

# Measurement of RF Interference from a Model LRS-760 Transceiver

| For                                                        | : | Freewave Technologies Inc<br>Boulder, CO 80301                                                                                   |
|------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------|
| P.O. No.<br>Date Tested<br>Test Personnel<br>Specification | : | 28922<br>October 15 through November 6, 2008<br>Richard King<br>FCC "Code of Federal Regulations" Title 47<br>Part 27, Subpart C |

:

:

RICHARD E. KING

Test Report By

**Richard King** 

Raymond J Klouda

Approved By

Raymond J. Klouda **Registered Professional** Engineer of Illinois - 44894

Elite Electronic Engineering Inc. 1516 Centre Circle Downers Grove, IL 60515 Tel : (630) 495-9770 Fax: (630) 495-9785 www.elitetest.com



# TABLE OF CONTENTS

|          | GRAPH                      |                | PAGE NO. |
|----------|----------------------------|----------------|----------|
| 1 II     |                            |                |          |
| 1.1      | Scope of Tests             |                | 4        |
| 1.2      | Purpose                    |                | 4        |
| 1.3      | Deviations, Additions an   | d Exclusions   | 4        |
| 1.4      | EMC Laboratory Identified  | cation         | 4        |
| 1.5      | Laboratory Conditions      |                | 4        |
|          |                            | ERATION        |          |
|          |                            |                |          |
| 3.1<br>3 |                            |                |          |
|          | .1.2 Peripheral Equipment  |                | 5        |
|          |                            |                |          |
| 3.2      | 9                          |                |          |
| 3.3      | •                          |                |          |
|          |                            | NSTRUMENTATION |          |
| 4.1      | Shielded Enclosure         |                | 5        |
| 4.2      | Test Instrumentation       |                | 5        |
| 4.3      | Calibration Traceability.  |                | 5        |
| 4.4      | -                          | ty             |          |
| 5 T      |                            | ·              |          |
| 5.1      |                            | nissions       |          |
|          |                            |                |          |
| 5.2      |                            |                |          |
|          | •                          |                |          |
| 5        | .2.3 Results               |                | 6        |
| 5.3      |                            |                |          |
|          |                            |                |          |
| 5.4      |                            |                |          |
| 5        | .4.1 Requirements          |                | 11       |
|          |                            |                |          |
|          |                            |                |          |
| 6.1      | Test Personnel and Witr    | iesses         | 12       |
| 6.2      | Disposition of the Test It | em             | 12       |
| -        | CONCLUSIONS                |                |          |
|          |                            |                |          |
|          |                            |                |          |



# **REVISION HISTORY**

| Revision | Date          | Description     |
|----------|---------------|-----------------|
| —        | Nov. 24, 2008 | Initial release |
|          |               |                 |



# Measurement of RF Emissions from a Transceiver LRS-760 Transmitter

### **1 INTRODUCTION**

#### 1.1 Scope of Tests

This document represents the results of the series of radio interference measurements performed on a model Transceiver, Part No. LRS-760, Serial No. 700-0047 transmitter, (hereinafter referred to as the test item). The test item was designed to transmit at approximately Transmitter Frequency using an internal. The test item was manufactured and submitted for testing by Freewave Technologies Inc located in Boulder, CO.

#### 1.2 Purpose

The test series was performed to determine if the test item meets the conducted and radiated RF emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 27, Subpart C for Miscellaneous Wireless Communications Services. Testing was performed in accordance with ANSI C63.4-2003 and TIA-603-C-2004.

#### 1.3 Deviations, Additions and Exclusions

There were no deviations, additions to, or exclusions from the test specification during this test series.

#### 1.4 EMC Laboratory Identification

This series of tests was performed by Elite Electronic Engineering Incorporated of Downers Grove, Illinois. The laboratory is accredited by the National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP). NVLAP Lab Code: 100278-0.

#### 1.5 Laboratory Conditions

The temperature at the time of the test was 22.5°C and the relative humidity was 29%.

# 2 APPLICABLE DOCUMENTS

The following documents of the exact issue designated form part of this document to the extent specified herein:

- Federal Communications Commission "Code of Federal Regulations", Title 47, Part 27, Subpart C dated 1 October 2007
- ANSI C63.4-2003, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
- TIA-603-C-2004, "Land Mobile FM or PM Communications Equipment Measurement and Performance Standards"

### 3 TEST ITEM SETUP AND OPERATION

#### 3.1 General Description

The test item is a Transceiver, Part No. LRS-760. A block diagram of the test item setup is shown as Figure 1.

#### 3.1.1 Power Input

A Sceptre AC Adaptor, P/N: PS-1230APL6A, M/N: SA-036121A-3, was used to provide 12VDC to the test item via a 1.85 meter long 2 wire power cable. The Sceptre AC Adaptor was powered with 115V, 60Hz via a 1.7 meter long 3 wire power cable. Each primary lead was connected through a line impedance stabilization network (LISN) which was located on the copper ground plane. The network complies with the requirements of



Paragraph 4.1.2 of ANSI C63.4-2003.

