

EMC Test Report

Application for Grant of Equipment Authorization

FCC Part 15 Subpart C

Model: MM2-T

FCC ID: KNYAMM0300AT

APPLICANT: FreeWave Technologies, Inc.

5395 Pearl Parkway, Suite 100

Boulder, CO 80301

TEST SITE(S): National Technical Systems - Silicon Valley

41039 Boyce Road.

Fremont, CA. 94538-2435

REPORT DATE: September 17, 2013

FINAL TEST DATES: July 16, 18 and 24, 2013

TOTAL NUMBER OF PAGES: 52

PROGRAM MGR / TECHNICAL REVIEWER:

David W. Bare Chief Engineer QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

Test Report Report Date: September 17, 2013

REVISION HISTORY

Rev#	Date	Comments	Modified By
	09-17-2013	First release	

Page 2 File: R93014

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
FREQUENCY HOPPING SPREAD SPECTRUM (902 – 928 MHz, 50 CHANNELS OR MORE)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL.	
OTHER EUT DETAILS.	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	8
SUPPORT EQUIPMENT	9
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE(S)	10
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	10
MEASUREMENT INSTRUMENTATION	11
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	13
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTSSPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – FHSS SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	19
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
FND OF REPORT	23 52

Test Report Report Date: September 17, 2013

SCOPE

An electromagnetic emissions test has been performed on the FreeWave Technologies, Inc. model MM2-T, pursuant to the following rules:

FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10-2009 FHSS test procedure DA 00-0705A1

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

Report Date: September 17, 2013

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of FreeWave Technologies, Inc. model MM2-T complied with the requirements of the following regulations:

FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of FreeWave Technologies, Inc. model MM2-T and therefore apply only to the tested sample. The sample was selected and prepared by Dean Busch of FreeWave Technologies, Inc.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

Test Report Report Date: September 17, 2013

TEST RESULTS SUMMARY

FREQUENCY HOPPING SPREAD SPECTRUM (902 – 928 MHz, 50 channels or more)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result			
15.247	RSS 210	20dB Bandwidth	142 kHz	Channel spacing > 20dB bandwidth /	Complies			
(a) (1)	A8.1 (1)	Channel Separation	230.4 kHz	25kHz	Complies			
15.247 (a) (1) (i)	RSS 210 A8.1 (3)	Number of Channels	50-111	50 or more	Complies			
15.247 (a) (1) (i)	RSS 210 A8.1 (3)	Channel Dwell Time	202.8 ms per 20 seconds	<0.4 second within a 20 second period	Complies			
15.247 (a) (1)	RSS 210 A8.1 (1)	Channel Utilization	All channels are used equally - refer to the operational description for full explanation	All channels shall, on average, be used equally	Complies			
15.247 (b) (3)	RSS 210 A8.4 (1)	Output Power	29.9 dBm (0.984 Watts) EIRP = 3.92 W Note 1	1Watt, EIRP < 4 Watts	Complies			
15.247 (c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 9.28 GHz	All spurious emissions < -20dBc	<-20dBc	Complies			
15.247 (c) 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 9.28 GHz	41.6 dBμV/m @ 162.44 MHz (Margin: -1.9 dB)	15.207 in restricted bands, all others < -20dBc	Complies			
15.247 (a) (1)	RSS 210 A8.1(2)	Receiver bandwidth	Refer to operational description	Shall match the channel bandwidth	Complies			
Note 1: EIRP	calculated using	Note 1: EIRP calculated using antenna gain of 6 dBi for the highest EIRP system.						

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	1	RF Connector	Unique connector	Unique or integral antenna required	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	46.9 dBμV @ 26.747 MHz (-13.1 dB)	Refer to page 17	Complies
15.109		Receiver spurious emissions	41.3 dBμV/m @ 162.44 MHz (Margin: -2.2 dB)	Refer to page 18	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in separate Exhibit and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBμV/m	25 to 1000 MHz 1000 to 40000 MHz	± 3.6 dB ± 6.0 dB
Conducted Emissions (AC Power)	dBμV	0.15 to 30 MHz	± 2.4 dB

Test Report Report Date: September 17, 2013

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The FreeWave Technologies, Inc. model MM2-T is a modular frequency hopping spread spectrum radio which is designed to monitor industrial control systems. Normally, the EUT would be placed on a tabletop during operation. The EUT was, therefore, placed in this position during emissions testing to simulate the end user environment. The electrical rating of the EUT is 3.3/5 Vdc, 0.635 Amps.

The sample was received on July 16, 2013 and tested on July 16, 18 and 24, 2013. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Freewave Technologies, Inc.	MM2-T	Modular Frequency Hopping Spread Spectrum Radio	-	KNYAMM0300AT

OTHER EUT DETAILS

The following EUT details should be noted:

Model	Description
MM2-LT	115.2K 5.0 VDC, OEM, not for resale IN THE USA
MM2-LV-T	115.2K , TTL, 3.3 VDC
MM2-LV-T-LF	153.6 Kbps, 3.5V, Lead Free
MM2-LV-T-U	115.2K, TTL, 3.3 VDC, Class I, Div II.
MM2-T	115.2K, TTL, 5.0 VDC, Class I, Div II.
MM2-T-LF	153.6 Kbps, Lead free
MM2-T-U	115.2K, TTL, 5.0 VDC

ANTENNA SYSTEM

The antenna system consists of a 6dBi monopole.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed in final products.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

Test Report Report Date: September 17, 2013

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Agilent	E3610A	DC Power Supply	-	-
Laird Technologies	FG9026	Omni Antenna	5091306	-

The following equipment was used as remote support equipment for emissions testing:

	Company	Model	Description	Serial Number	FCC ID
ſ	Hewlett Packard	Pavilion DV6000	Laptop	CNF73411TQ	=

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To	Cable(s)		
1 011	Connected 10	Description	Shielded or Unshielded	Length(m)
EUT/Serial	Remote laptop / USB	Serial to USB	Shielded	5.0
EUT Antenna	Omni Antenna	Coax	Shielded	6.0
DC Power	Power Supply	2Wire	Unshielded	1.5

EUT OPERATION

During testing, the EUT was configured to transmit at maximum power (power setting 10) and 115k data rate for Low, Middle, and High Channels. Power was identical at 156k data rate. Some tests were performed with the EUT hopping as noted.

TEST SITE(S)

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Lagation	
Site	FCC	Canada	Location
Chamber 4	211948	2845B-4	41039 Boyce Road
Chamber 5	211948	2845B-5	Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

Test Report Report Date: September 17, 2013

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

Report Date: September 17, 2013

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

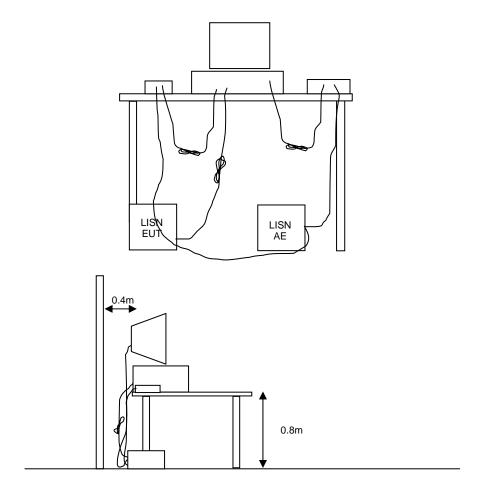
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.


