

The University of Michigan **Radiation Laboratory** 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 764-0500 Fax: (734) 647-2106

Measured Radio Frequency Emissions From

Lear Corporation Transmitter FCC ID: KOBGTE10C **IC: 3521A-GTE10C**

Test Report No. 417124-583 September 28, 2010

Copyright © 2010

For:

Lear Corporation 21557 Telegraph Rd Southfield, MI 48033 Contact: Jason Summerford jsummerford@lear.com Phone: 248.447.1357 Fax: 248.447.1689

Report Approved by:

Testing supervised by: Maldel U.

Valdis V. Liepa **Research Scientist**

Measurements made by: Valdis V. Liepa Test report written by: Joseph D. Brunett

Summary

Tests for compliance with FCC Regulations, CFR 47, Part 15 and with Industry Canada RSS-210/Gen, were performed on a Lear, FCC ID: KOBGTE10C, IC: 3521A-GTE10C. This device under test (DUT) is subject to the rules and regulations as a Transmitter.

In testing completed on September 30, 2010, the DUT tested met the allowed specifications for radiated emissions by 1.2 dB. Conducted emissions are not subject to regulation as the DUT is powered by a 12 VDC automotive power system.

Table of Contents

1.	Introd	luction
2.	Equip	ment Used
3.	Devic	e Under Test
	3.1	Description & Block Diagram
	3.2	Variants and Samples
	3.3	Modes of Operation
	3.4	Exemptions
	3.5	EMC Relevant Modifications
4.	Emiss	sions Limits
	4.1	Radiated Emissions Limits
	4.2	Power Line Conducted Emissions Limits
5.	Measu	urement Procedures
	5.1	Semi-Anechoic Chamber Radiated Emissions7
	5.2	Outdoor Radiated Emissions
	5.3	Radiated Field Computations7
	5.4	Indoor Power Line Conducted Emissions7
	5.5	Supply Voltage Variation
6.	Test F	Results
	6.1	Radiated Emissions
	6.1.1	Correction for Pulse Operation
	6.1.2	Emission Spectrum
	6.1.3	Emission Bandwidth
	6.1.4	Supply Voltage and Supply Voltage Variation9
	6.2	Conducted Emissions

1. Introduction

This Lear transmitter was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989 as subsequently amended, and with Industry Canada RSS-210/Gen, Issue 7, June 2007. Tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-2003 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057A-1).

2. Equipment Used

The test equipment commonly used in our facility is listed in Table 2.1. Except where indicated as a pretest, monitoring, or support device; all equipment listed below is a part of the University of Michigan Radiation Laboratory (UMRL) quality system. This quality system has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to national standards.

Test Instrument	Used	Manufacturer/Model	Q Number
Spectrum Analyzer (9kHz-26GHz)	\boxtimes	Hewlett-Packard 8593E, SN: 3412A01131	HP8593E1
Spectrum Analyzer (9kHz-6.5GHz)	\boxtimes	Hewlett-Packard 8595E, SN: 3543A01546	JDB8595E
Power Meter		Hewlett-Packard, 432A	HP432A1
Harmonic Mixer (26-40 GHz)		Hewlett-Packard 11970A, SN: 3003A08327	HP11970A1
Harmonic Mixer (40-60 GHz)		Hewlett-Packard 11970U, SN: 2332A00500	HP11970U1
Harmonic Mixer (75-110 GHz)		Hewlett-Packard 11970W, SN: 2521A00179	HP11970W1
Harmonic Mixer (140-220 GHz)		Pacific Millimeter Prod., GMA, SN: 26	PMPGMA1
S-Band Std. Gain Horn		S/A, Model SGH-2.6	SBAND1
C-Band Std. Gain Horn		University of Michigan, NRL design	CBAND1
XN-Band Std. Gain Horn		University of Michigan, NRL design	XNBAND1
X-Band Std. Gain Horn		S/A, Model 12-8.2	XBAND1
X-band horn (8.2- 12.4 GHz)		Narda 640	XBAND2
X-band horn (8.2- 12.4 GHz)		Scientific Atlanta, 12-8.2, SN: 730	XBAND3
K-band horn (18-26.5 GHz)		FXR, Inc., K638KF	KBAND1
Ka-band horn (26.5-40 GHz)		FXR, Inc., U638A	KABAND1
U-band horn (40-60 GHz)		Custom Microwave, HO19	UBAND1
W-band horn(75-110 GHz)		Custom Microwave, HO10	WBAND1
G-band horn (140-220 GHz)		Custom Microwave, HO5R	GBAND1
Bicone Antenna (30-250 MHz)	\boxtimes	University of Michigan, RLBC-1	LBBIC1
Bicone Antenna (200-1000 MHz)	\boxtimes	University of Michigan, RLBC-2	HBBIC1
Dipole Antenna Set (30-1000 MHz)	\boxtimes	University of Michigan, RLDP-1,-2,-3	UMDIP1
Dipole Antenna Set (30-1000 MHz)		EMCO 3121C, SN: 992 (Ref. Antennas)	EMDIP1
Active Rod Antenna (30 Hz-50 MHz)		EMCO 3301B, SN: 3223	EMROD1
Active Loop Antenna (30 Hz-50 MHz)		EMCO 6502, SN:2855	EMLOOP1
Ridge-horn Antenna (300-5000 MHz)	\boxtimes	University of Michigan	UMRH1
Amplifier (5-1000 MHz)	\boxtimes	Avantek, A11-1, A25-1S	AVAMP1
Amplifier (5-4500 MHz)	\boxtimes	Avantek	AVAMP2
Amplifier (4.5-13 GHz)		Avantek, AFT-12665	AVAMP3
Amplifier (6-16 GHz)		Trek	TRAMP1
Amplifier (16-26 GHz)		Avantek	AVAMP4
LISN Box		University of Michigan	UMLISN1
Signal Generator		Hewlett-Packard 8657B	HPSG1

Table 2.1TestEquipment.

3. Device Under Test

3.1 Description & Block Diagram

The DUT is a multi-frequency transmitter (12 frequencies in total: 288, 295, 300, 303.9, 310, 315, 318, 340, 360, 372, 380, and 390 MHz), 9 x 7 x 2 cm in size, designed to emulate existing garage door openers. This transmitter has pre-programmed protocols selected by the user based upon garage door receiver information. There are three buttons on the device so that the user may program a separate protocol to each button. The antenna is a trace on the PCB. The DUT is manufactured by Lear Corporation, 5100 W. Waters Ave., Apodaca, Mexico.