#### 3.1.2 Peripheral Equipment

The following peripheral equipment was submitted with the test item:

| Item            | Description                                            |
|-----------------|--------------------------------------------------------|
| Laptop Computer | Sony Vaio Laptop MN: PCG-8N2L PN: 28398098 SN: 3000478 |

#### 3.1.3 Interconnect Cables

The following interconnect cables were submitted with the test item:

| Item                        | Description                                                                                                                                                                                                                     |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 85 cm long cable<br>harness | 10 wire, 85 cm long cable. Eight (8) of those wires went to the serial port of the laptop computer. The other two (2) wires went to the output of the Sceptre AC Adaptor and were used to provide 12VDC power to the test item. |

#### 3.1.4 Grounding

The test item was ungrounded during testing.

#### 3.2 Operational Mode

For all tests the test item and all peripheral equipment were placed on an 80cm high non-conductive stand. The test item and all peripheral equipment were energized.

For all transmitter tests, the test item was set to transmit separately at 757.5MHz, and 787.5MHz.

#### 3.3 Test Item Modifications

No modifications were required for compliance to the FCC Part 27.

# 4 TEST FACILITY AND TEST INSTRUMENTATION

#### 4.1 Shielded Enclosure

All tests were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. With the exception of the floor, the reflective surfaces of the shielded chamber are lined with ferrite tiles on the walls and ceiling. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2003 for site attenuation.

#### 4.2 Test Instrumentation

The test instrumentation and auxiliary equipment used during the tests are listed in Table 9-1. All equipment was calibrated on a regular basis. All calibrations are traceable to national standards.

#### 4.3 Measurement Uncertainty

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

The measurement uncertainty for these tests is presented below:

| Conducted Emission Measurements |      |       |
|---------------------------------|------|-------|
| Combined Standard Uncertainty   | 1.07 | -1.07 |



| Expanded Uncertainty (95% confidence) | 2.1 | -2.1 |  |
|---------------------------------------|-----|------|--|
|---------------------------------------|-----|------|--|

| Radiated Emission Measurements        |      |       |
|---------------------------------------|------|-------|
| Combined Standard Uncertainty         | 2.26 | -2.18 |
| Expanded Uncertainty (95% confidence) | 4.5  | -4.4  |

## 5 TEST PROCEDURES

#### 5.1 Powerline Conducted Emissions

#### 5.1.1 Requirements

There are no requirements for conducted emissions.

5.2 Output Power

#### 5.2.1 Requirements

Per 27.50 (b)(1), Fixed and base stations transmitting a signal in the 746–747 and 762–764 MHz bands must not exceed an effective radiated power (ERP) of 1000 watts.

#### 5.2.2 Procedures

The test item was set to transmit at 757.5 MHz. The data rate set to 0.

- a) The antenna port of the test item was connected to a spectrum analyzer through a 30 dB attenuator.
- b) The following spectrum analyzer settings were employed:
  trace 1 = on
  - center frequency = 757.5MHz and 787.5MHz
  - resolution bandwidth = 1MHz
  - video bandwidth > resolution bandwidth
  - sweep = Auto
  - detector function = peak
  - trace = max hold
- c) Several sweeps were made with the settings listed above and a plot of the sweeps was recorded.
- d) Steps (a) through (c) were repeated with the data rate set to 1.
- e) Steps (a) through (c) were repeated with the data rate set to 2.
- f) Steps (a) through (c) were repeated with the data rate set to 3.
- g) Steps (a) through (c) were repeated with the data rate set to 4.
- h) Steps (a) through (c) were repeated with the data rate set to 5.
- i) The test item was set to transmit at 757.5 MHz. The data rate set to 0.
- j) Steps (a) through (c) were repeated with the data rate set to 1.
- k) Steps (a) through (c) were repeated with the data rate set to 2.
- I) Steps (a) through (c) were repeated with the data rate set to 3.
- m) Steps (a) through (c) were repeated with the data rate set to 4.
- n) Steps (a) through (c) were repeated with the data rate set to 5.



#### 5.2.3 Results

The conducted output power measurements are presented on page 16. As can be seen from the data, the test item is rated as a 2 watt transmitter and was within 20% of the manufacturer's rating. The ERP limit is 1000 watts however the actual ERP power of the test item will be determined at the time of licensing.

#### 5.3 Emissions Limits

5.3.1 Requirements

Per 27.53, for operations in the 747 to 762 MHz band and the 777 to 792 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(c)(1) On any frequency outside the 747 to 762 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least  $43 + 10 \log (P) dB$ ;

(c)(2) On any frequency outside the 777 to 792 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least  $43 + 10 \log (P) dB$ ;

(c)(3) On all frequencies between 764 to 776 MHz and 794 to 806 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations.

#### 5.3.2 Procedures

5.3.2.1 Antenna Conducted Emissions

For testing to paragraph (c)(1). The test item was set to transmit at 757.5 MHz. The data rate set to 0.