TEST PROCEDURES

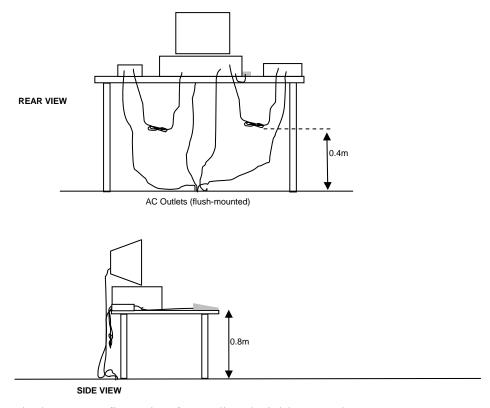
EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

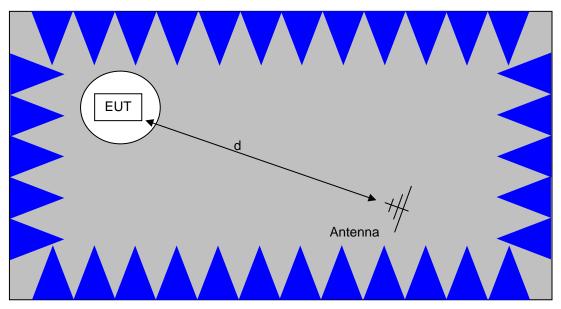
CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

Figure 1 Typical Conducted Emissions Test Configuration

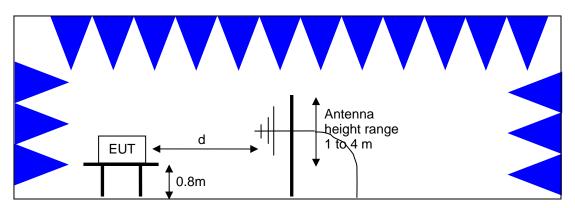

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

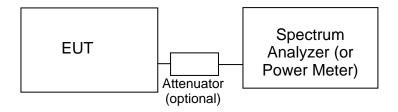
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> Semi-Anechoic Chamber, Plan and Side Views

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

Report Date: September 17, 2013

OUTPUT POWER LIMITS - FHSS SYSTEMS

The table below shows the limits for output power based on the number of channels available for the hopping system.

Operating Frequency (MHz)	Number of Channels	Output Power
902 – 928	≥ 50	1 Watt (30 dBm)
902 – 928	25 to 49	0.25 Watts (24 dBm)
2400 - 2483.5	≥ 75	1 Watt (30 dBm)
2400 – 2483.5	< 75	0.125 Watts (21 dBm)
5725 - 5850	75	1 Watt (30 dBm)

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_S$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

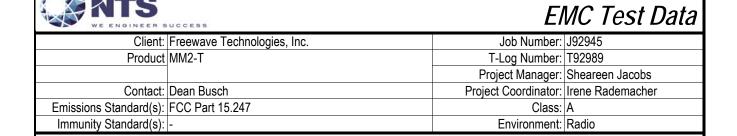
E =
$$\frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter
d
where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

_		_	_	_	_
	ഥവ	റ	a	О	a
	17	/	7	\sim	7

Radio Antenna Port,	16-Jul-13			
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due
Agilent Technologies	PSA, Spectrum Analyzer	E4446A	2139	3/7/2014
Radio Antenna Port (I Manufacturer Agilent Technologies	Power and Spurious Emissions), 1 <u>Description</u> 3Hz -44GHz PSA Spectrum Analyzer	18-Jul-13 <u>Model</u> E4446A	<u>Asset #</u> 2796	<u>Cal Due</u> 1/28/2014
Radiated Emissions.	30 - 1,000 MHz, 24-Jul-13			
Manufacturer	Description	Model	Asset #	Cal Due
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	2/7/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-40	ESIB40	2493	1/18/2014
	GHz	(1088.7490.40)		
Padiated Emissions	1,000 - 10,000 MHz, 24-Jul-13			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/19/2014
Hewlett Packard	Microwave Preamplifier, 1-	8449B	2199	2/19/2014
	26.5GHz			
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	2415	8/10/2013
	Purple			
Padiated Emissions	1000 - 6,500 MHz, 01-Aug-13			
Manufacturer	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18GHz	3115	868	6/19/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	6/8/2014
	30 - 1,000 MHz, 31-Aug-13	Madal	A + #	Oal Dua
Manufacturer Sunol Sciences	Description	Model	<u>Asset #</u> 1548	<u>Cal Due</u> 8/9/2014
Rohde & Schwarz	Biconilog, 30-3000 MHz	JB3	1040	0/9/2014
Nullue & Sullwaiz		ECID7		
	EMI Test Receiver, 20 Hz-7 GHz	ESIB7 8447F	1756	6/8/2014
Hewlett Packard	9KHz-1300MHz pre-amp	ESIB7 8447F		
Hewlett Packard Radio Antenna Port (9KHz-1300MHz pre-amp Spurious Emissions), 04-Sep-13		1756	6/8/2014 3/5/2014
Hewlett Packard Radio Antenna Port (Manufacturer	9KHz-1300MHz pre-amp Spurious Emissions), 04-Sep-13 Description	8447F <u>Model</u>	1756 2777 Asset #	6/8/2014 3/5/2014 <u>Cal Due</u>
Hewlett Packard Radio Antenna Port (9KHz-1300MHz pre-amp Spurious Emissions), 04-Sep-13 Description 3Hz -44GHz PSA Spectrum	8447F	1756 2777	6/8/2014 3/5/2014
Hewlett Packard Radio Antenna Port (Manufacturer	9KHz-1300MHz pre-amp Spurious Emissions), 04-Sep-13 Description	8447F <u>Model</u>	1756 2777 Asset #	6/8/2014 3/5/2014 <u>Cal Due</u>
Hewlett Packard Radio Antenna Port (Manufacturer	9KHz-1300MHz pre-amp Spurious Emissions), 04-Sep-13 Description 3Hz -44GHz PSA Spectrum	8447F <u>Model</u>	1756 2777 Asset #	6/8/2014 3/5/2014 <u>Cal Due</u>
Hewlett Packard Radio Antenna Port (Manufacturer	9KHz-1300MHz pre-amp Spurious Emissions), 04-Sep-13 Description 3Hz -44GHz PSA Spectrum	8447F <u>Model</u>	1756 2777 Asset #	6/8/2014 3/5/2014 <u>Cal Due</u>
Hewlett Packard Radio Antenna Port (Sanufacturer Agilent Technologies T93004	9KHz-1300MHz pre-amp Spurious Emissions), 04-Sep-13 Description 3Hz -44GHz PSA Spectrum	8447F <u>Model</u>	1756 2777 Asset #	6/8/2014 3/5/2014 <u>Cal Due</u>
Hewlett Packard Radio Antenna Port (San Manufacturer Agilent Technologies T93004 Conducted Emissions Manufacturer	9KHz-1300MHz pre-amp Spurious Emissions), 04-Sep-13 Description 3Hz -44GHz PSA Spectrum Analyzer s - AC Power Ports, 18-Jul-13 Description	8447F <u>Model</u> E4446A <u>Model</u>	1756 2777 Asset #	6/8/2014 3/5/2014 <u>Cal Due</u> 1/28/2014
Hewlett Packard Radio Antenna Port (Samula Manufacturer Agilent Technologies T93004 Conducted Emissions Manufacturer Rohde & Schwarz	9KHz-1300MHz pre-amp Spurious Emissions), 04-Sep-13 <u>Description</u> 3Hz -44GHz PSA Spectrum Analyzer s - AC Power Ports, 18-Jul-13 <u>Description</u> Pulse Limiter	Model E4446A Model ESH3 Z2	1756 2777 Asset # 2796 Asset # 1594	6/8/2014 3/5/2014 <u>Cal Due</u> 1/28/2014 <u>Cal Due</u> 5/15/2014
Hewlett Packard Radio Antenna Port (San Manufacturer Agilent Technologies T93004 Conducted Emissions Manufacturer	9KHz-1300MHz pre-amp Spurious Emissions), 04-Sep-13 Description 3Hz -44GHz PSA Spectrum Analyzer S - AC Power Ports, 18-Jul-13 Description Pulse Limiter EMI Test Receiver, 20 Hz-40	Model E4446A Model ESH3 Z2 ESIB40	1756 2777 Asset # 2796	6/8/2014 3/5/2014 <u>Cal Due</u> 1/28/2014
Hewlett Packard Radio Antenna Port (Samula Manufacturer Agilent Technologies T93004 Conducted Emissions Manufacturer Rohde & Schwarz	9KHz-1300MHz pre-amp Spurious Emissions), 04-Sep-13 <u>Description</u> 3Hz -44GHz PSA Spectrum Analyzer s - AC Power Ports, 18-Jul-13 <u>Description</u> Pulse Limiter	Model E4446A Model ESH3 Z2	1756 2777 Asset # 2796 Asset # 1594	6/8/2014 3/5/2014 <u>Cal Due</u> 1/28/2014 <u>Cal Due</u> 5/15/2014


File: R93014 Page 22

10Adc, max

Appendix B Test Data

T92989 Pages 24 – 47

T93004 Pages 48 – 51

For The

Freewave Technologies, Inc.

