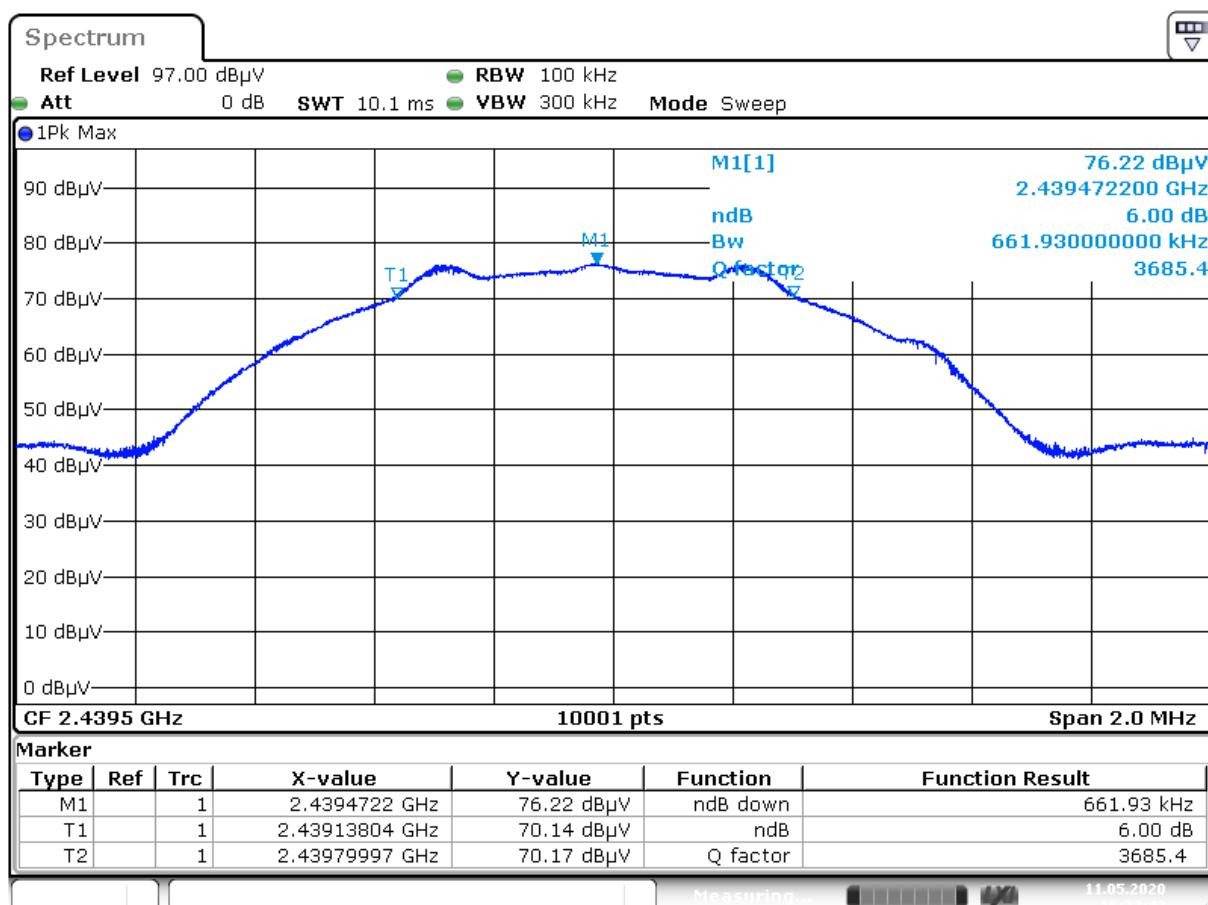
Maximum peak conducted output power

TYPE	MANUFACTURER	EMITECH NUMBER
Anechoic Chamber	EMITECH	8593
Turntable controller 1060C	MATURO	14736
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSV40	Rohde & Schwarz	15666
Antenna 3115	EMCO	8534
N-2M Cable	Huber + Suhner	12911
N-5M Cable	SUCOFLEX	15882
Multimeter 177	Fluke	14903
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.17.0.25	0000