Device	[Make], Model	[S/N],P/N	EMC Consideration
DUT	[Lear], UHR2V	Test Module #1	15.231/RSS-210
DUT	[Lear], UHR2V	Test Module #2	15.231/RSS-210
			I.

Cable	[Make], Model	Length	EMC Consideration
DC power	[Generic]	1 meter	two wire

3.2 Test Methodology

Since the DUT is capable of transmitting a large number of different protocols over 12 different frequencies, the following test procedure has been followed. The lowest frequency (288 MHz), the most capable middle frequency (318 MHz), and the highest frequency (390 MHz) have been tested for the worst case duty cycle (least on time in 100 ms window). The manufacturer states that this covers the worst case conditions for all protocols in both programming and normal operating modes. (This approach follows the recommendations of the FCC and IC in previous applications for like products by this manufacturer. See description of operation exhibit for more details.) The encodings used represent the limits of duty that the manufacturer states it will implement at a given frequency. In addition, this report includes data for all three frequencies with the DUT programmed at the manufacturer's minimum duty cycle protocols to demonstrate correct output power adjustment by the DUT.

3.3 Variants and Samples

There is only a single variant of the DUT, as tested. Two samples of the DUT were provided for testing. **Test Module #1 (TM#1)** was setup for RF transmission at 288 MHz with 13.6% duty cycle, 318 MHz with 10.6% duty cycle, and 390 MHz with 52.6% duty cycle. **Test Module #2 (TM#2)** was setup for RF transmission at 315 MHz + 390 MHz with 29.3% duty cycle, 288 MHz with 59.3% duty cycle, and 318 MHz with 59.9% duty. After emissions testing, the normal operating mode of the device was tested by clearing the memory of the test modules employed and following the user programming instructions included with this filing.

3.4 Modes of Operation

This device is capable of two principle modes of operation: NORMAL OPERTING MODE and PROGRAMMING MODE. A detailed description of these modes in included in the confidential description of operation exhibit.

In **NORMAL OPERATING MODE** there exist 2 protocols wherein both 315 MHz and 390 MHz are used sequentially during a single button press; all other protocols in this mode transmit on only a single frequency.

In **PROGRAMMING MODE** the device may transmit on up to 8 frequencies in a sequential manner during a single button press.

The peak output power of the DUT is internally adjusted according to the RF frequency and data transmitted. Duty factors are calculated in software for all fixed code transmissions. For rolling code transmissions, the duty factor is computed for the worst case maximum on time.

3.5 Exemptions

The DUT is permanently installed in a transportation vehicle. As such, digital emissions are exempt (per FCC 15.103(a) and IC correspondence on ICES-003) from regulation.

3.6 EMC Relevant Modifications

No EMI Relevant Modifications were performed by this test laboratory.

4. Emissions Limits

4.1 Radiated Emissions Limits

The DUT tested falls under the category of an Intentional Radiator. The applicable testing frequencies and corresponding emission limits set by both the FCC and IC are given in Tables 4.1 and 4.2 below.

Table 4.1. TX Emission Limits (FCC: 15.231(b), .205(a); IC: RSS-210 2.7 T4).	

Engguanau	Fundar		Spurious** Ave. E _{lim} (3m)		
Frequency	Ave. E _{li}			im (3111)	
(MHz)	(µV/m)	dB (µV/m)	(µV/m)	$dB (\mu V/m)$	
260.0-470.0	3750-12500*		375-1250		
315	6042	75.6	604.2	55.6	
433.9	10966	80.8	1096.6	60.8	
322-335.4	Restr	istad			
399.9-410			200	46.0	
608-614	Bar	lus			
960-1240/1427(IC)					
1300-1427					
1435-1626.5	Desta	أدمدها		54.0	
1645.5-1646.5 (IC)	Restr		500		
1660-1710	Bar	lus			
1718.9-1722.2					
2200-2300					

* Linear interpolation, formula: E = -7083 + 41.67*f (MHz)

** Measure up to tenth harmonic; 120 kHz BW up to 1 GHz, 1 MHz BW above 1 GHz

Table 4.2. Spurious Emission Limits (FCC: 15.33, .35, .109/209; IC: RSS-210 2.7, T2)

Freq. (MHz)	E_{lim} (3m) μ V/m	$E_{lim} dB(\mu V/m)$
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-2000	500	54.0

Note: Average readings apply above 1000 MHz (1 MHz BW), Quasi-Peak readings apply to 1000 MHz (120 kHz RBW), PRF of intentional emissions > 20 Hz for QPK to apply.

4.2 Power Line Conducted Emissions Limits

Table 4.3 Emission Limits (FCC:15.107 (CISPR); IC: RSS-Gen, 7.2.2 T2).

Frequency	Class A	(dBµV)	Class B (dBµV)		
(MHz)	Quasi-peak Average		Quasi-peak	Average	
.150 - 0.50	79	66	66 - 56*	56 - 46*	
0.50 - 5	73	60	56	46	
5 - 30	73	60	60	50	

Notes:

1. The lower limit shall apply at the transition frequency

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15-0.50 MHz:

Class B Quasi-peak: $dB\mu V = 50.25 - 19.12\log(f)$

Class B Average: $dB\mu V = 40.25 - 19.12\log(f)$

3. 9 kHz RBW

5. Measurement Procedures

5.1 Semi-Anechoic Chamber Radiated Emissions

To become familiar with the radiated emission behavior of the DUT, the device is first studied and measured in our shielded semi-anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with a turntable, an antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

The DUT is laid on the test table as shown in the included block diagram and/or photographs. A shielded loop antenna is employed when studying emissions from 9 kHz to 30 MHz. Above 30 MHz and below 250 MHz a biconical antenna is employed. Above 250 MHz a ridge or and standard gain horn antennas are used. The spectrum analyzer resolution and video bandwidths are set so as to measure the DUT emission without decreasing the emission bandwidth (EBW) of the device. Emissions are studied for all orientations (3-axes) of the DUT and all test antenna polarizations. In the chamber, spectrum and modulation characteristics of intentional carriers are recorded. Receiver spurious emissions are measured with an appropriate carrier signal applied. Associated test data is presented in subsequent sections.

