RF Exposure

Method

The test methods used comply with ANSI C63.10. Unless otherwise stated no deviations were made from FCC OET 65 & IC RSS-102.

This testing was performed at Intertek Denver, located at 1795 Dogwood St. Suite 200, Louisville, CO 80027.

Test Requirement/Specification

- FCC OET Bulletin 65/ KDB 447498
- RSS-102

Results:

The sample tested was found to comply.

RF Exposure Requirements - MPE

Project #:	G101503629	Test Area:	Intertek Louisville		
Test Method:	FCC CFR47 Part 1.1310	Test Date:	1/29/2014		
EUT Model #:	W2400-01				
EUT Serial #:	DEN1402111313				
Manufacturer:	FreeWave Technologies Inc.				
EUT Description:	802.11 b/g/n PCIe Radio Module				
Notes:	With antenna model: RDWSPD4-2.4NS (4' Parabolic "Dish" antenna)				

The following limit is from table 1 (B) Limits for Occupational/Controlled Exposure Exposure in FCC part 1.1310:

Power Density Limit for Frequency Range 1500 – 100,000 MHz = 5 mW/cm²

The following calculation was used to determine compliance to the above limit. The calculation is from FCC OET bulletin 65.

Power Density(S) =PG/ 4π R² or S=EIRP/ 4π R²

To determine what minimum distance the product can satisfy the Power Density Limit:

 $R(cm) = SQRT[(P*G)/(4*\pi*S)]$

Where:

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (mW).

 $G = \underline{\text{numeric}}$ power gain of the antenna in the direction of interest relative to an isotropic radiator.

 $R = \frac{1}{\text{distance}}$ to the center of radiation of the antenna (cm)

Maximum measured conducted power to the antenna = 200 mW

Maximum typical gain declared by the manufacture = 27 dBi

Therefore: Minimum Distance = 40 cm

Power Density

Power (mW)	Gain (dbi)	Gain numeric	Distance (cm)	Power Density (mW/cm²)
200	27	501.1	40	4.98

Therefore: Power Density Margin (Δ Limit) = 4.98 – 5 = -0.01 mW/cm²