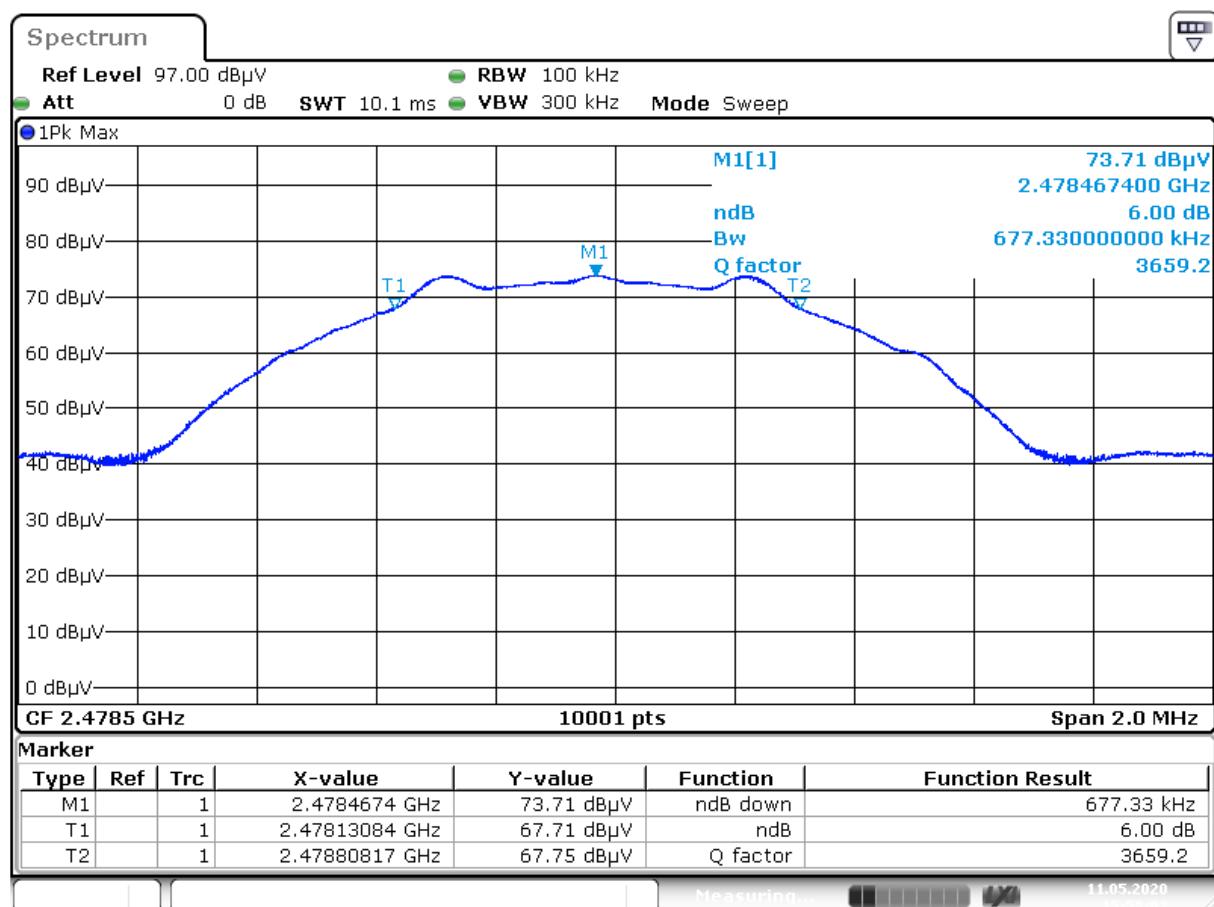
Intentional radiator


TYPE	MANUFACTURER	EMITECH NUMBER
Anechoic Chamber	EMITECH	8593
Turntable controller 1060C	MATURO	14736
Open test site	EMITECH	8732
Turntable and mat controller	EMITECH	8855
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSV40	Rohde & Schwarz	15666
Test receiver ESI7	Rohde & Schwarz	8707
Loop antenna 6502	EMCO	1406
Biconical antenna VHBB 9124	Schwarzbeck	8526
Biconical antenna VHA 9103	Schwarzbeck	8528
Log periodic antenna UHALP 9108A	Schwarzbeck	8543
Antenna 3115	EMCO	8534
Antenna SAS-572	A.H Systems	7124
Low-noise amplifier 8447D	Hewlett Packard	8511
Low-noise amplifier PAM-118A	COM-POWER	15812
Low-noise amplifier S180265L3201	LUCIX Corp.	8704
N-1.5M Cable	Huber + Suhner	6884
N-2M Cable	Huber + Suhner	12911
N-5M Cable	SUCOFLEX	15882
Cable k-20cm	STORM MICROWAE	8974
Cable k-20cm	STORM MICROWAE	8975
Low pass filter LP03/1000-7GH	Filttek	4087
Reject band filter BRM50702	Microtronics	7299
High pass filter HPF180400	C&C	16109
Multimeter 177	Fluke	14903
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.17.0.25	0000