5.2 Outdoor Radiated Emissions

After measurements are performed indoors, emissions on our outdoor 3-meter Open Area Test Site (OATS) are made, when applicable. If the DUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.4 are employed. Alternatively, an on-table layout more representative of actual use may be employed if the resulting emissions appear to be worst-case in such a configuration. Any intentionally radiating elements are placed on the test table flat, on their side, and on their end (3-axes) and worst case emissions are recorded. For each configuration the DUT is rotated 360 degrees about its azimuth and the receive antenna is raised and lowered between 1 and 4 meters to maximize radiated emissions from the device. Receiver spurious emissions are measured with an appropriate carrier signal applied. For devices with intentional emissions below 30 MHz, our shielded loop antenna at a 1 meter receive height is used. Low frequency field extrapolation to the regulatory limit distance is employed as needed. Emissions between 30 MHz and 1 GHz are measured using tuned dipoles and/or biconical antennas. Care is taken to ensure that the RBW and VBW used meet the regulatory requirements, and that the EBW of the DUT is not reduced. The Photographs included in this report show the Test Setup.

5.3 Radiated Field Computations

To convert the dBm values measured on the spectrum analyzer to $dB(\mu V/m)$, we use expression

$$E3(dB\mu V/m) = 107 + PR + KA - KG + KE - CF$$

where

- PR = power recorded on spectrum analyzer, dBm, measured at 3 m
 - KA = antenna factor, dB/m

KG = pre-amplifier gain, including cable loss, dB

- KE = duty correction factor, dB
- CF = distance conversion (employed only if limits are specified at alternate distance), dB

When presenting the data at each frequency, the highest measured emission under all of the possible DUT orientations (3-axes) is given.

5.4 Indoor Power Line Conducted Emissions

When applicable, power line conducted emissions are measured in our semi-anechoic chamber. If the DUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.4 are employed. Alternatively, an on-table layout more representative of actual use may be employed if the resulting emissions appear to be worst-case in such a configuration.

The conducted emissions measured with the spectrum analyzer and recorded (in $dB\mu V$) from 0-2 MHz and 2-30 MHz for both the ungrounded (Hi) and grounded (Lo) conductors. The spectrum analyzer is set to peak-hold mode in order to record the highest peak throughout the course of functional operation. Only when the emission exceeds or is near the limit are quasi-peak and average detection used.

5.5 Supply Voltage Variation

Measurements of the variation in the fundamental radiated emission were performed with the supply voltage varied by no less than 85% and 115% of the nominal rated value. For battery operated equipment, tests were performed using a new battery, and worst case emissions are re-checked employing a new battery.

6. Test Results

6.1 Radiated Emissions

6.1.1 Correction for Pulse Operation

When the transmitter is activated it can, in the worst case, transmits as detailed in the table below. See Figure 6.1 for plots of data collected. Computing the duty factors results in:

Freq.	On-Time	Duty Cycle Calculation	$K_{E}(dB)$
288	Min	587.5 us / 4.30 ms = 0.136	-17.3
200	Max	(15 x 3.825 ms + 3 x 0.650 ms)/100 ms = 0.593	-4.5
318	Min	(18 x 587.5 us) / 100 ms = 0.106	-19.5
510	Max	(15 x 3.863 ms + 3 x 0.650 ms)/100 ms = 0.599	-4.5
390	Min	$((0.210/0.400) \times 5.10 \text{ ms} + (0.410/0.600) \times 39.75 \text{ ms})/100 \text{ ms} = 0.298$	-10.5
390	Max	$25.5 \mu\text{s} / 48.5 \mu\text{s} = 0.526$	-5.6
315	Min	$((0.210/0.400) \times 4.95 \text{ ms} + (0.410/0.600) \times 39.75 \text{ ms})/100 \text{ ms} = 0.298$	-10.5

6.1.2 Emission Spectrum

The relative DUT emission spectrum is recorded and is shown in Figure 6.2.

6.1.3 Emission Bandwidth

The emission bandwidth of all frequencies employed are shown in Figure 6.3.

Freq.	20 dB BW	Freq.	20 dB BW
(MHz)	(kHz)	(MHz)	(kHz)
288*	55.0	340*	47.5
295	50.0	360*	52.5
303.8	52.5	372	55.0
310*	52.5	380*	50.0
315*	50.0	390*	82.0
318*	47.5		

In the worst case mode (programming mode), the eight (8) frequencies starred above may be sequentially activated during a single button use. Per FCC KDB 926416, if the highest frequency used is less than 900 MHz, the cumulative bandwidth for any mode employing multiple frequencies is restricted to 0.0025 (.25%) of the center frequency. For this product, the frequency half way between the lowest and highest frequency employed is 339 MHz. Thus, the maximum permissible cumulative bandwidth is 339 MHz x 0.25% = 847.5 kHz for the eight frequencies in question. Their cumulative bandwidth is 437 kHz.

6.1.4 Supply Voltage and Supply Voltage Variation

The DUT has been designed to be powered by a 12 VDC automotive power system. For this test, relative radiated power was measured at the fundamental as the voltage was varied from 8.0 to 18.0 volts. The emission variation is shown in Figure 6.4.

Voltage	V	=	12 VDC
Current	Ι	=	62 mA (pulsed)

6.2 Conducted Emissions

These tests do not apply, since the DUT is powered from a 12 VDC automotive system.