Product

MM2-T

Date of Last Test: 9/13/2013

	April 201 April 2014 BAR (Supplementary) (Supplementary) (Supplementary)				
Client:	Freewave Technologies, Inc.	Job Number:	J92945		
Model:	MANA? T	T-Log Number:	T92989		
	IMINIZ-1	Project Manager:	Sheareen Jacobs		
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher		
Standard:	FCC Part 15.247	Class:	N/A		

FCC 15.247 FHSS - Power, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the test chamber with the cabling running under the test chamber floor.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

Ambient Conditions: Temperature: 25 °C

Rel. Humidity: 32 %

Summary of Results

· · J · · · ·				
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	30 - 9280 MHz - Transmitter	FCC Part 15.209 /	Pass	41.6 dBµV/m @ 162.44 MHz
I	Radiated Spurious Emissions	15.247(c)	Fa55	(Margin: -1.9 dB)
2	30 - 2800 MHz - Receiver	FCC Part 15.109	Pass	42.2 dBµV/m @ 105.76 MHz
2	Radiated Spurious Emissions	1 00 Fait 15.109	Fa55	(-1.3 dB)
3	30 - 9280 MHz - Transmitter	FCC Part 15.247(c)	Pass	See data below
3	Conducted Spurious Emissions	1 CO Fait 13.247 (C)	Fa55	See data below
4	Output Power	15.247(b)	Pass	29.9 dBm (0.98 W)
5	20dB Bandwidth	15.247(a)	Pass	142kHz
5	99% bandwidth	15.247(a)	Pass	200kHz
5	Channel Occupancy	15.247(a)	Pass	See data below
5	Number of Channels	15.247(a)	Pass	See data below

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Freewave Technologies, Inc.	Job Number:	J92945
Model:	MM2 T	T-Log Number:	T92989
	IVIVIZ-1	Project Manager:	Sheareen Jacobs
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher
Standard:	FCC Part 15.247	Class:	N/A

Test using ANSI C63.4-2009 and C63.10-2009 and DA-00-705, floor absorbers for measurements above 1 GHz.

Procedure Comments:

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector,

	Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
ĺ	-	115k	55%	Yes	4.21	2.62	5.24	237.5

Measurement Specific Notes:

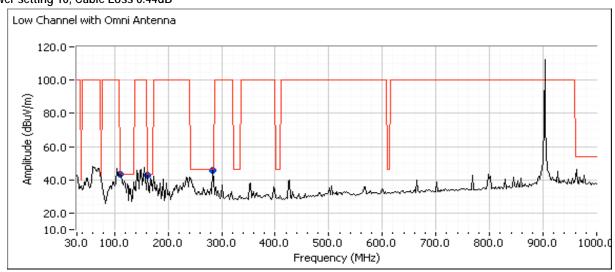
Note 1:	Emission in non-restricted band, but limit of 15.209 used.
Note 2:	Emission in non-restricted band, the limit was set 20dB below the level of the fundamental and measured in 100kHz.
Note 3:	Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=10Hz, peak detector, linear averaging, auto sweep, trace average 100 traces, measurement corrected by Linear Voltage correction factor
Note 6:	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final
Note 7:	Average measurement further corrected based on dwell time in any 100ms window (see below), per DA 00-705

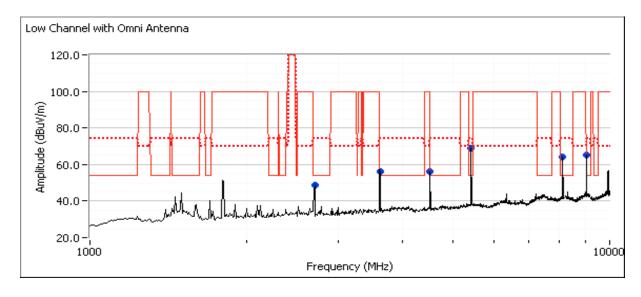
Test Mode Duty Cycle

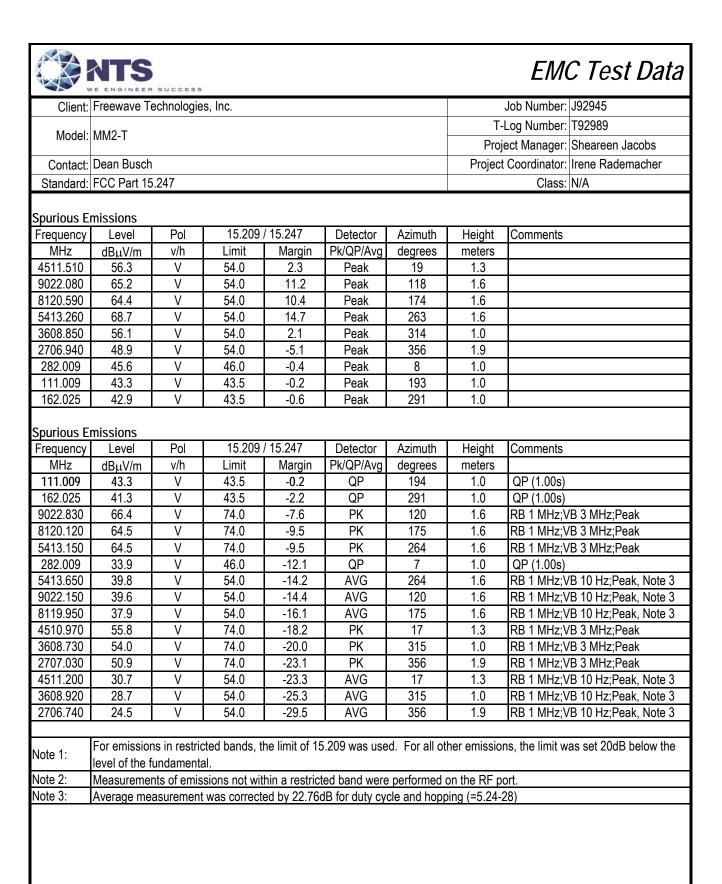
The maximum dwell time in any 100 ms period is 3.9 ms.

The average correction factor is, therefore, 20log(3.9/100) or 28dB.

As this is a hopping radio the correction factor can be applied to the average value of the signal provided the average value was measured with the device continuously transmitting. DA 00-0705 permits the use of the average correction on the measured average value for frequency hopping radios.

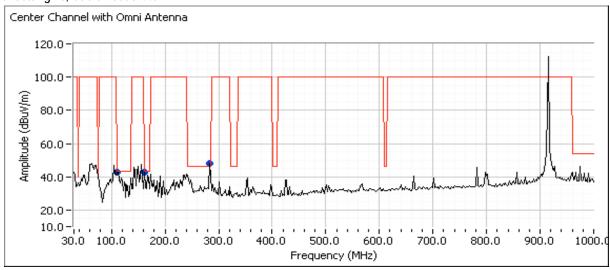

Client:	Freewave Technologies, Inc.	Job Number:	J92945
Model:	MM2 T	T-Log Number:	T92989
	IVIIVIZ-1	Project Manager:	Sheareen Jacobs
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher
Standard:	FCC Part 15.247	Class:	N/A