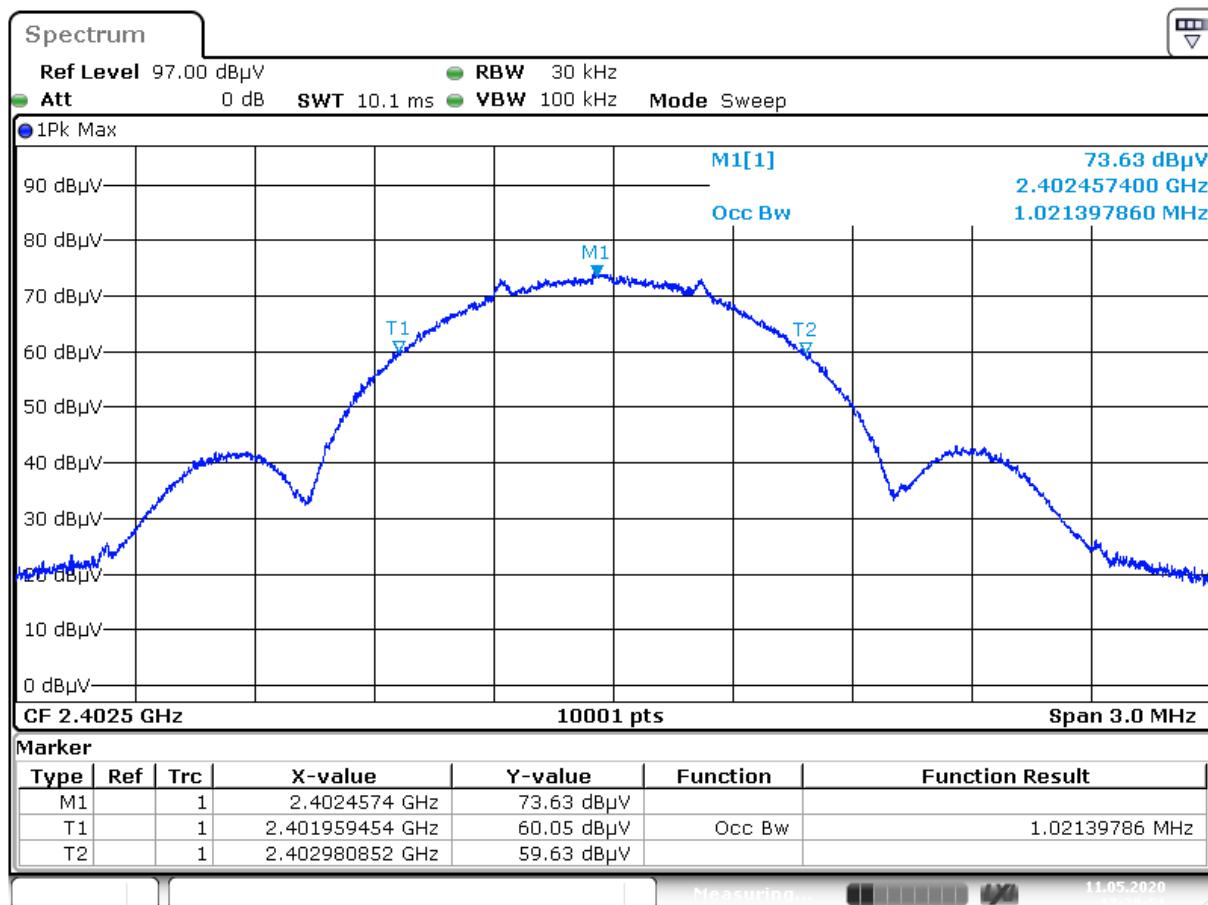
Maximum Peak conducted power density


TYPE	MANUFACTURER	EMITECH NUMBER
Anechoic Chamber	EMITECH	8593
Turntable controller 1060C	MATURO	14736
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSV40	Rohde & Schwarz	15666
Antenna 3115	EMCO	8534
N-2M Cable	Huber + Suhner	12911
N-5M Cable	SUCOFLEX	15882
Multimeter 177	Fluke	14903
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.17.0.25	0000