The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 764-0500 Fax: (734) 647-2106

	Radiated Emission - RFLear Visor, FCC/IC										
	Freq. Ant. Ant. Pr Det. Ka Kg E3* E3lim Pass									Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	dBµV/m	dBµV/m	dB	Comments
1	TM#1: D	uty Cyo	cle: -17	.3 (PWN	I Pulses	> 100 m	ls)	·			•
2	288.0	SBic	Н	-14.8	Pk	17.6	21.8	70.7	73.8	3.1	flat
3	288.0	SBic	Н	-20.5	Pk	17.6	21.8	65.0	73.8	8.8	side
4	576.0	SBic	Н	-52.5	Pk	23.7	18.9	42.0	53.8	11.9	max all
5	576.0	SBic	V	-53.7	Pk	23.7	18.9	40.8	53.8	13.1	max all
6	864.0	SBic	Н	-69.7	Pk	27.8	16.8	31.0	53.8	22.9	max all
7	864.0	SBic	V	-67.8	Pk	27.8	16.8	32.9	53.8	21.0	max all
8	1152.0	Horn	Н	-58.6	Pk	20.2	28.0	23.3	54.0	30.7	max all
9	1440.0	Horn	Н	-56.4	Pk	21.1	28.0	26.4	54.0	27.6	max all
10	1728.0	Horn	Н	-69.0	Pk	21.8	28.0	14.5	53.8	39.3	max all
11	2016.0	Horn	Н	-67.8	Pk	22.5	28.1	16.3	53.8	37.5	max all
12	2304.0	Horn	Н	-71.5	Pk	23.3	28.3	13.2	53.8	40.7	max all, noise
13	2592.0	Horn	Н	-69.8	Pk	24.1	28.2	15.8	53.8	38.1	max all, noise
14	2880.0	Horn	Н	-70.7	Pk	25.0	27.9	16.1	54.0	37.9	max all, noise
15											
16					_	* Inclu	des 17.3	3 dB duty fa	ictor		
17											
18	TM#2: D	uty Cyo	ele: -4.5	5 dB (18	PWM P	ulses, 15	5 Wide)				
19	288.0	SBic	Н	-27.8	Pk	17.6	21.8	70.5	73.8	3.3	end
20	288.0	SBic	Н	-30.6	Pk	17.6	21.8	67.7	73.8	6.1	side
21	576.0	SBic	Н	-60.4	Pk	23.7	18.9	46.9	53.8	7.0	end
22	576.0	SBic	V	-63.0	Pk	23.7	18.9	44.3	53.8	9.6	end
23	864.0	SBic	Н	-64.9	Pk	27.8	16.8	48.6	53.8	5.3	side
24	864.0	SBic	V	-60.8	Pk	27.8	16.8	52.7	53.8	1.2	side
25	1152.0	Horn	Н	-70.7	Pk	20.2	28.0	24.0	54.0	30.0	max all, noise
26	1440.0	Horn	Н	-70.4	Pk	21.1	28.0	25.2	54.0	28.8	max all, noise
27	1728.0	Horn	Н	-69.7	Pk	21.8	28.0	26.6	53.8	27.2	max all, noise
28	2016.0	Horn	Н	-70.6	Pk	22.5	28.1	26.3	53.8	27.5	max all, noise
29	2304.0	Horn	Н	-70.9	Pk	23.3	28.3	26.6	53.8	27.3	max all, noise
30	2592.0	Horn	Н	-71.8	Pk	24.1	28.2	26.6	53.8	27.3	max all, noise
31	2880.0	Horn	Н	-71.4	Pk	25.0	27.9	28.2	54.0	25.8	max all, noise
32											
33						* Inclu	udes 4.5	dB duty fa	ctor		
34											
35											
36											
37											
38											
39											

Table 6.1(a) Highest Emissions Measured

Meas. 04/26/2010; U of Mich.

Radiated Emission - RF Lear Visor, FCC/IC											
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3*	E3lim	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	dBµV/m	dBµV/m	dB	Comments
1	TM#1: Duty Cycle: -19.5 (18 PWM Pulses)										
2	318.0	SBic	Н	-11.1	Pk	18.7	22.4	72.7	75.8	3.1	end
3	318.0	SBic	V	-21.5	Pk	18.7	22.4	62.3	75.8	13.5	side
4	636.0	SBic	Н	-48.0	Pk	24.5	19.3	44.7	55.8	11.1	HDTV Background
5	636.0	SBic	V	-51.5	Pk	24.5	19.3	41.2	55.8	14.6	HDTV Background
6	954.0	SBic	Н	-69.7	Pk	28.9	17.3	29.4	55.8	26.4	flat
7	954.0	SBic	V	-70.6	Pk	28.9	17.3	28.5	55.8	27.3	end
8	1272.0	Horn	Н	-51.7	Pk	20.7	28.0	28.5	54.0	25.5	max all
9	1590.0	Horn	Н	-66.8	Pk	21.5	28.0	14.2	54.0	39.8	max all
10	1908.0	Horn	Н	-59.8	Pk	22.3	28.0	22.0	55.8	33.8	max all
11	2226.0	Horn	Н	-68.4	Pk	23.1	28.1	14.1	54.0	39.9	max all
12	2544.0	Horn	Н	-70.6	Pk	23.9	28.3	12.5	55.8	43.3	max all, noise
13	2862.0	Horn	Н	-69.6	Pk	24.9	28.2	14.6	54.0	39.4	max all, noise
14	3180.0	Horn	Н	-72.1	Pk	25.9	27.9	13.4	55.8	42.4	max all, noise
15											
16						* Incl	udes 19	.5 dB duty	factor		
17											
18	TM#2: D	uty Cyc	cle: -4.5	5 (18 PW	M Pulse	es, 15 W	ide)				
19	318.0	SBic	Н	-27.1	Pk	18.7	22.4	71.7	75.8	4.1	end
20	318.0	SBic	V	-30.5	Pk	18.7	22.4	68.3	75.8	7.5	end
21	636.0	SBic	Н	-53.2	Pk	24.5	19.3	54.5	55.8	1.3	HDTV Background
22	636.0	SBic	V	-55.6	Pk	24.5	19.3	52.1	55.8	3.7	HDTV Background
23	954.0	SBic	Н	-68.5	Pk	28.9	17.3	45.6	55.8	10.2	flat
24	954.0	SBic	V	-68.7	Pk	28.9	17.3	45.4	55.8	10.4	end
25	1272.0	Horn	Н	-64.4	Pk	20.7	28.0	30.8	54.0	23.2	max all
26	1590.0	Horn	Н	-71.3	Pk	21.5	28.0	24.7	54.0	29.3	max all
27	1908.0	Horn	Н	-70.0	Pk	22.3	28.0	26.8	55.8	29.0	max all
28	2226.0	Horn	Н	-70.5	Pk	23.1	28.1	27.0	54.0	27.0	max all, noise
29	2544.0	Horn	Н	-71.1	Pk	23.9	28.3	27.0	55.8	28.8	max all
30	2862.0	Horn	Н	-72.0	Pk	24.9	28.2	27.2	54.0	26.8	max all, noise
31	3180.0	Horn	Н	-71.0	Pk	25.9	27.9	29.5	55.8	26.3	max all, noise
32											
33				1	[* Inc	ludes 4.	5 dB duty f	actor		
34											
35											
36											
37											
38											
39											

