1
The University of Michigan
Radiation Laboratory
3228 EECS Building
Ann Arbor, MI 48109-2122
Tel: (734) 764-0500
1
Measured Radio Frequency Emissions
From

Lear GM04 315 MHz RKE Receiver

Report No. 415031-161
March 12, 2003

Copyright © 2003

For:
Lear Corporation
5200 Auto Club Drive
Dearborn, Michigan 48126-9982

Contact:
Jason Summerford
e-mail: jsummerford@lear.com
Tel: 313-593-9293
Fax: 313-240-9306

Summary

Tests for compliance with FCC Regulations, Part 15, Subpart C, and for compliance with Industry Canada RSS-210, were performed on Lear GM04 Receiver. The device is subject to the Rules and Regulations as a Receiver. As a Digital Device it is exempt, but such measurements were made to assess the receiver's overall emissions.

In testing performed on March 6 and 10, 2003, the device tested in the worst case met the specifications for radiated emissions by 14.0 dB (see p. 6). Since the device is powered from an automotive 12 -volt system, the line conductive emission tests do not apply.

1. Introduction

Lear GM04 Receiver was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989, and with Industry Canada RSS-210, Issue 5, dated February 14, 1998. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-1992 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to $40 \mathrm{GHz}{ }^{\prime \prime}$. The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057).

2. Test Procedure and Equipment Used

The pertinent test equipment commonly used in our facility for measurements is listed in Table 2.1 below. The middle column identifies the specific equipment used in these tests.

Table 2.1. Test equipment.

Test Instrument	Eqpt Used	Manufacturer/Model
Spectrum Analyzer ($0.1-1500 \mathrm{MHz}$)		Hewlett-Packard, 182T/8558B
Spectrum Analyzer ($9 \mathrm{kHz}-22 \mathrm{GHz}$)	X	Hewlett-Packard 8593A SN: 3107A01358
Spectrum Analyzer ($9 \mathrm{kHz-26GHz}$)	X	Hewlett-Packard 8593E, SN: 3412A01131
Spectrum Analyzer ($9 \mathrm{kHz}-26 \mathrm{GHz}$)		Hewlett-Packard 8563E, SN: 3310A01174
Spectrum Analyzer ($9 \mathrm{kHz}-40 \mathrm{GHz}$)		Hewlett-Packard 8564E, SN: 3745A01031
Power Meter		Hewlett-Packard, 432A
Power Meter		Anritsu, ML4803A/MP
Harmonic Mixer ($26-40 \mathrm{GHz}$)		Hewlett-Packard 11970A, SN: 3003A08327
Harmonic Mixer ($40-60 \mathrm{GHz}$)		Hewlett-Packard 11970U, SN: 2332A00500
Harmonic Mixer ($75-110 \mathrm{GHz}$)		Hewlett-Packard 11970W, SN: 2521A00179
Harmonic Mixer ($140-220 \mathrm{GHz}$)		Pacific Millimiter Prod., GMA, SN: 26
S-Band Std. Gain Horn		S/A, Model SGH-2.6
C-Band Std. Gain Horn		University of Michigan, NRL design
XN-Band Std. Gain Horn		University of Michigan, NRL design
X-Band Std. Gain Hom		S/A, Model 12-8.2
X-band horn (8.2-12.4 GHz)		Narda 640
X-band horn (8.2-12.4 GHz)		Scientific Atlanta, 12-8.2, SN: 730
K-band horn ($18-26.5 \mathrm{GHz}$)		FXR, Inc., K638KF
Ka-band horn ($26.5-40 \mathrm{GHz}$)		FXR, Inc., U638A
U-band horn ($40-60 \mathrm{GHz}$)		Custom Microwave, HO19
W-band horn($75-110 \mathrm{GHz}$)		Custom Microwave, HO10
G-band horn ($140-220 \mathrm{GHz}$)		Custom Microwave, H05R
Bicone Antenna ($30-250 \mathrm{MHz}$)	X	University of Michigan, RLBC-1
Bicone Antenna ($200-1000 \mathrm{MHz}$)	X	University of Michigan, RLBC-2
Dipole Antenna Set ($30-1000 \mathrm{MHz}$)		University of Michigan, RLDP-1,-2,-3
Dipole Antenna Set ($30-1000 \mathrm{MHz}$)		EMCO 2131C, SN: 992
Active Rod Antenna ($30 \mathrm{~Hz}-50 \mathrm{MHz}$)		EMCO 3301B, SN: 3223
Active Loop Antenna ($30 \mathrm{~Hz}-50 \mathrm{MHz}$)		EMCO 6502, SN:2855
Ridge-horn Antenna ($300-5000 \mathrm{MHz}$)) X	University of Michigan
Amplifier ($5-1000 \mathrm{MHz}$)	X	Avantak, A11-1, A25-1S
Amplifier ($5-4500 \mathrm{MHz}$)	X	Avantak
Amplifier ($4.5-13 \mathrm{GHz}$)		Avantek, AFT-12665
Amplifier (6-16 GHz)		Trek
Amplifier ($16-26 \mathrm{GHz}$)		Avantek
LISN ($50 \mu \mathrm{H}$)		University of Michigan
Signal Generator ($0.1-2060 \mathrm{MHz}$)	X	Hewlett-Packard, 8657B
Signal Generator ($0.01-20 \mathrm{GHz}$)		Hewlett-Packard