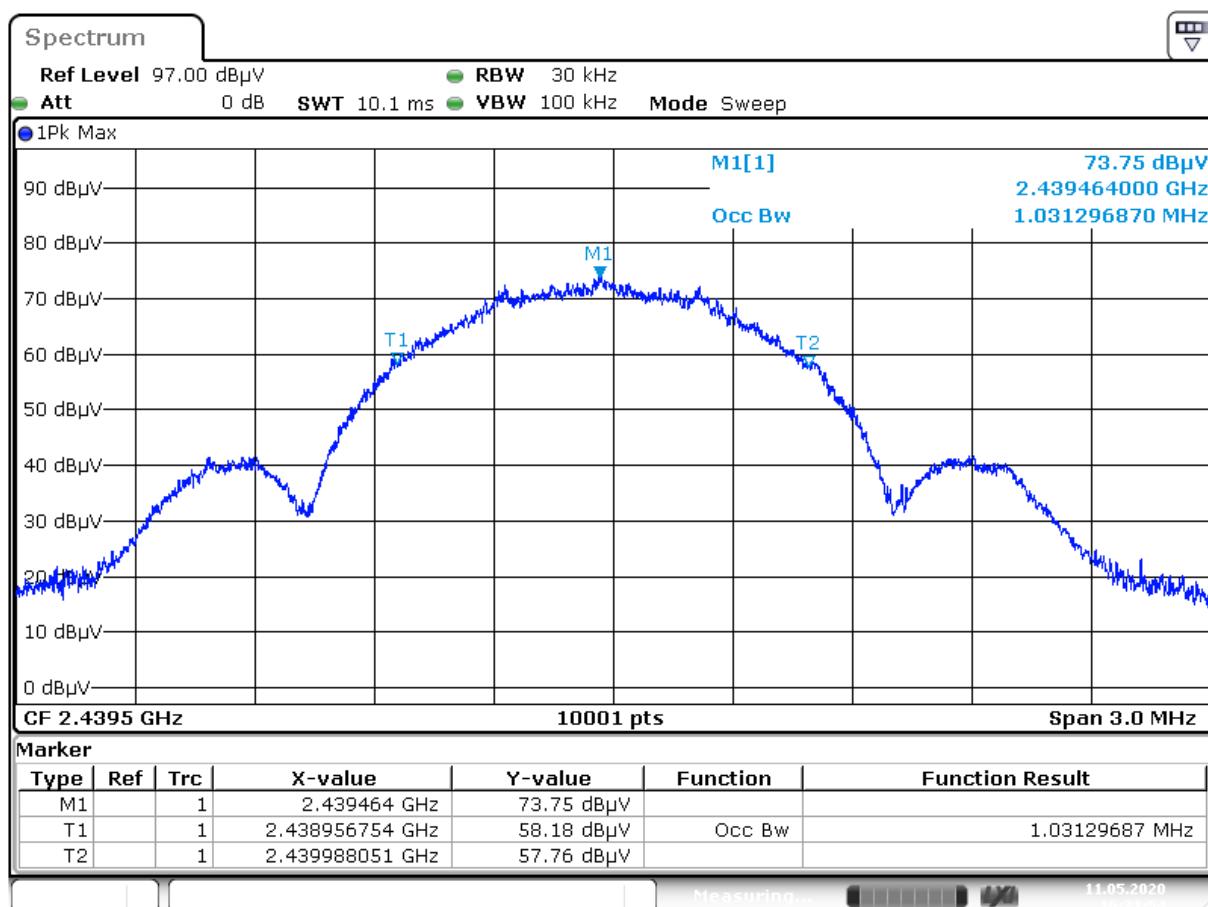
APPENDIX 2: 6 dB bandwidth


Low Channel

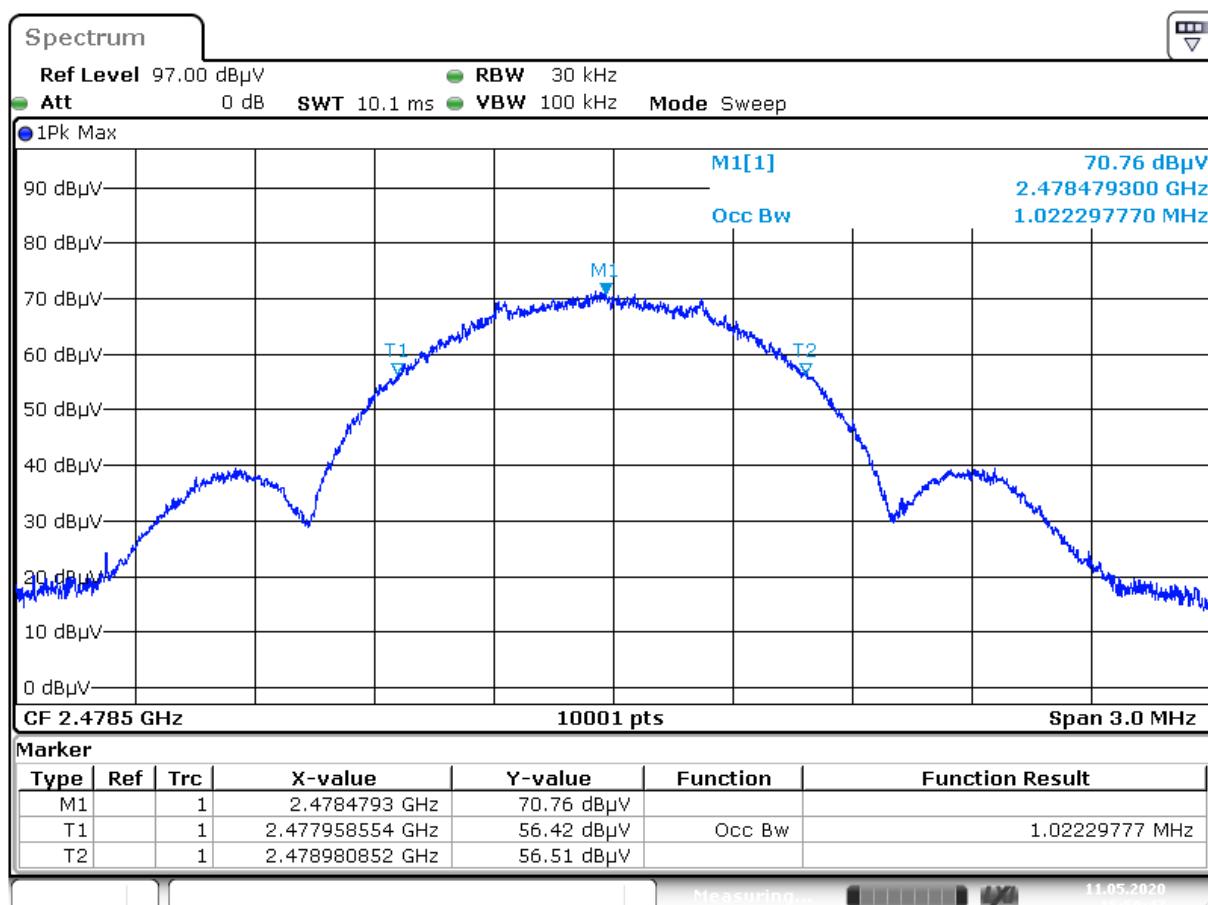
