RF Exposure

Method

The test methods used comply with ANSI C63.10. Unless otherwise stated no deviations were made from FCC OET 65 & IC RSS-102.

This testing was performed at Intertek Denver, located at 1795 Dogwood St. Suite 200, Louisville, CO 80027.

Test Requirement/Specification

- FCC OET Bulletin 65/ KDB 447498
- RSS-102

Results:

The sample tested was found to comply.

RF Exposure Requirements - MPE

Project #:	G101503629	Test Area:	Intertek Louisville		
Test Method:	FCC CFR47 Part 1.1310	Test Date:	1/29/2014		
EUT Model #:	W2400-01				
EUT Serial #:	DEN1402111313				
Manufacturer:	FreeWave Technologies Inc.				
EUT Description:	802.11 b/g/n PCIe Radio Module				
Notes:	With antenna model: SEC-25V-60-17HP (60° Sector Antenna) Gain: 17.5dBi				

The following limit is from table 1 (B) Limits for Occupational/Controlled Exposure Exposure in FCC part 1.1310:

Power Density Limit for Frequency Range 1500 - 100,000 MHz = 5 mW/cm²

The following calculation was used to determine compliance to the above limit. The calculation is from FCC OET bulletin 65.

Power Density(S) =PG/ $4\pi R^2$ or S=EIRP/ $4\pi R^2$

To determine what minimum distance the product can satisfy the Power Density Limit:

 $R(cm) = SQRT[(P^*G)/(4^*\pi^*S)]$

Where:

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (mW).

G = numeric power gain of the antenna in the direction of interest relative to an isotropic radiator.

R = distance to the center of radiation of the antenna (cm)

Maximum measured conducted power to the antenna = 414 mW

Maximum typical gain declared by the manufacture = 17.5 dBi

Therefore: Minimum Distance = 20 cm

Power Density

Power (mW)	Gain (dbi)	Gain numeric	Distance (cm)	Power Density (mW/cm ²)
414	17.5	56.23	20	4.63

Therefore: Power Density Margin (Δ Limit) = 4.7 – 5 = -0.37 mW/cm²