Table 6.1(b) Highest Emissions Measured

	Radiated Emission - RF Lear Visor, FCC/I											
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3*	E3lim	Pass		
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	$dB\mu V/m$	dBµV/m	dB	Comments	
1	1 TM#2: Duty Cycle: -10.5 (12 Wake, PWM data pulses)											
2	390.0	Dip	Н	-20.1	Pk	20.6	21.7	75.3	79.2	3.9	end	
3	390.0	Dip	V	-22.7	Pk	20.6	21.7	72.7	79.2	6.5	end	
4	780.0	SBic	Н	-55.3	Pk	26.5	18.4	49.4	59.2	9.9	flat	
5	780.0	SBic	V	-61.4	Pk	26.5	18.4	43.3	59.2	16.0	side	
6	1170.0	Horn	Н	-71.5	Pk	20.3	28.0	17.3	54.0	36.7	max all, noise	
7	1560.0	Horn	Н	-70.8	Pk	21.4	28.0	19.1	54.0	34.9	max all, noise	
8	1950.0	Horn	Н	-70.1	Pk	22.4	28.0	20.8	59.2	38.5	max all, noise	
9	2340.0	Horn	Н	-70.3	Pk	23.4	28.0	21.6	54.0	32.4	max all	
10	2730.0	Horn	Н	-70.4	Pk	24.5	28.1	22.5	54.0	31.5	max all	
11	3120.0	Horn	Н	-71.4	Pk	25.7	28.3	22.5	59.2	36.7	max all	
12	3510.0	Horn	Н	-72.9	Pk	27.0	28.2	22.4	59.2	36.9	max all, noise	
13	3900.0	Horn	Η	-72.0	Pk	28.1	27.9	24.7	54.0	29.3	max all, noise	
14												
15		* Includes 10.5 dB duty factor										
16												
17	TM#2: D						-					
18	315.0	SBic	Η	-22.5	Pk	18.6	22.5	70.0	75.6		flat	
19	315.0	SBic	V	-25.2	Pk	18.6	22.5	67.3	75.6	8.3	side	
20												
21						* Incl	udes 10	.5 dB duty	factor			
22						100	````					
23	TM#1: D								70.0	2.7		
24	390.0	Dip	H	-24.8	Pk	20.6	21.7	75.6	79.2	3.7	end	
25	390.0	Dip	V	-24.0	Pk	20.6	21.7	76.4	79.2	2.9	side	
26	780.0	SBic	H	-63.2	Pk	26.5	18.3	46.4	59.2	12.9	flat	
27 28	780.0 1170.0	SBic Horn	V H	-63.2 -46.2	Pk Pk	26.5 20.3	18.3 28.0	46.4 47.5	59.2 54.0	12.9 6.5	side	
28 29	1560.0	Horn	н Н	-40.2 -68.1	PK Pk	20.5	28.0	47.5 26.7	54.0 54.0	27.3	max all	
29 30	1950.0	Horn	н Н	-68.1 -68.7	PK Pk	21.4	28.0	26.7	59.2	32.2	max all max all	
31	2340.0	Horn	н Н	-68.5	PK Pk	22.4	28.0	27.1		25.7		
31	2340.0	Horn	н Н	-08.5	PK Pk	23.4 24.5	28.0	28.3 26.3	54.0 54.0	25.7	max all max all, noise	
33	3120.0	Horn	н Н	-71.5	PK Pk	24.5 25.7	28.1	26.3	54.0 59.2	32.0	max all, noise	
34	3510.0	Horn	н Н	-71.9	Pk Pk	27.0	28.5	27.2	59.2 59.2	31.0	max all, noise	
35	3900.0	Horn	п Н	-71.9	Pk	27.0	28.2	28.5	54.0	24.8	max all, noise	
36	3900.0	110111	п	-12.4	ГK	20.1	21.9	27.2	54.0	24.0	111aA a11, 110150	
37						* Inc	ludes 5	6 dB duty f	actor		1	
38						IIIC	indes J.		actor			
50	1										$\mathbf{D}_{\mathbf{D}}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}}_{\mathbf{D}_{\mathbf{D}}_{\mathbf{D}_{\mathbf{D}}}}}}}}}}$	

 Table 6.1(c)
 Highest Emissions Measured

Meas. 04/26/2010 - 05/05/2010; U of Mich.

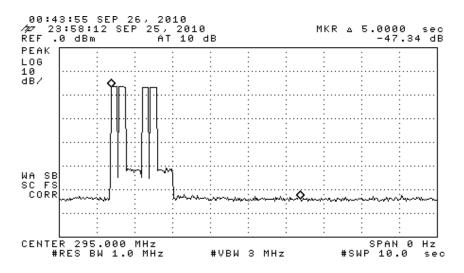


Figure 6.1(a). 5 second transmission limit verification (gate programming / normal mode).