Central Channel



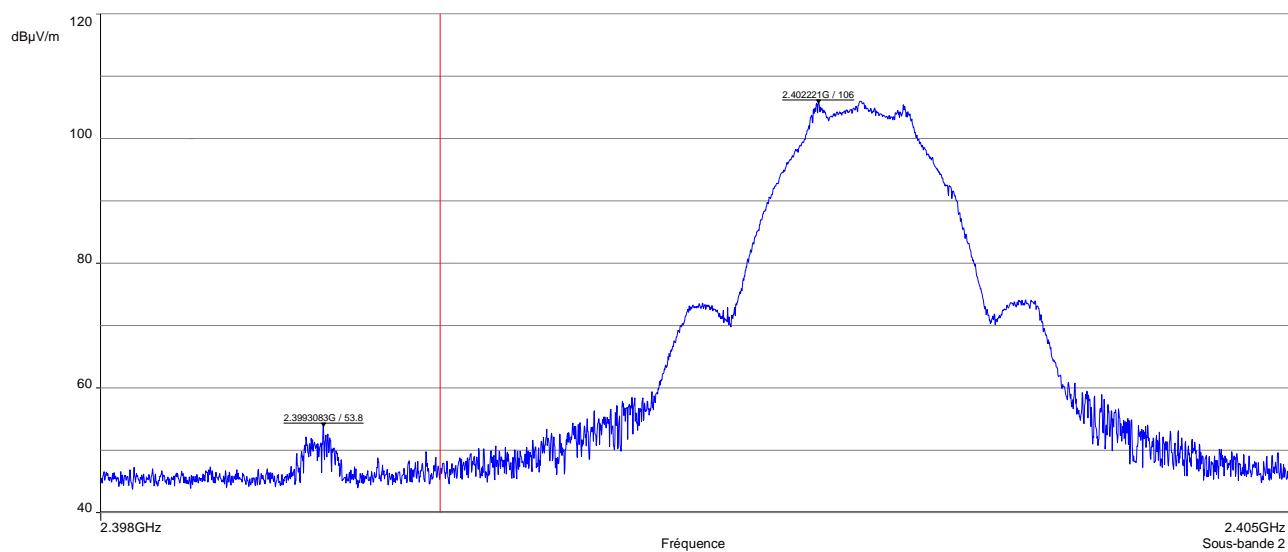
High Channel



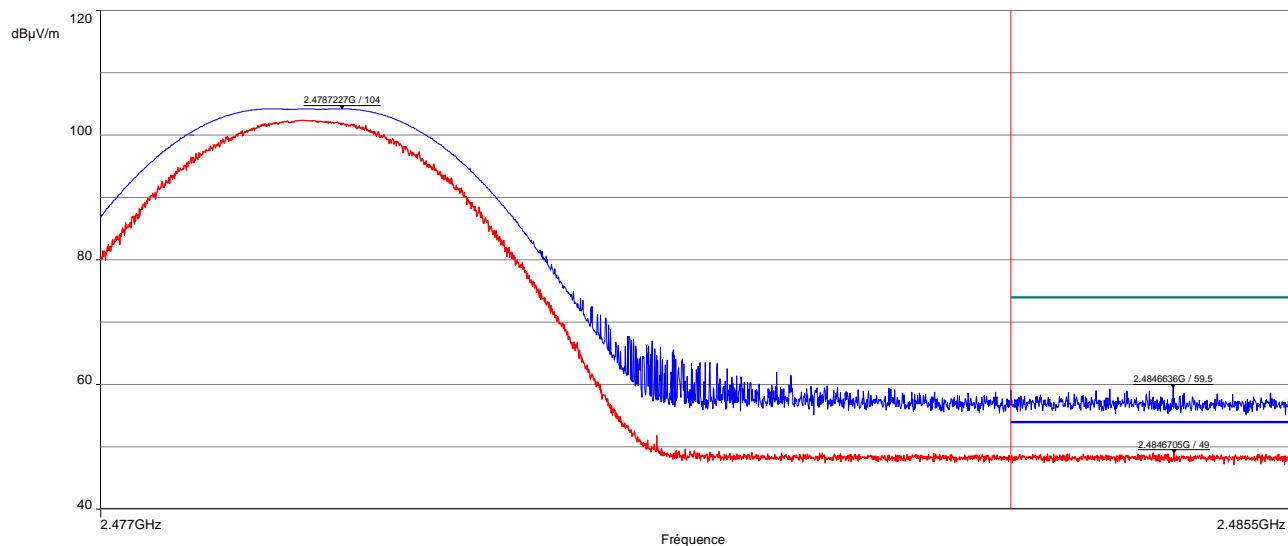