- a) The antenna port of the test item was connected to a spectrum analyzer through a 40 dB attenuator.
- b) The following spectrum analyzer settings were employed:
  - trace 1 = on
  - start frequency = 30MHz
  - Stop Frequency = 1000MHz
  - resolution bandwidth = 100kHz
  - video bandwidth > resolution bandwidth
  - sweep = Auto
  - detector function = peak
  - trace = max hold
  - display line set to 43+10 LOG (P).
- c) Several sweeps were made with the settings listed above and a plot of the sweeps was recorded.
- d) The following spectrum analyzer settings were employed:
  - trace 1 = on
  - start frequency = 1000MHz
  - Stop Frequency = 8000MHz
  - resolution bandwidth = 1MHz
  - video bandwidth > resolution bandwidth
  - sweep = Auto
  - detector function = peak
  - trace = max hold



- display line set to 43+10 LOG (P).

- e) Several sweeps were made with the settings listed above and a plot of the sweeps was recorded.
- f) Steps (a) through (e) were repeated with the data rate set to 1.
- g) Steps (a) through (e) were repeated with the data rate set to 2.
- h) Steps (a) through (e) were repeated with the data rate set to 3.
- i) Steps (a) through (e) were repeated with the data rate set to 4.
- j) Steps (a) through (e) were repeated with the data rate set to 5.

For testing to paragraph (c)(2). The test item was set to transmit at 787.5 MHz. The data rate set to 0.

- a) The antenna port of the test item was connected to a spectrum analyzer through a 40 dB attenuator.
- b) The following spectrum analyzer settings were employed:
  - trace 1 = on
  - start frequency = 30MHz
  - Stop Frequency = 1000MHz
  - resolution bandwidth = 100kHz
  - video bandwidth > resolution bandwidth
  - sweep = Auto
  - detector function = peak
  - trace = max hold
  - display line set to 43+10 LOG (P).
- c) Several sweeps were made with the settings listed above and a plot of the sweeps was recorded.
- d) The following spectrum analyzer settings were employed:
  - trace 1 = on
  - start frequency = 1000MHz
  - Stop Frequency = 8000MHz
  - resolution bandwidth = 1MHz
  - video bandwidth > resolution bandwidth
  - sweep = Auto
  - detector function = peak
  - trace = max hold
  - display line set to 43+10 LOG (P).
- e) Several sweeps were made with the settings listed above and a plot of the sweeps was recorded.
- f) Steps (a) through (e) were repeated with the data rate set to 1.
- g) Steps (a) through (e) were repeated with the data rate set to 2.
- h) Steps (a) through (e) were repeated with the data rate set to 3.
- i) Steps (a) through (e) were repeated with the data rate set to 4.
- j) Steps (a) through (e) were repeated with the data rate set to 5.

For testing to paragraph (c)(3). The test item was set to transmit at 757.5 MHz. The data rate set to 0.

- a) The antenna port of the test item was connected to a spectrum analyzer through a 40 dB attenuator.
- b) The following spectrum analyzer settings were employed:
  - trace 1 = on
  - start frequency = 764MHz
  - Stop Frequency = 776MHz
  - resolution bandwidth = 10kHz
  - video bandwidth > resolution bandwidth
  - sweep = Auto



- detector function = peak
- trace = max hold
- display line set to 76 + 10 log (P).
- c) Several sweeps were made with the settings listed above and a plot of the sweeps was recorded.
- d) The following spectrum analyzer settings were employed:
  - trace 1 = on
    - start frequency = 794MHz
    - Stop Frequency = 806MHz
    - resolution bandwidth = 10kHz
  - video bandwidth > resolution bandwidth
  - sweep = Auto
  - detector function = peak
  - trace = max hold
  - display line set to 76 + 10 log (P).
- e) Several sweeps were made with the settings listed above and a plot of the sweeps was recorded.
- f) Steps (a) through (e) were repeated with the data rate set to 1.
- g) Steps (a) through (e) were repeated with the data rate set to 2.
- h) Steps (a) through (e) were repeated with the data rate set to 3.
- i) Steps (a) through (e) were repeated with the data rate set to 4.
- j) Steps (a) through (e) were repeated with the data rate set to 5.

#### 5.3.2.1.1 Results

The plots of the antenna conducted output measurements are presented on pages 17 through 52. As can be seen from the data, the test item did not produce conducted spurious emissions in excess of the limits under any data rate condition.

#### 5.3.2.2 Field Strength of Spurious Emissions

All tests were performed in a 32 ft. x 20 ft. x 18 ft. hybrid ferrite-tile/anechoic absorber lined test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4 2003 for site attenuation.

The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

To ensure that maximum or worst case, emission levels were measured, the following steps were taken:

- Preliminary radiated emissions measurements were first performed using a peak detector and automatically plotted. The broadband measuring antenna was positioned at a 3 meter distance from the test item. The entire frequency range from 30 MHz to 8 GHz was investigated using a peak detector function. All preliminary tests were performed separately with the test item operating in the transmit at 757.5 MHz mode and transmit at 787.5 MHz mode.
- 2) All significant broadband and narrowband signals found in the preliminary sweeps were then measured using a peak detector at a test distance of 3 meters. The measurements were made with a tuned dipole or double ridged waveguide antenna over the frequency range of 30 MHz to 8 GHz.
- 3) The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.