3. Configuration and Identification of Device Under Test

The DUT is a 315.0 MHz supereheterodyne receiver, designed for onboard automobile security/convenience applications and, as such, it is powered from an automobile 12 VDC source. The receiver is housed in a small plastic case approximately $3 \times 2 \times 0.75$ inches, having one multipin connector for power input and digital signal output. The antenna is internal. When testing for radiated emissions, a 3 meter long bundle of wires was used, containing power and control/signal lines. The receiver is IC based, having synthesized VCO with the reference crystal frequency of 10.178 MHz ., the VCO frequency of 651.4 MHz , and the LO frequency at 325.7 MHz . It was powered by a 12 -volt laboratory power supply.

The DUT was designed and manufactured by Lear Corporation, 5200 Auto Club Drive, Dearborn, MI 48126. It is identified as:

Lear GM04 Receiver
Model: RFA-X-04
S/N: A-180, A-179 (modified for cw LO)
FCC ID: KOBGR04A
IC: $3521 \mathrm{~A}-\mathrm{R} 04 \mathrm{~A}$

In the production version of the Rx , the LO is pulsed to conserve the power comsumption. Hence, two devices were provided: a production version for photos, and a version modified for cw LO to be used for emission measurements.

3.1 Modifications Made

There were no modifications made to the DUT by this laboratory.

4. Emission Limits

For FCC the DUT falls under Part 15, Subpart B, "Unintentional Radiators". For Industry Canada the DUT falls under Receiver category and is subject to technical requirement of sections 7.1 to 7.4 in RSS-210. The pertinent test frequencies, with corresponding emission limits, are given in Tables 4.1 and 4.2 below.

4.1 Radiated Emission Limits

Table 4.1. Radiated Emission Limits (FCC: 15.33, 15.35, 15.109; IC: RSS-210, 7.3).

Freq. (MHz)	$\mathrm{E}_{\mathrm{lim}}(3 \mathrm{~m}) \mu \mathrm{V} / \mathrm{m}$	$\mathrm{E}_{\mathrm{lim}} \mathrm{dB}(\mu \mathrm{V} / \mathrm{m})$
$30-88$	100	40.0
$88-216$	150	43.5
$216-960$	200	46.0
$960-2000$	500	54.0

Note: Quasi-Peak readings apply to $1000 \mathrm{MHz}(120 \mathrm{kHz}$ BW)
Average readings apply above $1000 \mathrm{MHz}(1 \mathrm{MHz} \mathrm{BW})$

4.2 Conducted Emission Limits

Table 4.2. Conducted Emission Limits (FCC: 15.107; IC: RSS-210, 6.6).

Freq. (MHz)	$\mu \mathrm{V}$	$\mathrm{dB}(\mu \mathrm{V})$
$0.450-1.705$	250	48.0
$1.705-30.0$	250	48.0

Note: Quasi-Pcak readings apply here

4.3 Antenna Power Conduction Limits

Pmax $=2 \mathrm{nW}$; for requency range see Table 4.1. (FCC: 15.111(a); IC: RSS-210, 7.2).

5. Emission Tests and Results

5.1 Anechoic Chamber Radiated Emission Tests

To familiarize with the radiated emission behavior of the DUT, it was studied and measured in the shielded anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with turntable, antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

To study and test for radiated emissions, the DUT was powered by a laboratory power supply at 13.5 VDC . A 315 MHz CW signal was injected (radiated) from a nearby signal generator using a short wire antenna. The DUT was placed on the test table on each of the three axis. At each orientation, the table was rotated to obtain maximum signal for vertical and horizontal emission polarizations. This sequence was repeated throughout the required frequency range.

In the chamber we studied and recorded all the emissions using a ridge-hom antenna, which covers 200 MHz to 5000 MHz , up to 2 GHz . In scanning from 30 MHz to 2.0 GHz , there were no spurious emissions observed, not even the LO. Figures 5.1 and 5.2 show emissions measured $0-1000$ MHz and $1000-2000 \mathrm{MHz}$, respectively. These measurements are made with a ridge-horn antenna at 3 m , with spectrum analyzer in peak hold mode and the receiver rotated in all orientations. The measurements up to 1000 MHz (Fig. 5.1) are used for initial evaluation only, but those above 1000 MHz (Fig. 5.2) are used in final assessment for compliance.

5.2 Open Site Radiated Emission Tests

The DUT was then moved to the 3 meter Open Field Test Site where measurements were repeated up to 1000 MHz using a small bicone, or dipoles when the measurement is near the limit. The DUT was excersised as described in Sec. 5.1 above. The measurements were made with a spectrum analyzer using 120 kHz RBW and peak detection mode. Sometimes lower RBW are used to help identify the emissions. When appropriate, Quasi-Peak or average detection is used (see 5.0). The test set-up photographs are in Appendix (i.e., at end of this report).

The emissions from digital circuitry were measured using a standard bicones. These results are also presented in Table 5.1.