APPENDIX 3: 99% bandwidth


Low Channel

Central Channel

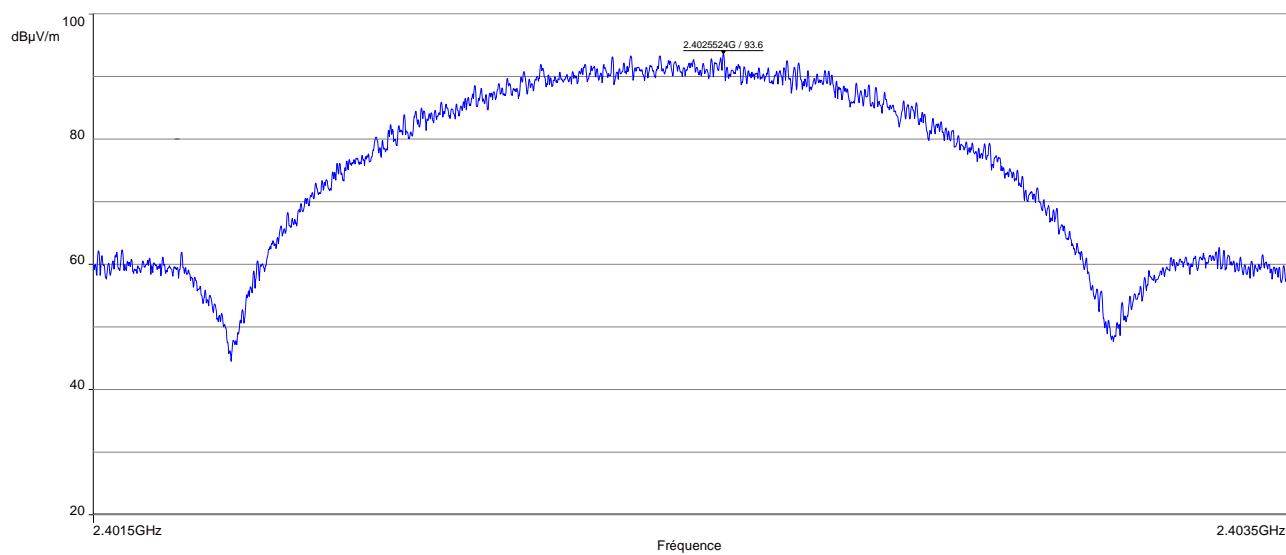