- 1. The test item was rotated so that all of its sides were exposed to the receiving antenna.
- 2. Since the measuring antennas are linearly polarized, both horizontal and vertical field components were measured.
- 3. The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.
- 4) The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power a tuned dipole or double ridged waveguide antenna was set in place of the test item and connected to a calibrated signal generator. The output of the signal generator was adjusted to match the received level at the spectrum analyzer. The signal level was recorded. The reading was corrected to compensate for cable loss, as required, and when the double ridged waveguide antenna was used, increased by the difference in gain between the dipole and the waveguide antenna.
- 5) In instances were it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer and the antenna cannot be raised to 4 meters. The measuring antenna is raised or lowered as much as the cable will allow and the test item is rotated through all axis to ensure the maximum readings are recorded.

#### 5.3.2.2.1 Results

The preliminary radiated emissions plots are presented on pages 53 through 60. Factors for the antennas and cables were added to the data before it was plotted. This data is only presented for a reference, and is not used as official data.

The final radiated levels are presented on pages 61 through 62. The radiated emissions were measured through the 10th harmonic. As can be seen from the data, all emissions measured from the test item were within the specification limits. Photographs of the test configuration are shown on Figure 3.

#### 5.3.2.3 Band Edge Compliance

- a) The antenna port of the test item was connected to a spectrum
- b) The transmitter was set to transmit at 757MHz.
- c) The following spectrum analyzer settings were employed:
  - trace 1 = on
  - center frequency = lower bandedge 757MHz
  - resolution bandwidth = 500Hz for Data Rate 0 and 1
  - resolution bandwidth = 300Hz for Data Rate 2 and 3
  - resolution bandwidth = 200Hz for Data Rate 4 and 5
  - video bandwidth > resolution bandwidth
  - sweep = Auto
  - detector function = peak
  - trace = max hold
  - display line set to 43 + 10 log (P).
- d) The transmitter frequency was then adjusted until the entire transmit emission was within the display line at the bandedge.
- e) Several sweeps were made with the settings listed above and a plot of the frequency which passed the emissions limit was recorded.
- f) Steps (a) through (e) were repeated with the data rate set to 1.
- g) Steps (a) through (e) were repeated with the data rate set to 2.
- h) Steps (a) through (e) were repeated with the data rate set to 3.
- i) Steps (a) through (e) were repeated with the data rate set to 4.
- j) Steps (a) through (e) were repeated with the data rate set to 5.



- k) Steps (a) through (k) were repeated with the center frequency set to the upper bandedge at 758MHz.
- I) The transmitter was set to transmit at 787MHz.
- m) Steps (c) through (j) were repeated with the center frequency set to the lower bandedge at 787MHz.
- n) Steps (a) through k) were repeated with the center frequency set to the upper bandedge at 788MHz.

5.3.2.3.1 Results

The plots of the antenna conducted output measurements are presented on pages 63 through 86. As can be seen from the data, the test item did not produce spurious emissions in excess of the limits under any data rate condition.

5.4 Frequency Stability

#### 5.4.1 Requirements

Per 27.54 the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

#### 5.4.2 Procedures

The antenna port of the test item was connected to a frequency counter through a 50 dB attenuator. The test item was then placed in a humidity temperature chamber.

- a) The nominal frequency was measured at +20°C.
- b) The temperature chamber was then set to -30°C.
- c) Once the temperature chamber had reached -30°C, the test item was allowed to soak for 30 minutes.
- d) After soaking at -30°C for thirty minutes, the test item was turned on and set to transmit at 757.0125MHz and the transmit frequency was measured and recorded.
- e) Steps (a) through (c) were repeated with the temperature chamber was set to -20°C.
- f) Steps (a) through (c) were repeated with the temperature chamber was set to -10°C.
- g) Steps (a) through (c) were repeated with the temperature chamber was set to 0°C.
- h) Steps (a) through (c) were repeated with the temperature chamber was set to 10°C.
- i) Steps (a) through (c) were repeated with the temperature chamber was set to 30°C.
- j) Steps (a) through (c) were repeated with the temperature chamber was set to 40°C.
- k) Steps (a) through (c) were repeated with the temperature chamber was set to 50°C.
- I) Steps (a) through (I) were repeated with the transmitter set to 787.1875MHz.
- m) Steps (a) through (I) were repeated with the transmitter set to 757.98125MHz.
- n) Steps (a) through (I) were repeated with the transmitter set to 787.9875MHz.
- o) The test item was then removed from the temperature chamber and allowed to adjust to nominal room temperature.
- p) The supply voltage was checked and adjusted to the nominal level (12.0 VDC). The test item was turned on and set to transmit at 757.0125MHz. The transmit frequency was measured and recorded at ambient temperature.
- q) The supply voltage was then varied to 85% of its nominal level (10.2 VDC). The test item was turned on and set to transmit at 757.0125MHz. The transmit frequency was measured and recorded at ambient temperature.
- r) The supply voltage was then varied to 115% of its nominal level (13.8 VDC). The test item was turned on and set to transmit at 757.0125MHz. The transmit frequency was measured and recorded at ambient temperature.
- s) Steps (p) through (r) were repeated with the test item set to transmit at 787.1875MHz.