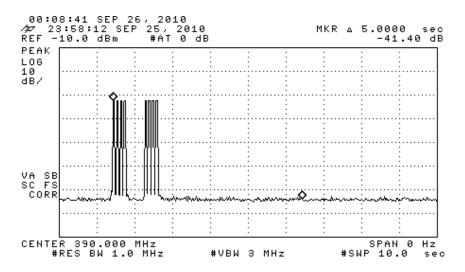
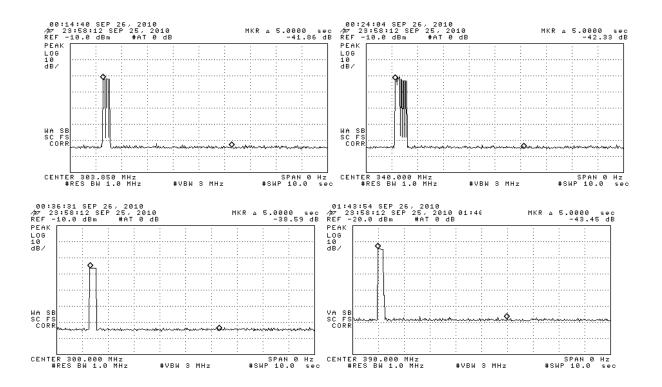
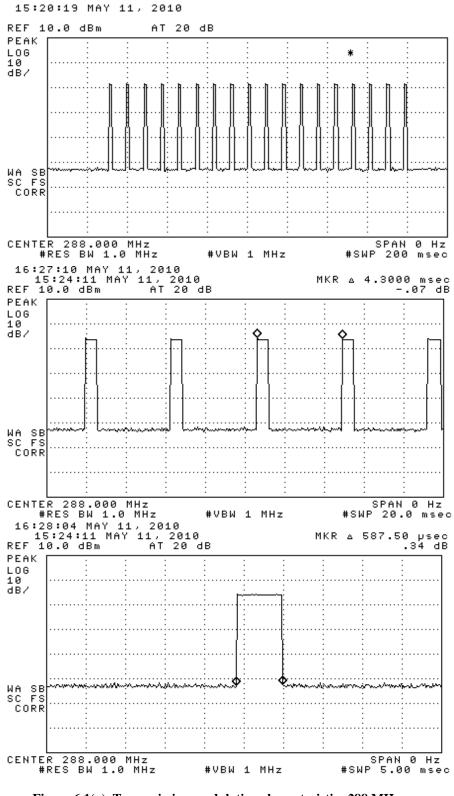
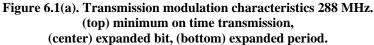
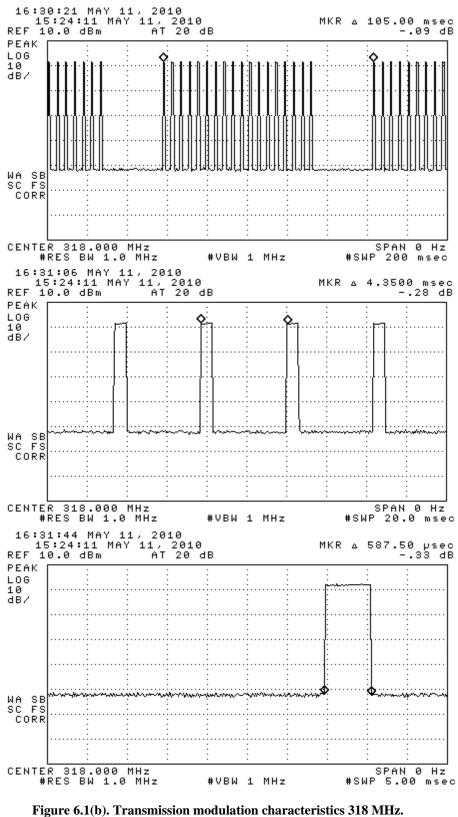
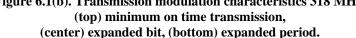
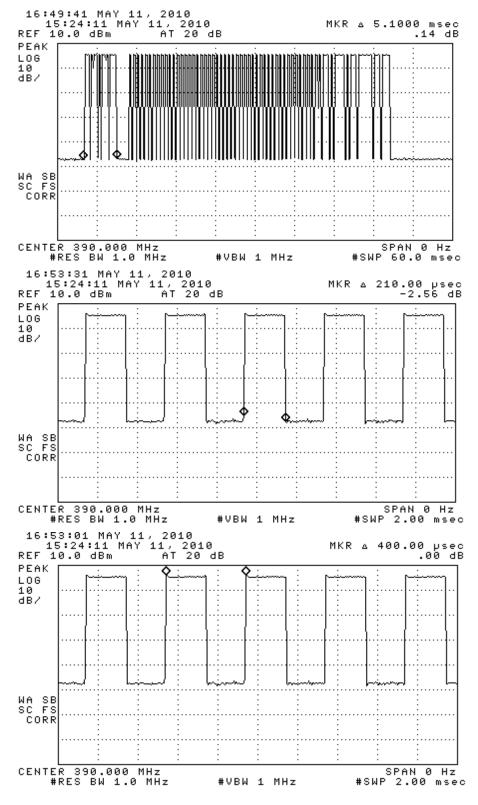
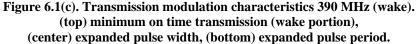


Figure 6.1(b). 5 second transmission limit verification (rolling code programming mode).

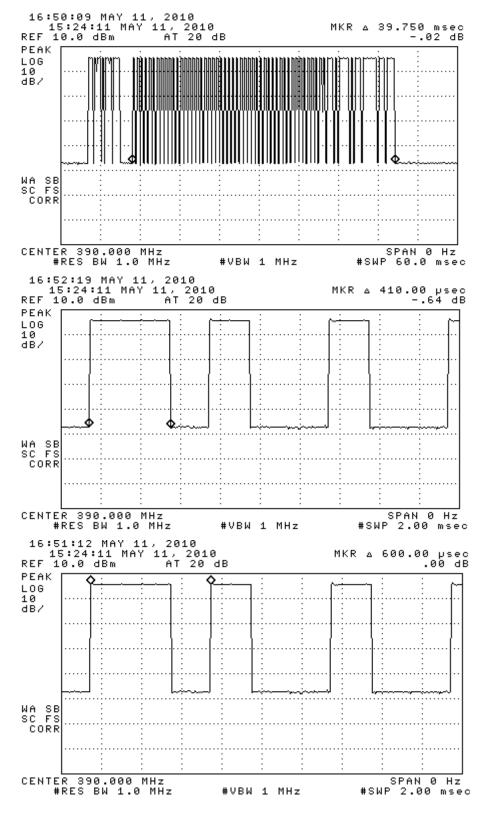
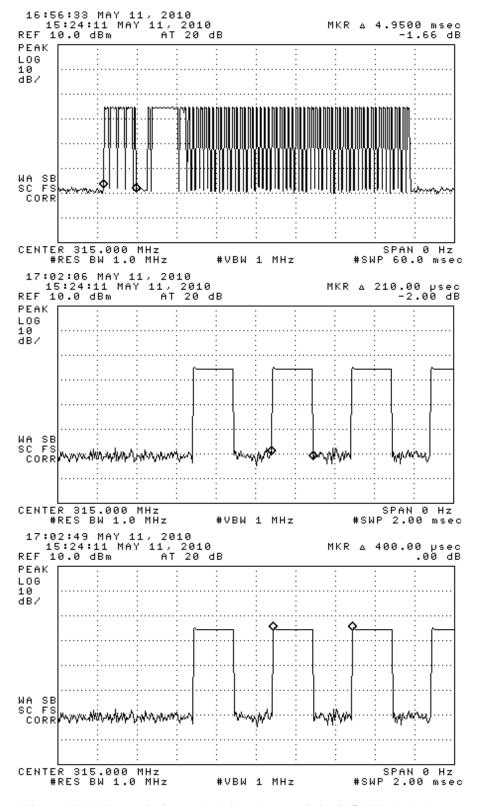
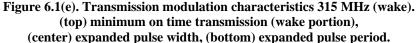