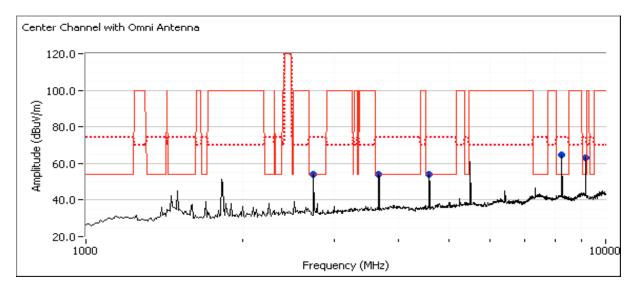

Run #1: Radiated Spurious Emissions, 30 - 9280 MHz, Omni Antenna

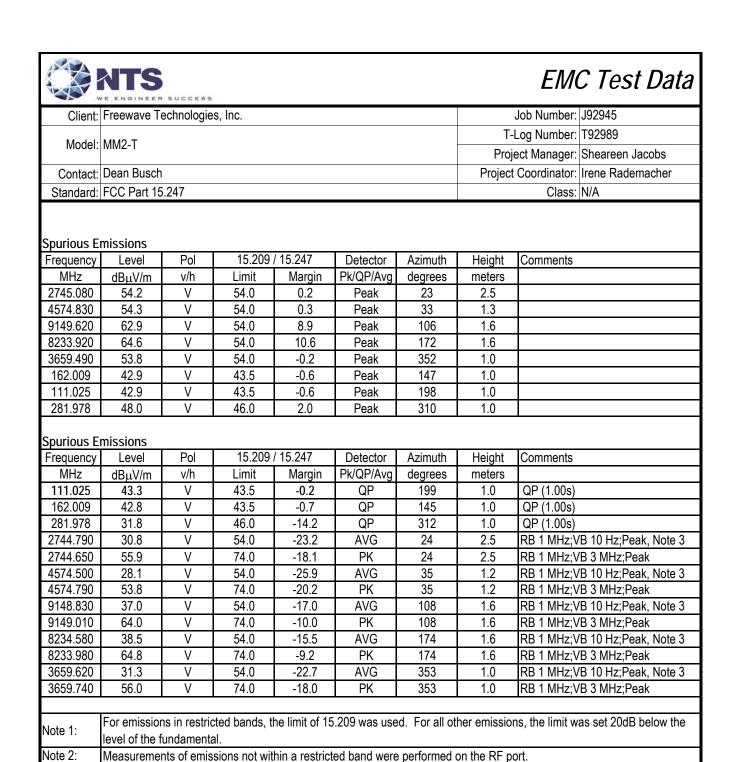

Date of Test: 8/1/2013 Test Engineer: Joseph Cadigal Test Location: FT Chamber#4

Run #1a: Radiated Spurious Emissions, 30 - 9280 MHz Low Channel

Power setting 10, Cable Loss 0.44dB

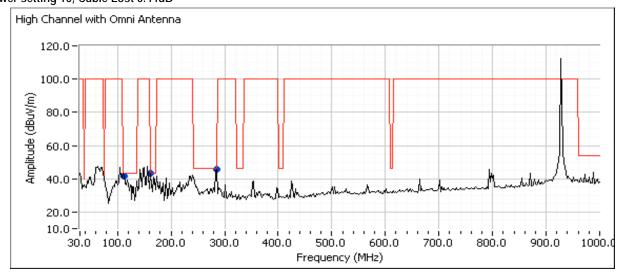


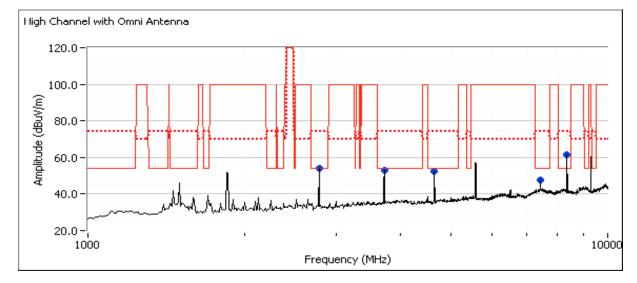




Client:	Freewave Technologies, Inc.	Job Number:	J92945
Model:	MMA2 T	T-Log Number:	T92989
	IVIVIZ-1	Project Manager:	Sheareen Jacobs
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher
Standard:	FCC Part 15.247	Class:	N/A

Run #1b: Radiated Spurious Emissions, 30 - 9280 MHz Center Channel Power setting 10, Cable Lost 0.44dB


Average measurement was corrected by 22.76dB for duty cycle and hopping (=5.24-28)


Note 3:

Client:	Freewave Technologies, Inc.	Job Number:	J92945							
Model:	MANA? T	T-Log Number:	T92989							
	IMINIZ-1	Project Manager:	Sheareen Jacobs							
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher							
Standard:	FCC Part 15.247	Class:	N/A							

Run #1c: Radiated Spurious Emissions, 30 - 9280 MHz High Channel Power setting 10, Cable Lost 0.44dB

Client:	Freewave Technologies, Inc.	Job Number:	J92945
Model:	MMO T	T-Log Number:	T92989
	IVIIVIZ-1	Project Manager:	Sheareen Jacobs
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher
Standard:	FCC Part 15.247	Class:	N/A

Other Spurious Emissions

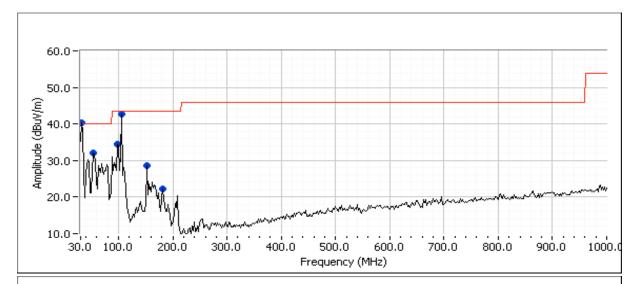
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			00						
8354.170 61.7 V 54.0 7.7 Peak 182 1.6 7424.810 47.5 V 54.0 -6.5 Peak 223 1.6 4638.920 52.7 V 54.0 -1.3 Peak 239 1.6 3711.510 53.2 V 54.0 -0.8 Peak 303 1.0 2783.720 54.2 V 54.0 0.2 Peak 344 2.5 285.003 45.5 V 46.0 -0.5 Peak 30 1.0 162.001 43.5 V 43.5 0.0 Peak 148 1.0	Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
7424.810 47.5 V 54.0 -6.5 Peak 223 1.6 4638.920 52.7 V 54.0 -1.3 Peak 239 1.6 3711.510 53.2 V 54.0 -0.8 Peak 303 1.0 2783.720 54.2 V 54.0 0.2 Peak 344 2.5 285.003 45.5 V 46.0 -0.5 Peak 30 1.0 162.001 43.5 V 43.5 0.0 Peak 148 1.0	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4638.920 52.7 V 54.0 -1.3 Peak 239 1.6 3711.510 53.2 V 54.0 -0.8 Peak 303 1.0 2783.720 54.2 V 54.0 0.2 Peak 344 2.5 285.003 45.5 V 46.0 -0.5 Peak 30 1.0 162.001 43.5 V 43.5 0.0 Peak 148 1.0	8354.170	61.7	V	54.0	7.7	Peak	182	1.6	
3711.510 53.2 V 54.0 -0.8 Peak 303 1.0 2783.720 54.2 V 54.0 0.2 Peak 344 2.5 285.003 45.5 V 46.0 -0.5 Peak 30 1.0 162.001 43.5 V 43.5 0.0 Peak 148 1.0	7424.810	47.5	V	54.0	-6.5	Peak	223	1.6	
2783.720 54.2 V 54.0 0.2 Peak 344 2.5 285.003 45.5 V 46.0 -0.5 Peak 30 1.0 162.001 43.5 V 43.5 0.0 Peak 148 1.0	4638.920	52.7	V	54.0	-1.3	Peak	239	1.6	
285.003 45.5 V 46.0 -0.5 Peak 30 1.0 162.001 43.5 V 43.5 0.0 Peak 148 1.0	3711.510	53.2	V	54.0	-0.8	Peak	303	1.0	
162.001 43.5 V 43.5 0.0 Peak 148 1.0	2783.720	54.2	V	54.0	0.2	Peak	344	2.5	
	285.003	45.5	V	46.0	-0.5	Peak	30	1.0	
111.002 41.5 V 43.5 -2.0 Peak 202 1.0	162.001	43.5	V	43.5	0.0	Peak	148	1.0	
	111.002	41.5	V	43.5	-2.0	Peak	202	1.0	