- t) Steps (p) through (r) were repeated with the test item set to transmit at 757.98125MHz.
- u) Steps (p) through (r) were repeated with the test item set to transmit at 787.9875MHz.
- v) The frequency change relative to the nominal frequency was then calculated at each temperature and voltage.

#### 5.4.3 Results

The frequency stability measurements are presented on pages 87 through 90. As can be seen from the data, the fundamental emissions stayed within the authorized bands of operation.

# 6 OTHER TEST CONDITIONS

#### 6.1 Test Personnel and Witnesses

All tests were performed by qualified personnel from Elite Electronic Engineering Incorporated.

#### 6.2 Disposition of the Test Item

The test item and all associated equipment were returned to Freewave Technologies Inc upon completion of the tests.

# 7 CONCLUSIONS

It was determined that the Freewave Technologies Inc Transceiver, Part No. LRS-760, Serial No. 700-0047, did fully meet the conducted and radiated emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 27, Subpart C when tested per TIA-603-C-2004.

# 8 CERTIFICATION

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the test specifications.

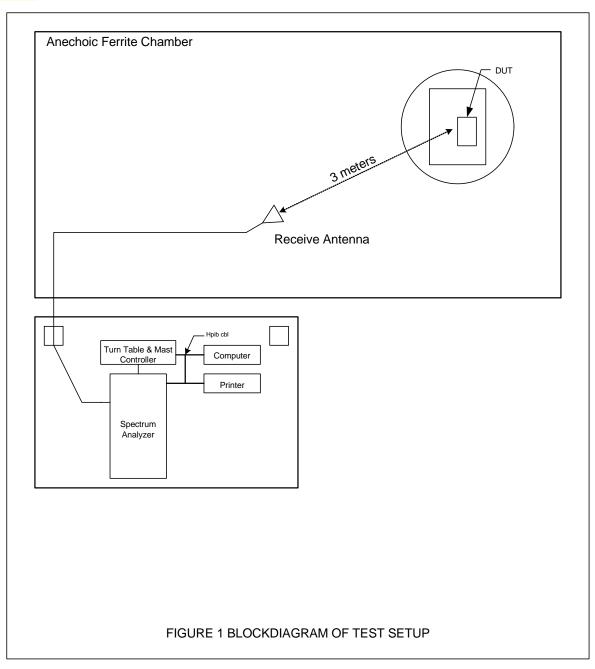
The data presented in this test report pertains to the test item at the test date \*as operated by Freewave Technologies Inc personnel. Any electrical or mechanical modification made to the test item subsequent to the specified test date will serve to invalidate the data and void this certification.

This report must not be used to claim product endorsement by NVLAP or any agency of the US Government.