5.3 Computations and Results for Radiated Emissions

To convert the dBm's measured on the spectrum analyzer to $\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})$, we use expression

$$
\mathrm{E}_{3}(\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m})=107+\mathrm{P}_{\mathrm{R}}+\mathrm{K}_{\mathrm{A}}-\mathrm{K}_{\mathrm{G}}
$$

where $\mathrm{P}_{\mathrm{R}}=$ power recorded on spectrum analyzer, dB , measured at 3 m
$\mathrm{K}_{\mathrm{A}}=$ antenna factor, dB / m
$\mathrm{K}_{\mathrm{G}}=$ pre-amplifier gain, including cable loss, dB
When presenting the data, at each frequency the highest measured emission under all of the possible orientations is given. Computations and results are given in Table 5.1. There we see that the DUT meets the limit by more than 14.0 dB .

5.4 Conducted Emission Tests

These tests do not apply, since the DUT is powered from a 12 -volt automotive system.

6. Other Measurements

6.1 Emission Spectrum Near Fundamental

The LO emissions are measured typically over 1 MHz span and usually with without injection signal. Here data were taken with the DUT placed inside the horn antenna. A plot is shown in Figure 6.1. There was no LO detected; only the $2 \times \mathrm{xO}$ signal. This is the frequency of the VCO in the receiver chip.

6.2 Effect of Supply Voltage Variation

The DUT has been designed to operate from 12 VDC power. Using a spectrum analyzer, relative radiated emissions were recorded at the "VCO" frequency (651.4 MHz) as voltage was varied from 4.8 to 18.0 VDC. Figure 6.2 shows the emission variation.
6.3 Operating Voltage and Current

$$
\mathrm{V}=12.3 \mathrm{VDC}
$$

$\mathrm{I}=5.7 \mathrm{mADC}$

The University of Michigan

Radiation Laboratory
3228 EECS Building
Ann Arbor, Michigan 48109-2122
(734) 7640500

Table 5.1 Highest Emissions Measured

Radiated Emission - RF											Lear GM04 Rx; FCC/IC
\#	Freq. MHz	Ant. Used	$\begin{array}{\|l\|} \hline \hline \text { Ant. } \\ \text { Pol. } \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{Pr} \\ \mathrm{dBm} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Det. } \\ \text { Used } \\ \hline \end{array}$	$\begin{gathered} \mathrm{Ka} \\ \mathrm{~dB} / \mathrm{m} \end{gathered}$	$\begin{aligned} & \mathrm{Kg} \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{E} 3 \\ \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{array}$	$\begin{gathered} \mathrm{E} 3 \lim \\ \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Pass } \\ \text { dB } \\ \hline \end{gathered}$	Comments
1	325.7	SBic	H	-77.4	Pk	19.2	21.7	27.1	46.0	18.9	max. of all, noise floor
2	325.7	SBic	V	-76.6	Pk	19.2	21.7	27.9	46.0	18.1	max. of all, noise floor
3	651.4	SBic	H	-85.7	Pk	25.5	18.3	28.5	46.0	17.5	max. of all, noise; 10 kHz BW
4	651.4	SBic	V	-82.2	Pk	25.5	18.3	32.0	46.0	14.0	max. of all, noise; 10 kHz BW
5	977.1	SBic	H	-91.2	Pk	29.2	15.7	29.3	54.0	24.7	max. of all, noise; 10 kHz BW
6	977.1	SBic	V	-91.0	Pk	29.2	15.7	29.5	54.0	24.5	max. of all, noise; 10 kHz BW
7	1302.8	Horm	H	-72.0	Ave	20.4	28.0	27.4	54.0	26.6	max. of all, noise floor
8	1628.5	Horn	H	-70.5	Ave	20.6	28.0	29.1	54.0	24.9	max. of all, noise floor
9	1954.2	Horn	H	-69.7	Ave	20.8	28.2	29.9	54.0	24.1	max. of all, noise floor
10											
11											
12											
13											
14											
15											
16											
17											
18											
Radiated Emission - Digital (Class B)											
1											
2											
3	Digital Emissions more than 20 dB below FCC Class B limits										
4											
5											
6											
7											
8											
9											
10											
11											
12											
Conducted Emissions											
\#	Freq. MHz	Line Side	Det. Used	$\begin{aligned} & \hline \text { Vtest } \\ & \mathrm{dB} \mu \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Vlim } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Pass } \\ \mathrm{dB} \\ \hline \end{gathered}$	Comments				
1											
2	Not applicable										
3											

Meas. 03/06/03; U of Mich.

Figure 5.1. Emissions measured at 3 meters in anechoic chamber, $0-1000 \mathrm{MHz}$. (top) Receiver plus ambient (bottom) Ambient

Figure 5.2. Emissions measured at 3 meters in anechoic chamber, $1000-2000 \mathrm{MHz}$. (top) Receiver plus ambient (bottom) Ambient

Figure 6.1. Recéeiver emission at 651.4 MHz .

Figure 6.2. Relative emission at 651.4 MHz vs. supply voltage.

DUT on OATS

Close-up on the DUT on OATS