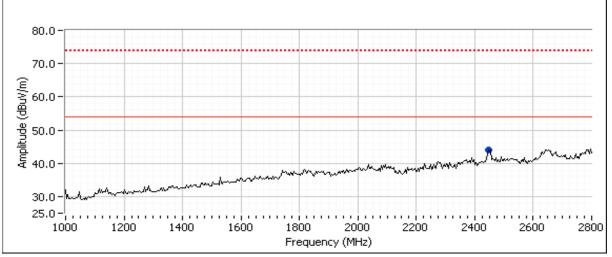
Other Spurious Emissions

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
111.002	43.1	V	43.5	-0.4	QP	203	1.0	QP (1.00s)
8349.970	63.7	V	74.0	-10.3	PK	180	1.6	RB 1 MHz;VB 3 MHz;Peak
8350.170	37.5	V	54.0	-16.5	AVG	180	1.6	RB 1 MHz;VB 10 Hz;Peak, Note 3
3711.350	54.6	V	74.0	-19.4	PK	304	1.0	RB 1 MHz;VB 3 MHz;Peak
4639.380	31.4	V	74.0	-19.8	PK	240	1.6	RB 1 MHz;VB 3 MHz;Peak
2783.660	54.0	V	74.0	-20.0	PK	345	2.5	RB 1 MHz;VB 3 MHz;Peak
7418.480	51.4	V	74.0	-22.6	PK	224	1.6	RB 1 MHz;VB 3 MHz;Peak
2783.470	28.7	V	54.0	-25.3	AVG	345	2.5	RB 1 MHz;VB 10 Hz;Peak, Note 3
3711.340	28.4	V	54.0	-25.6	AVG	304	1.0	RB 1 MHz;VB 10 Hz;Peak, Note 3
4639.040	23.5	V	54.0	-30.5	AVG	240	1.6	RB 1 MHz;VB 10 Hz;Peak, Note 3
7422.480	20.4	V	54.0	-33.6	AVG	224	1.6	RB 1 MHz;VB 10 Hz;Peak, Note 3
285.003	33.1	V	N/A	N/A	QP	28	1.0	Note 2
162.001	43.4	V	N/A	N/A	QP	150	1.0	Note 2

Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below the
NOLE 1.	level of the fundamental.
Note 2:	Measurements of emissions not within a restricted band were performed on the RF port.

Note 3: Average measurement was corrected by 22.76dB for duty cycle and hopping (=5.24-28)

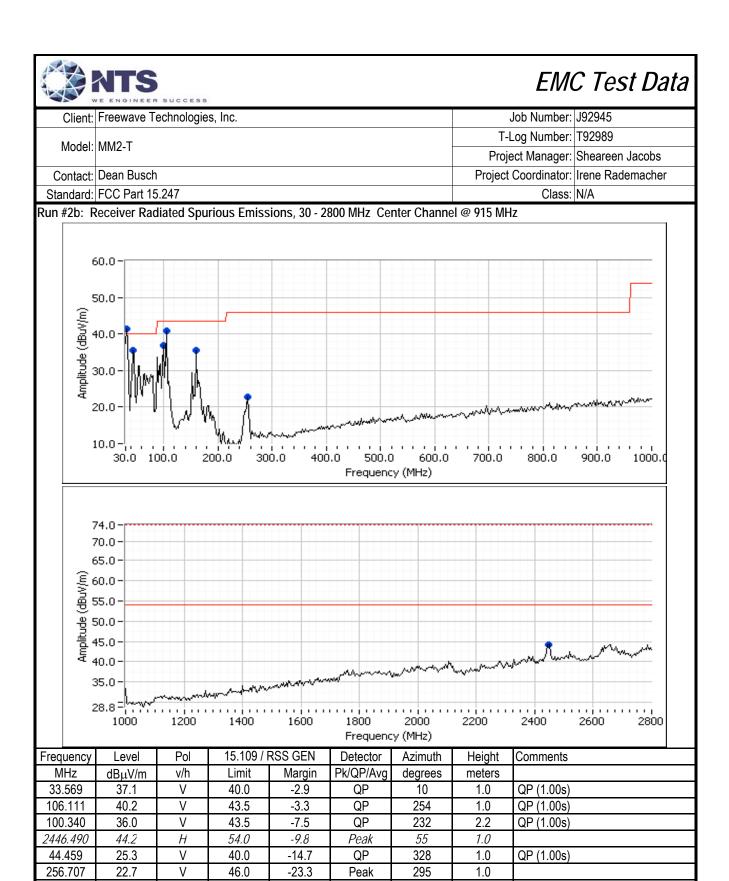



Client:	Freewave Technologies, Inc.	Job Number:	J92945
Model:	MANA? T	T-Log Number:	T92989
	IMINIZ-1	Project Manager:	Sheareen Jacobs
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher
Standard:	FCC Part 15.247	Class:	N/A

Run #2: Receiver Radiated Spurious Emissions, 30 - 2800 MHz

Date of Test: 8/30/2013 Test Engineer: Rafael Varelas Test Location: FT Chamber #4

Run #2a: Receiver Radiated Spurious Emissions, 30 - 2800 MHz Low Channel @ 902.245 MHz



	# 10 DE 1880 - 1980 - 10 TOTAL BANK - 10 TOTAL		
Client:	Freewave Technologies, Inc.	Job Number:	J92945
Model:	MM2 T	T-Log Number:	T92989
	INIVIZ-1	Project Manager:	Sheareen Jacobs
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher
Standard:	FCC Part 15.247	Class:	N/A

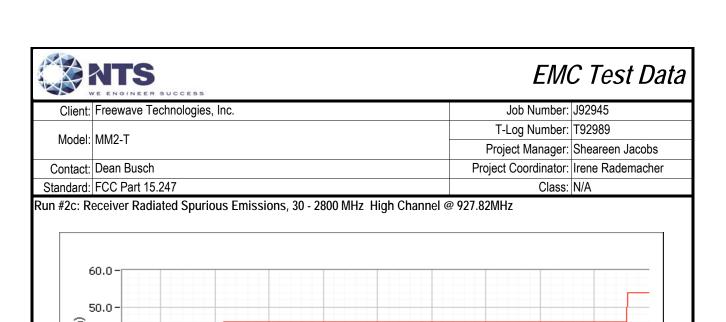
Frequency	Level	Pol	15.109 / F	RSS GEN	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
105.763	42.2	V	43.5	-1.3	QP	240	1.0	QP (1.00s)
33.569	35.8	V	40.0	-4.2	QP	117	0.9	QP (1.00s)
54.709	29.2	V	40.0	-10.8	QP	199	0.9	QP (1.00s)
98.487	32.0	V	43.5	-11.5	QP	221	1.4	QP (1.00s)
153.310	28.5	V	43.5	-15.0	Peak	356	1.0	
182.362	22.3	Н	43.5	-21.2	Peak	332	1.5	
2446.490	43.9	Н	54.0	-10.1	Peak	26	1.3	

QΡ

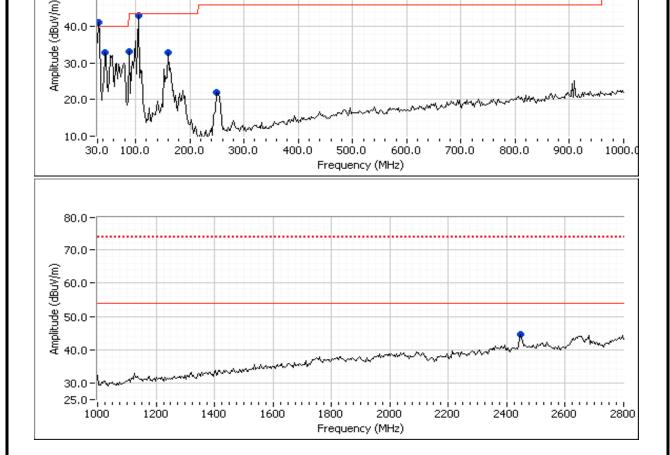
269

2.0

QP (1.00s)