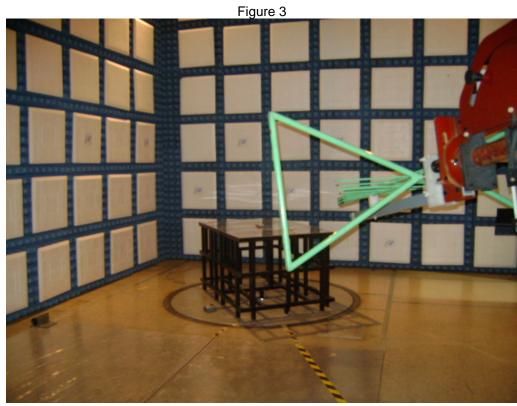


# 9 EQUIPMENT LIST

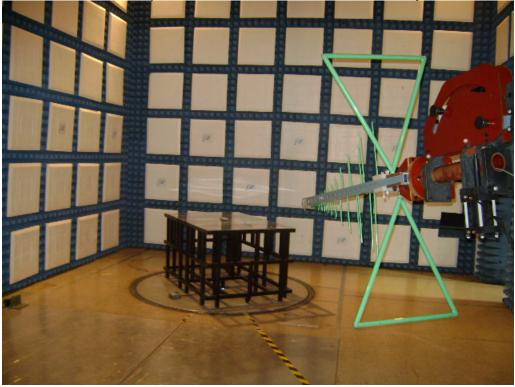
#### **Table 9-1 Equipment List**


| Eq ID | Equipment Description                  | Manufacturer            | Model No.                | Serial No. | Frequency<br>Range      | Cal Date   | Due Date   |
|-------|----------------------------------------|-------------------------|--------------------------|------------|-------------------------|------------|------------|
| APW3  | PREAMPLIFIER                           | PLANAR<br>ELECTRONICS   | PE2-35-120-<br>5R0-10-12 | PL2924     | 1GHZ-20GHZ              | 11/30/2007 | 11/30/2008 |
| CDS2  | COMPUTER                               | GATEWAY                 | MFATXPNT<br>NMZ 500L     | 0028483108 | 1.8GHZ                  | N/A        |            |
| ETD0  | ENV Chambers For Auto<br>Dept Use Only | Thermotron              | S-8                      | 15461      | -70 to 150<br>degrees C | Note 1     |            |
| GRE0  | SIGNAL GENERATOR                       | AGILENT<br>TECHNOLOGIES | E4438C                   | MY42083127 | 250KHZ-6GHZ             | 1/7/2008   | 1/7/2009   |
| HRE1  | LASER JET 5P                           | HEWLETT PACKARD         | C3150A                   | USHB061052 |                         | N/A        |            |
| NDQ1  | TUNED DIPOLE<br>ANTENNA                | EMCO                    | 3121C-DB4                | 313        | 400-1000MHZ             | 4/14/2008  | 4/14/2009  |
| NTA0  | BILOG ANTENNA                          | CHASE EMC LTD.          | BILOG<br>CBL6112         | 2057       | 0.03-2GHZ               | 6/11/2008  | 6/11/2009  |
| NWF2  | RIDGED WAVE GUIDE                      | ELECTRO-METRICS         | RGA 180                  | 2521       | 1-12.4GHZ               | 10/25/2008 | 10/25/2009 |
| NWH0  | RIDGED WAVE GUIDE                      | TENSOR                  | 4105                     | 2081       | 1-12.4GHZ               | 10/25/2008 | 10/25/2009 |
| RBB0  | EMI TEST RECEIVER<br>20HZ TO 40 GHZ.   | ROHDE & SCHWARZ         | ESIB40                   | 100250     | 20 HZ TO 40GHZ          | 11/5/2007  | 12/5/2008  |
| T1EE  | 10DB 25W ATTENUATOR                    | WEINSCHEL               | 46-10-34                 | BN2321     | DC-18GHZ                | 12/4/2007  | 12/4/2008  |
| T2D1  | 20DB, 25W<br>ATTENUATOR                | WEINSCHEL               | 46-20-43                 | AV5814     | DC-18GHZ                | 2/14/2008  | 2/14/2009  |
| T2S7  | 20DB 25W ATTENUATOR                    | WEINSCHEL               | 46-20-34                 | BU8139     | DC-18GHZ                | 2/14/2008  | 2/14/2009  |

### I/O: Initial Only


#### N/A: Not Applicable

Note 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.