High Channel

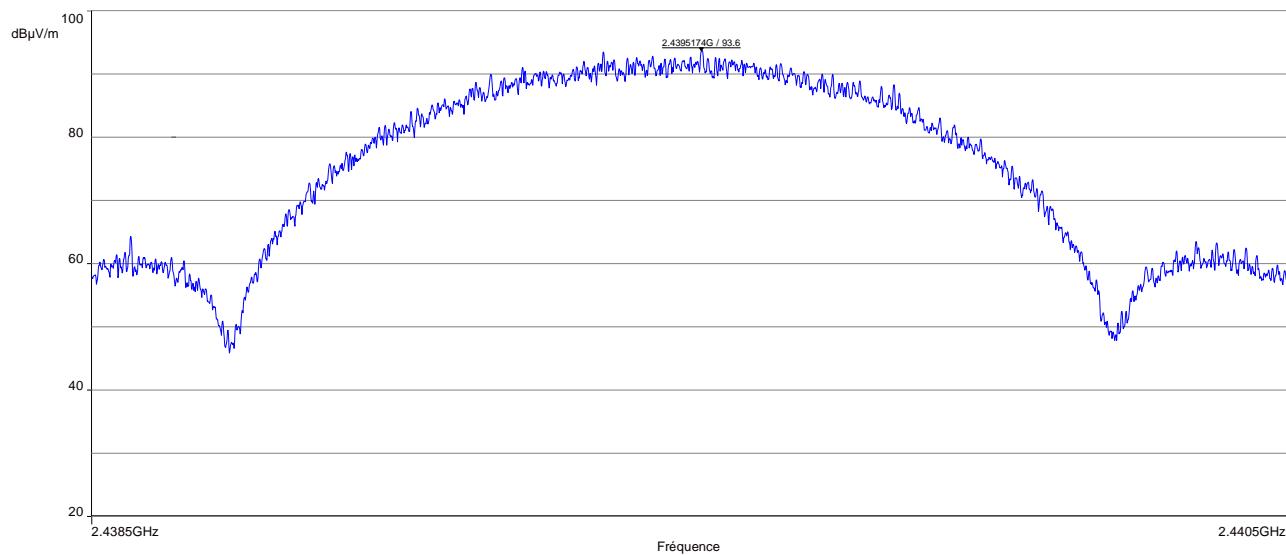


APPENDIX 4: *Band edge*

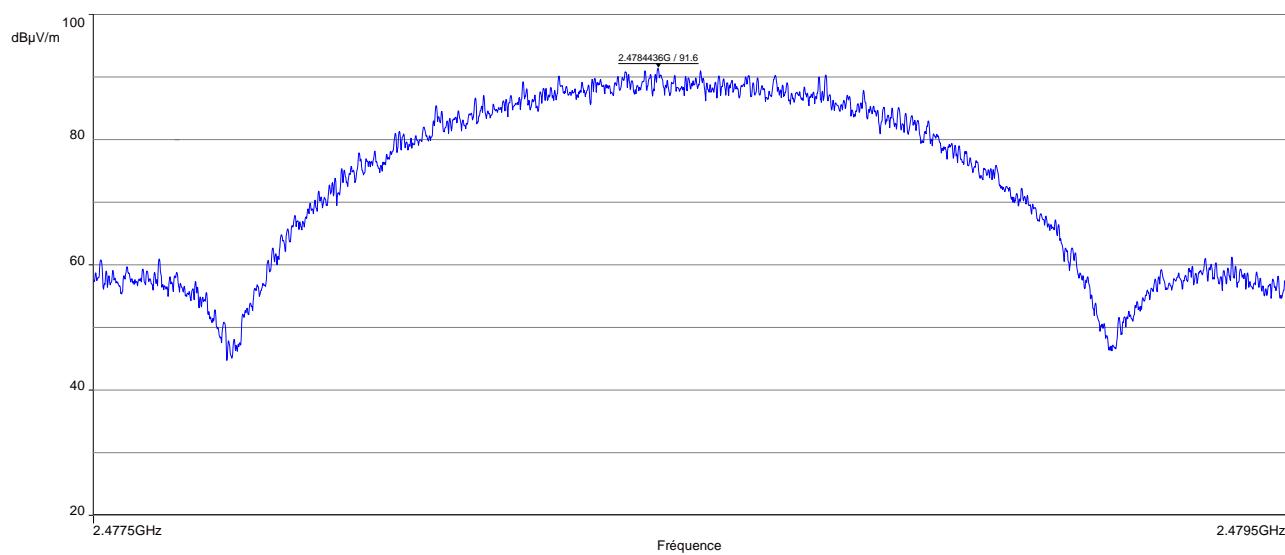
Low Channel



High Channel



APPENDIX 5: Spectral density


Low Channel

Central Channel

High Channel