Figure 6.1(c). 5 second transmission limit verification (dip-switch programming mode). (top, left) 8 dip-switch, (top, right) 9 dip-switch, (bottom, left) 10 dip-switch, (bottom, right) 12 dip-switch.

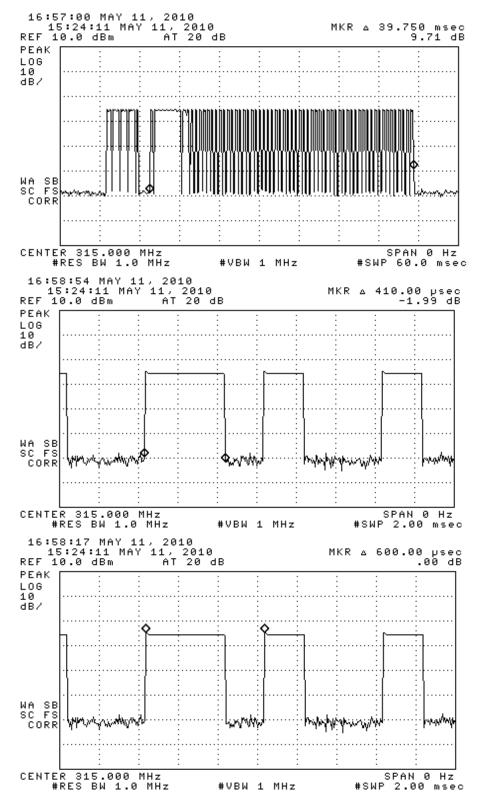


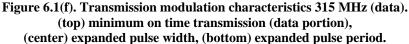

Page 15 of 27

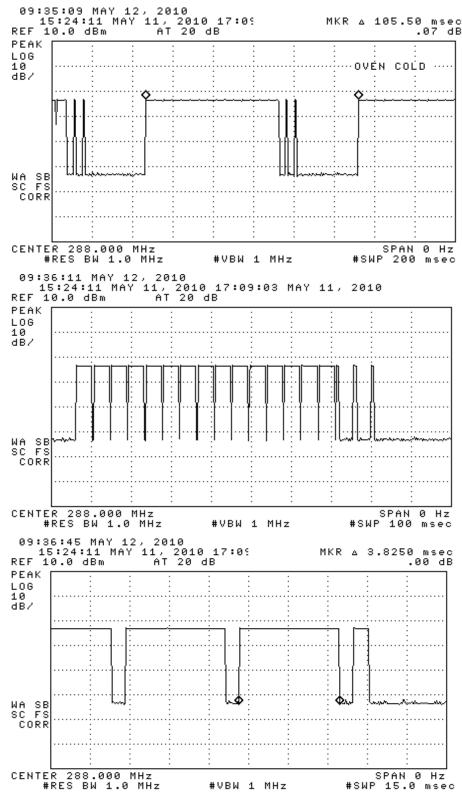
Page 16 of 27

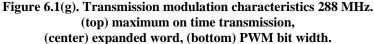
Page 17 of 27

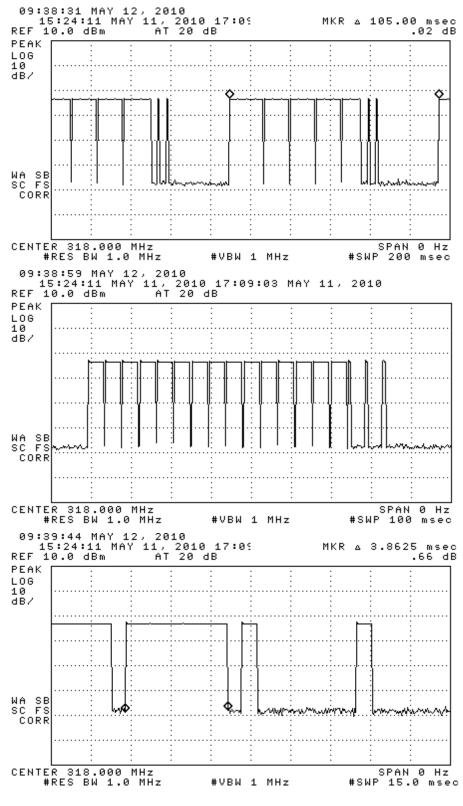




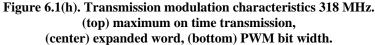

Figure 6.1(d). Transmission modulation characteristics 390 MHz (data). (top) minimum on time transmission (data portion), (center) expanded pulse width, (bottom) expanded pulse period.