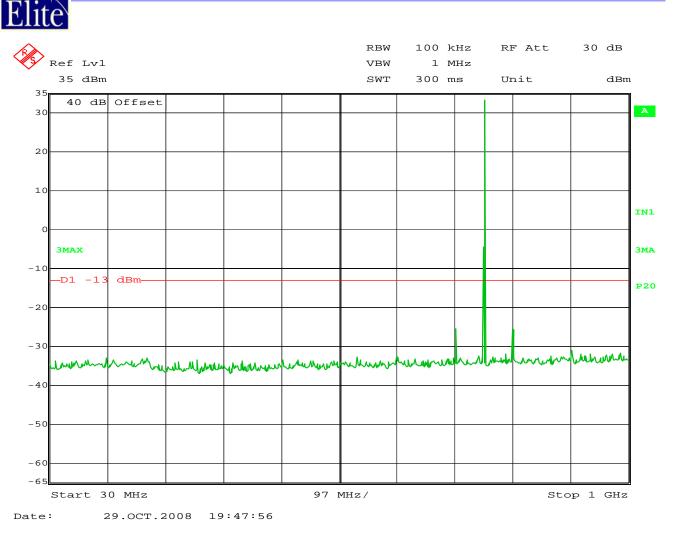



Test Setup for Radiated Emissions - Horizontal Polarity

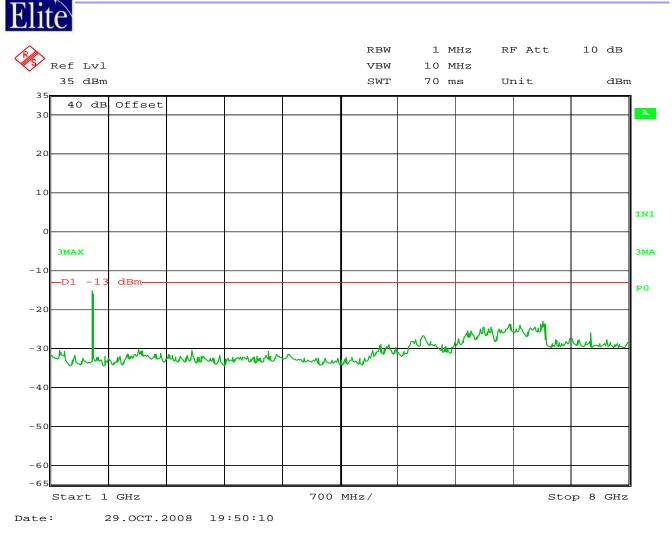


Test Setup for Radiated Emissions - Vertical Polarity

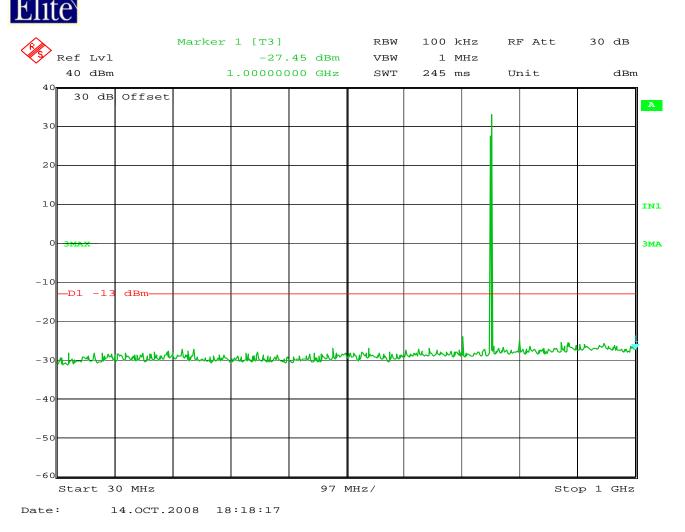



# Data Page

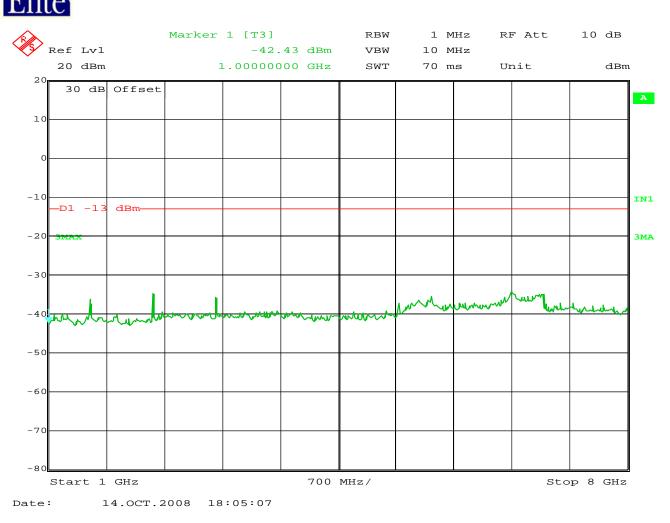
| MANUFACTURER  | : Freewave Technologies Inc |
|---------------|-----------------------------|
| MODEL NO.     | : LRS-760                   |
| SERIAL NO.    | : 700-0047                  |
| SPECIFICATION | : FCC-27 Output Power       |
| DATE          | : October 15, 2008          |
| NOTES         | : Conducted                 |
|               |                             |


| Frequency<br>MHz | Data<br>Rate | Measured<br>Output<br>Power<br>dBm | Measured<br>Output Power<br>Watts | Manufacturer's<br>Rated Power<br>Watts | Manufacturer's Rated Power +<br>20%<br>Watts |
|------------------|--------------|------------------------------------|-----------------------------------|----------------------------------------|----------------------------------------------|
| 757.5            | 0            | 33.68                              | 2.3                               | 2.0                                    | 2.4                                          |
| 757.5            | 1            | 33.68                              | 2.3                               | 2.0                                    | 2.4                                          |
| 757.5            | 2            | 33.68                              | 2.3                               | 2.0                                    | 2.4                                          |
| 757.5            | 3            | 33.68                              | 2.3                               | 2.0                                    | 2.4                                          |
| 757.5            | 4            | 33.68                              | 2.3                               | 2.0                                    | 2.4                                          |
| 757.5            | 5            | 33.68                              | 2.3                               | 2.0                                    | 2.4                                          |
| 787.5            | 0            | 33.25                              | 2.1                               | 2.0                                    | 2.4                                          |
| 787.5            | 1            | 33.25                              | 2.1                               | 2.0                                    | 2.4                                          |
| 787.5            | 2            | 33.25                              | 2.1                               | 2.0                                    | 2.4                                          |
| 787.5            | 3            | 33.25                              | 2.1                               | 2.0                                    | 2.4                                          |
| 787.5            | 4            | 33.25                              | 2.1                               | 2.0                                    | 2.4                                          |
| 787.5            | 5            | 33.25                              | 2.1                               | 2.0                                    | 2.4                                          |