160.782

13.4

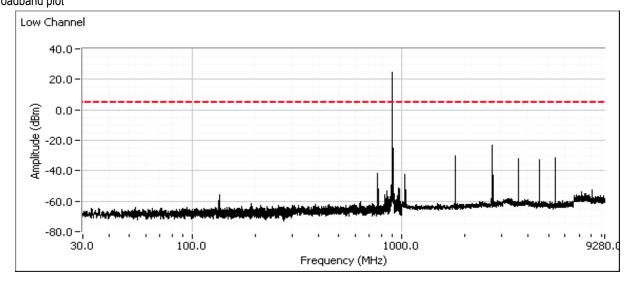

٧

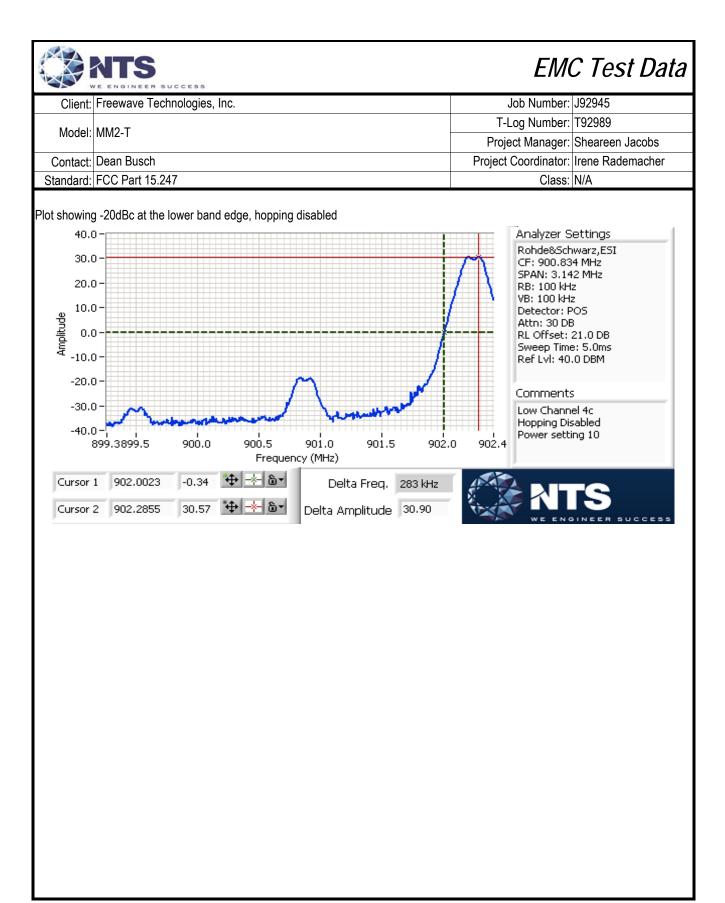
43.5

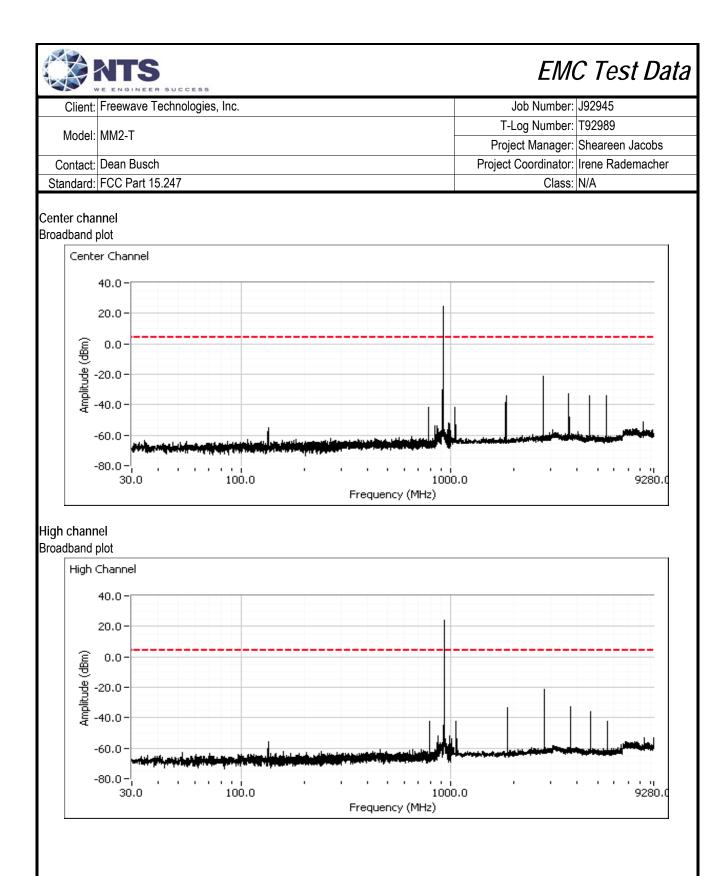
-30.1

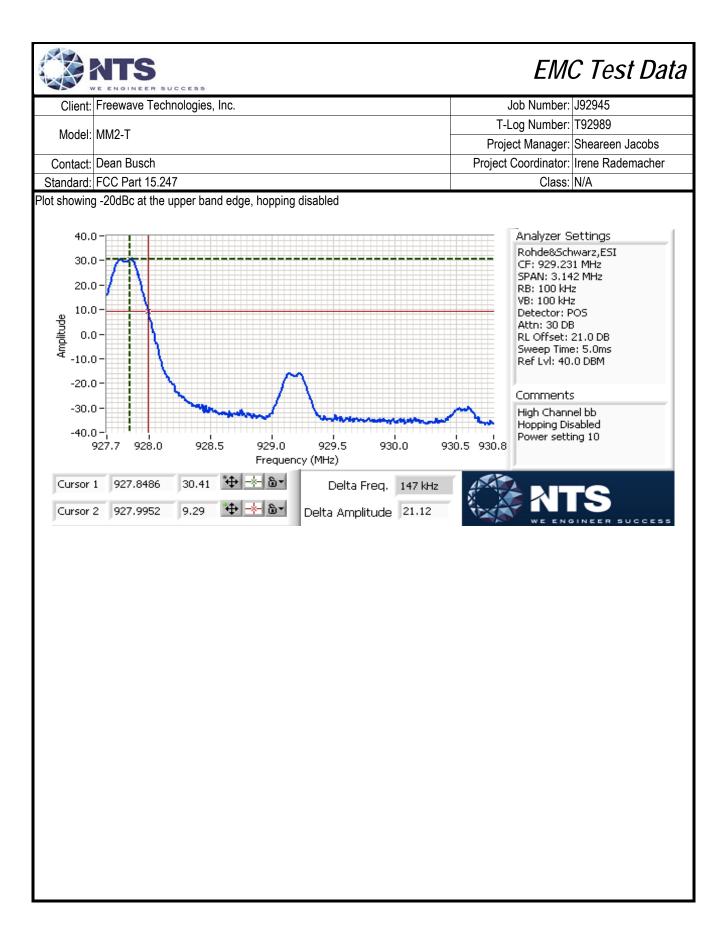
40.0

Client:	Freewave Technologies, Inc.	Job Number:	J92945			
Model	MM2-T	T-Log Number:	T92989			
Model.	IVIVIZ-1	Project Manager:	Sheareen Jacobs			
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher			
Standard:	FCC Part 15.247	Class:	N/A			

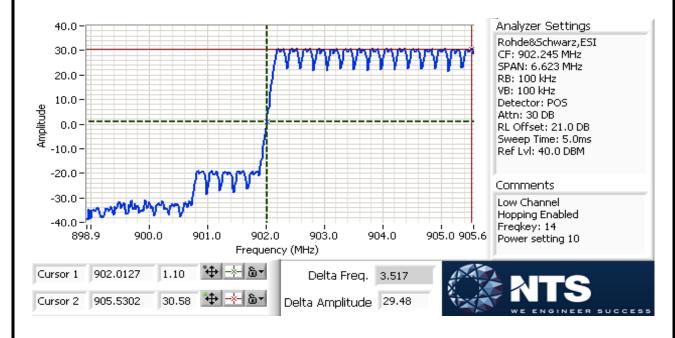

Frequency	Level	Pol	15.109 / I	RSS GEN	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
106.081	42.2	V	43.5	-1.3	QP	248	1.0	QP (1.00s)
33.569	37.1	V	40.0	-2.9	QP	352	1.0	QP (1.00s)
2446.490	44.7	V	54.0	-9.3	Peak	10	1.0	
160.009	32.8	Н	43.5	-10.7	Peak	285	1.0	
44.952	28.3	V	40.0	-11.7	QP	231	0.9	QP (1.00s)
88.495	30.7	Н	43.5	-12.8	QP	329	1.9	QP (1.00s)
251.034	22.0	Н	46.0	-24.0	Peak	278	1.0	