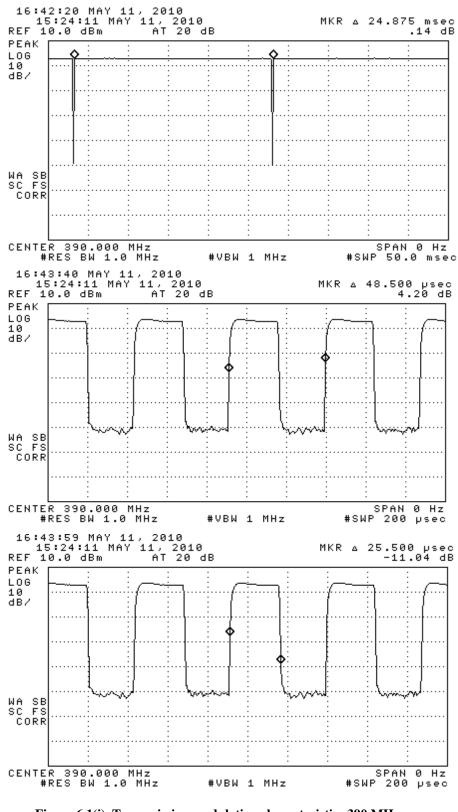

Page 18 of 27

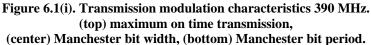


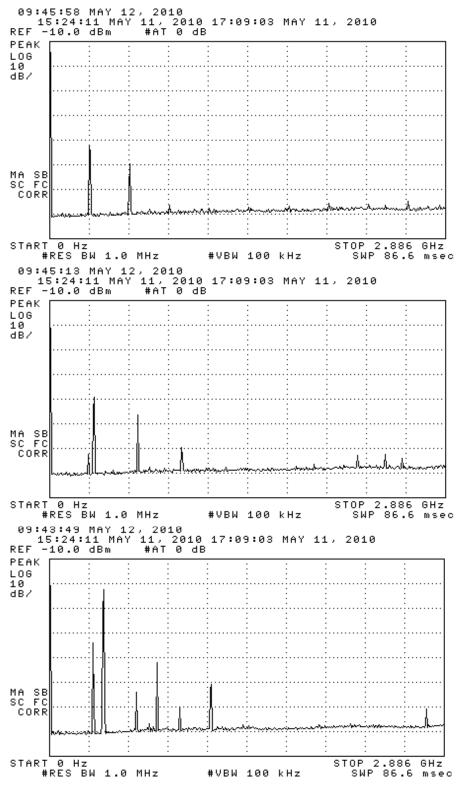

Page 19 of 27

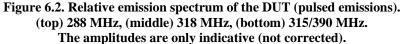


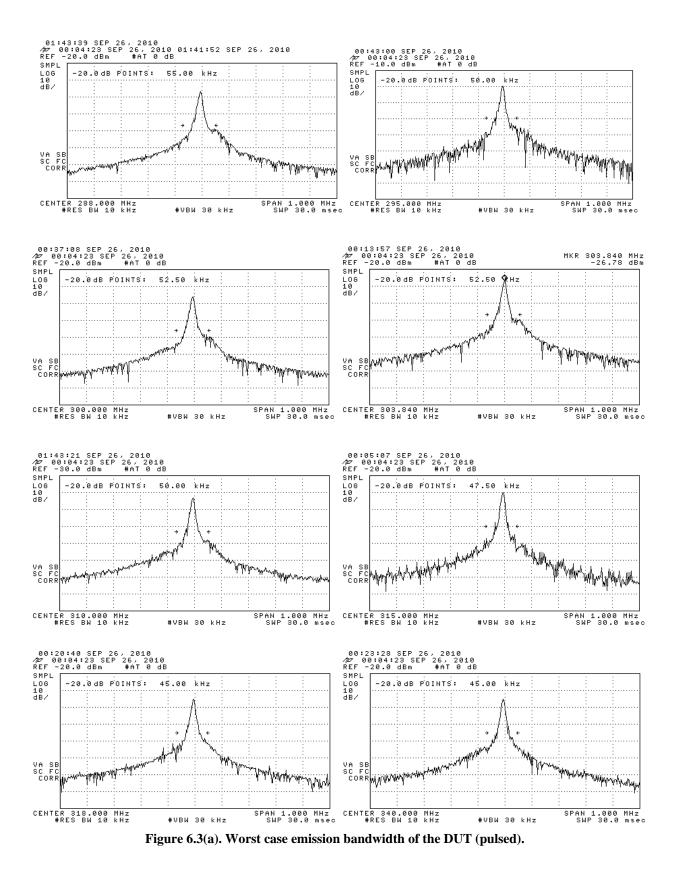

Page 20 of 27




Page 21 of 27




Page 22 of 27



Page 23 of 27

Page 24 of 27

Page 25 of 27

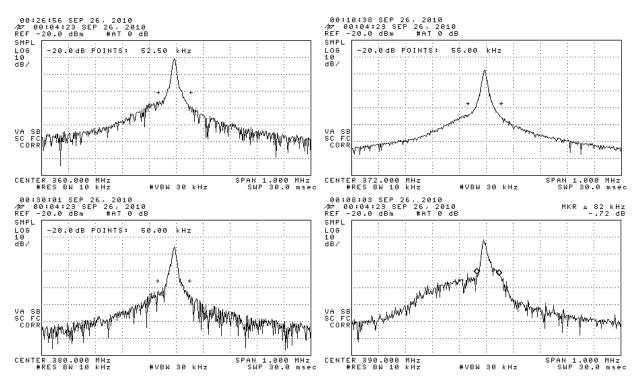


Figure 6.3(b). Measured emission bandwidth of the DUT (pulsed).

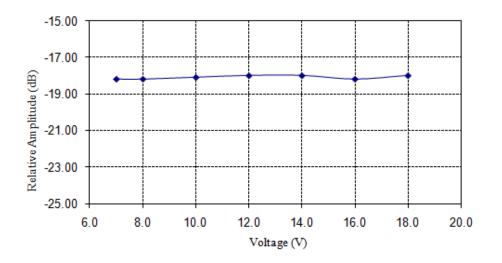
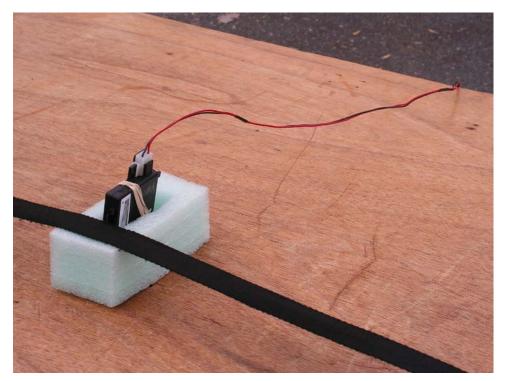



Figure 6.4. Relative emission at fundamental vs. supply voltage (pulsed).

Photograph 6.5. DUT on OATS (one of three axes tested)

Photograph 6.6. Close-up of DUT on OATS (one of three axes tested)