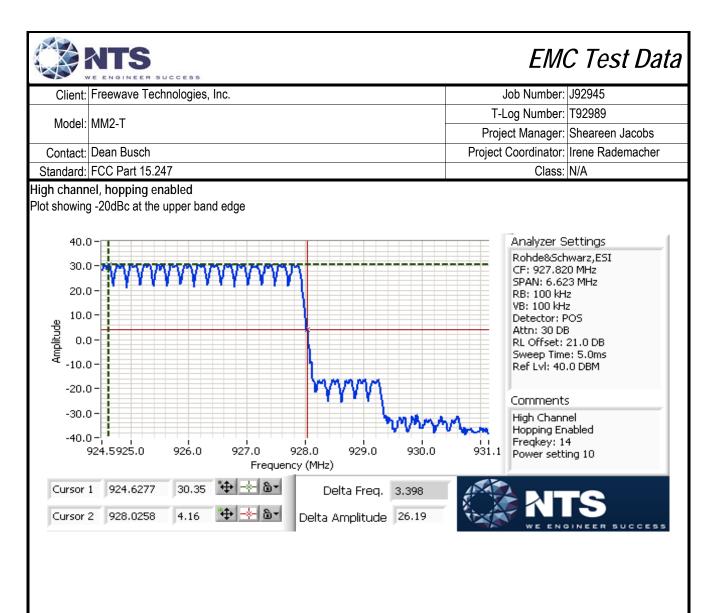

Run #3: Antenna Conducted Spurious Emissions, 30 - 9280 MHz


Date of Test: 7/18/2013 Test Engineer: Joseph Cadigal Test Location: FT Lab#4b


Refer to plots below. Scans made using RBW=VB=100 KHz with the limit line set at 20dB below the highest in-band signal level with the hopping feature disabled.

Low channel Broadband plot




Client:	Freewave Technologies, Inc.	Job Number:	J92945				
Model	MM2-T	T-Log Number:	T92989				
Model.	IVIIVIZ-1	Project Manager:	Sheareen Jacobs				
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher				
Standard:	FCC Part 15.247	Class:	N/A				

Low channel, hopping enabled

Plot showing -20dBc at the lower band edge

Refer to plots below. Scans made using RBW=VB=100 KHz with the limit line set at 20dB below the highest in-band signal level with the hopping feature enabled to show compliance with the -20dBc requirement at the allocated band edge. The spectrum analyzer is left in max hold mode until the trace stabilizes.

Client:	Freewave Technologies, Inc.	Job Number:	J92945				
Madal	MM2-T	T-Log Number:	T92989				
Model.	IVIIVIZ-1	Project Manager:	Sheareen Jacobs				
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher				
Standard:	FCC Part 15.247	Class:	N/A				

Run #4: Output Power

Date of Test: 9/11/2013 Test Engineer: Mehran Birgani Test Location: FT Lab#4b

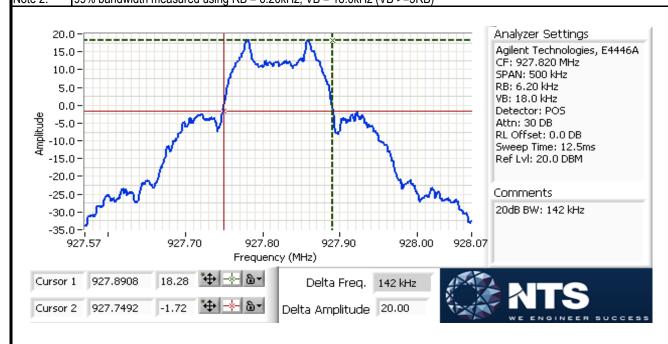
For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels.

Maximum effective antenna gain: 6 dBi Power reduction or feed line loss is used.

Channel	Frequency (MHz)	Res BW	Output Power (dBm)	Output Power (W)	EIRP (W)
Low	902.245	1 MHz	29.93	0.984	3.92
Mid	915.14	1 MHz	29.89	0.975	3.88
High	927.82	1 MHz	29.80	0.955	3.80

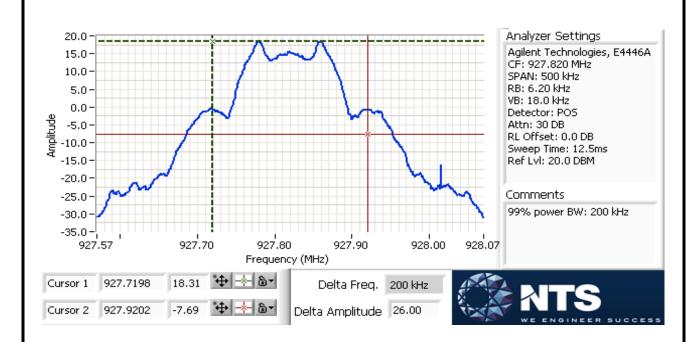
Note 1: The power was identical for the 156 kbps data rate.

Client:	Freewave Technologies, Inc.	Job Number:	J92945				
Model	MM2-T	T-Log Number:	T92989				
woder.	IVIIVIZ-1	Project Manager:	Sheareen Jacobs				
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher				
Standard:	FCC Part 15.247	Class:	N/A				


Run #5: Bandwidth, Channel Occupancy, Spacing and Number of Channels

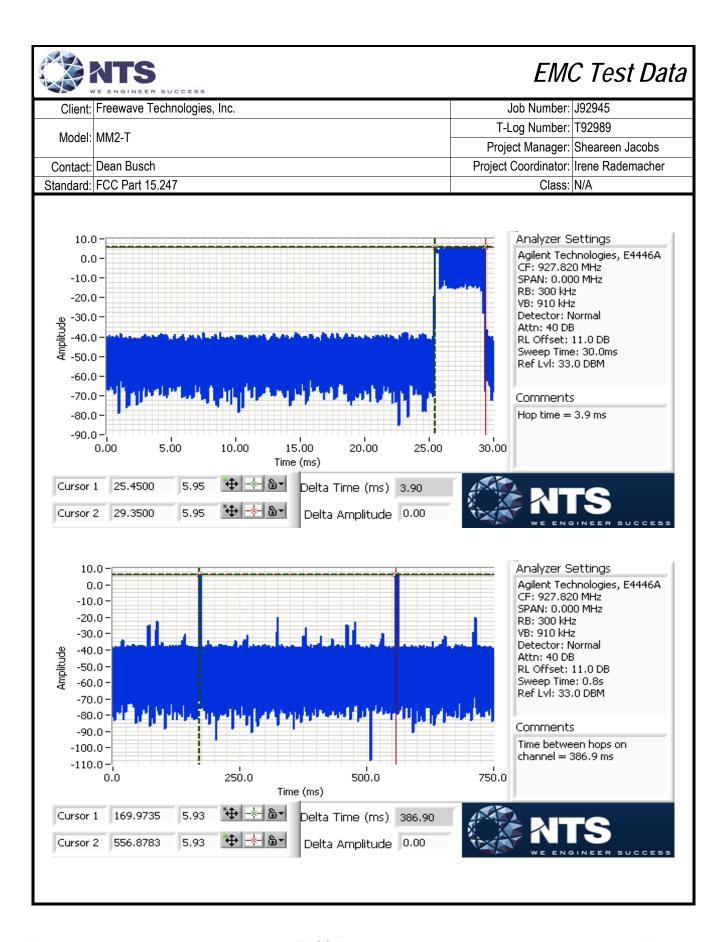
Date of Test: 7/16/2013
Test Engineer: David Bare
Test Location: Fremont Lab #4a

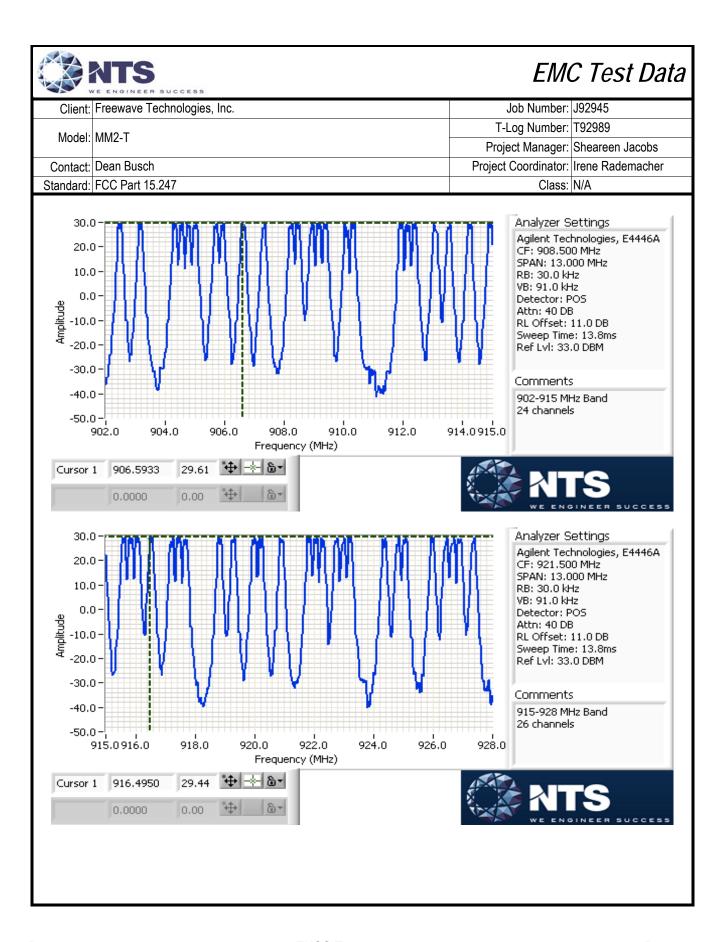
Frequency (MHz)	Resolution Bandwidth	20dB Bandwidth (kHz)	Resolution Bandwidth	99% Bandwidth (kHz)
927.82	6.2 kHz	142	6.2 kHz	200

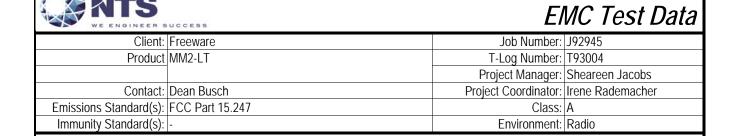

Note 1: 20dB bandwidth measured using RB = 6.20kHz, VB = 18.0kHz (VB > RB)

Note 2: 99% bandwidth measured using RB = 6.20kHz, VB = 18.0kHz (VB >=3RB)

Client:	Freewave Technologies, Inc.	Job Number:	J92945				
Model	MM2-T	T-Log Number:	T92989				
woder.	IVIIVIZ-1	Project Manager:	Sheareen Jacobs				
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher				
Standard:	FCC Part 15 247	Class:	N/A				




The minimum channel spacing is (927.82-902.245)/111 = 230.4 kHz


For frequency hopping systems operating in the 902-928 MHz band:

The channel dwell time is calculated from the transmit time on a channel multiplied by the number of times a channel could be used in the 20 second period (i.e. 20s divided by the time between successive hops, rounded up to the closest integer), unless the time between successive hops exceeds 20s in which case the channel dwell time is the transmit time on a channel.

20dB bandwidth:	142 kH	lz Pass	
Channel spacing:	230.4 kH	lz Pass	
Transmission time per hop:	3.9 m	S	
The time between successive hops on a channel:	386.9 ms	S	
Mininum number of channels (N):	50	Pass	
Channel dwell time in 20 seconds:	202.8 ms	s Pass	See above note

For The

Freeware

Product

MM2-LT

Date of Last Test: 7/18/2013

R93014 Cover Page 48

7-	VE ENGINEER SUCCESS		
Client:	Freeware	Job Number:	J92945
Madal	MM2-I T	T-Log Number:	T93004
iviodei:	IVIIVIZ-L I	Project Manager:	Sheareen Jacobs
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher
Standard:	FCC Part 15.247	Class:	Α

Conducted Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 7/18/2013 Config. Used: 1
Test Engineer: Alika Hirano Config Change: None
Test Location: Fremont Chamber #5 Host Unit Voltage 120V/60Hz

General Test Configuration

For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane

Ambient Conditions: Temperature: 20 °C

Rel. Humidity: 37 %

Summary of Results

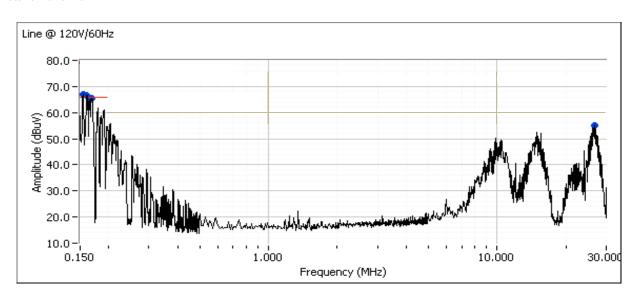
Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power,120V/60Hz	Class B	Pass	46.9 dBµV @ 26.747 MHz (-3.1 dB)

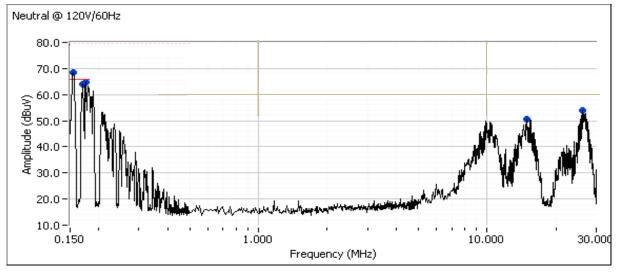
Modifications Made During Testing

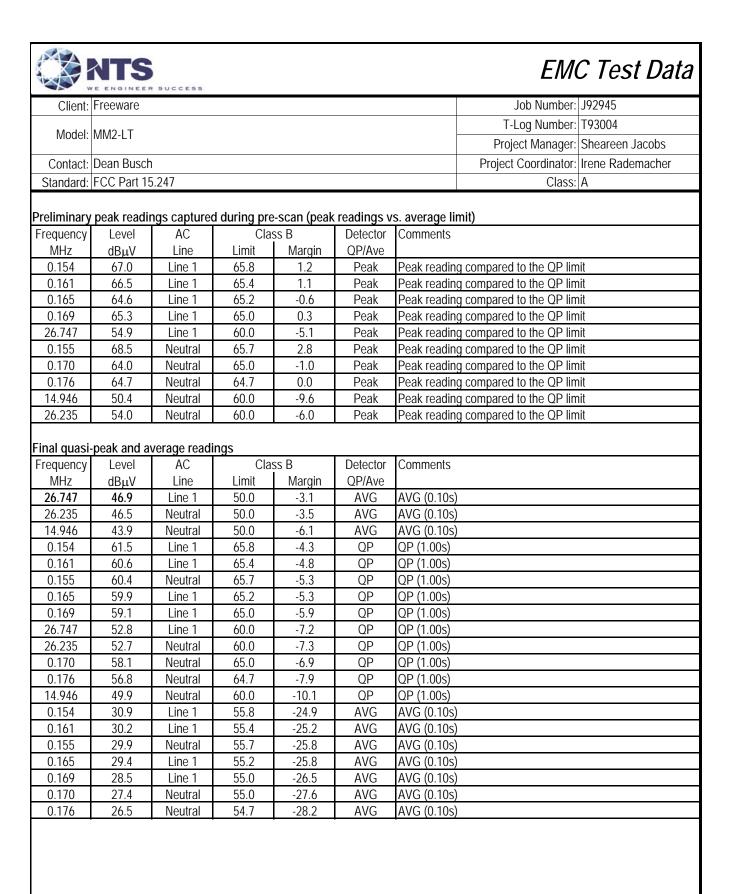
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.


Notes


Testing was performed with a Yagi antenna connected to the EUT. This antenna was removed from consideration later by Freewave and only the Omni will be used.



	Section of the Control of the Contro		
Client:	Freeware	Job Number:	J92945
Model	MM2-LT	T-Log Number:	T93004
iviodei:	IVIIVIZ-L I	Project Manager:	Sheareen Jacobs
Contact:	Dean Busch	Project Coordinator:	Irene Rademacher
Standard:	FCC Part 15.247	Class:	A

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Constant Transmit

End of Report

This page is intentionally blank and marks the last page of this test report.

File: R93014 Page 52