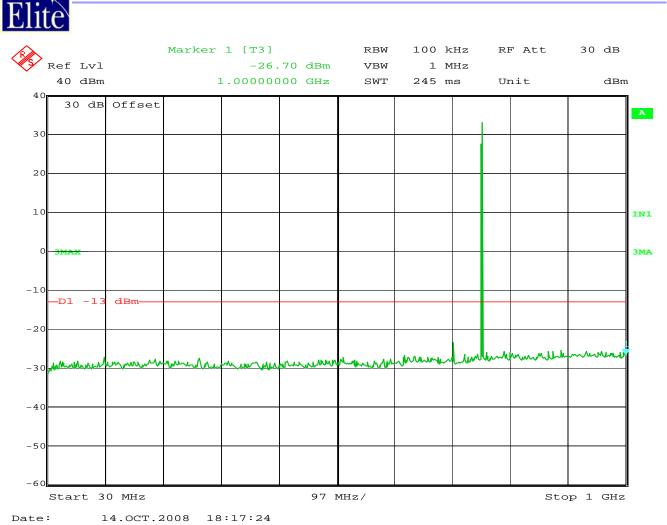
Checked BY : RICHARD E. King


Richard E. King

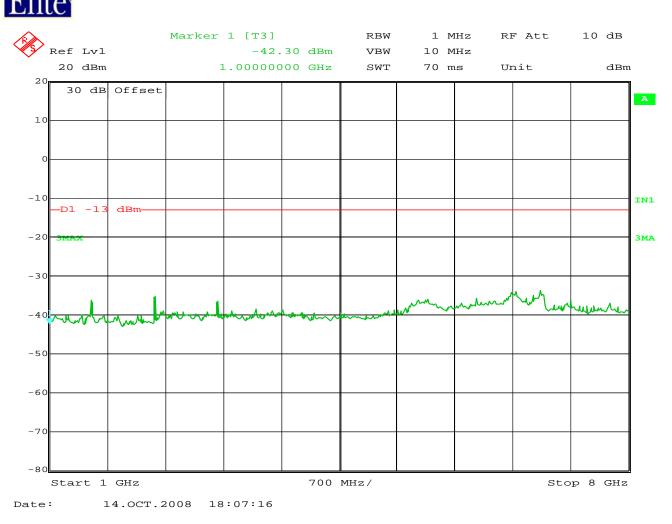



| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 0                         |
| TEST MODE      | : Tx @ 757.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |

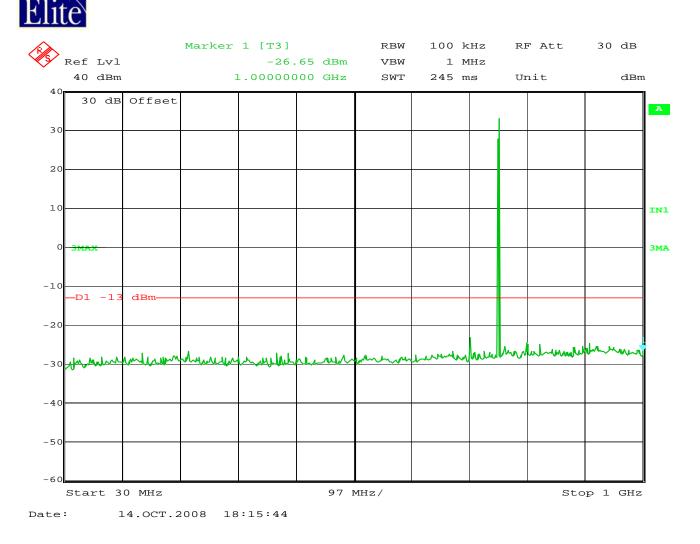



| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 0                         |
| TEST MODE      | : Tx @ 757.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |



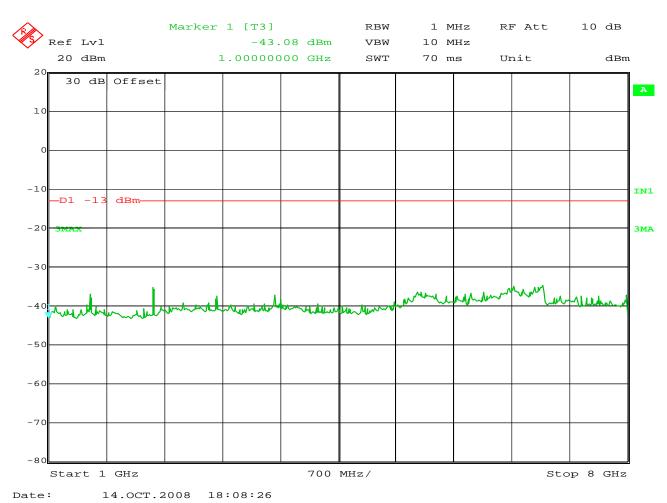

| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | :1                          |
| TEST MODE      | : Tx @ 757.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |



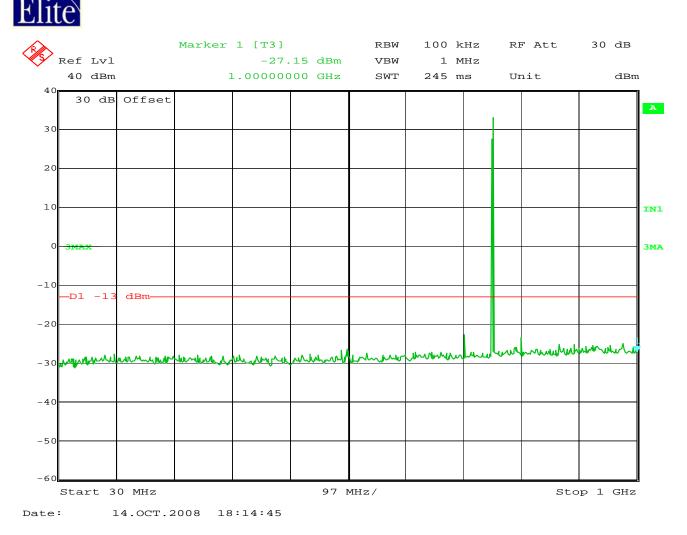

| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 1                         |
| TEST MODE      | : Tx @ 757.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |



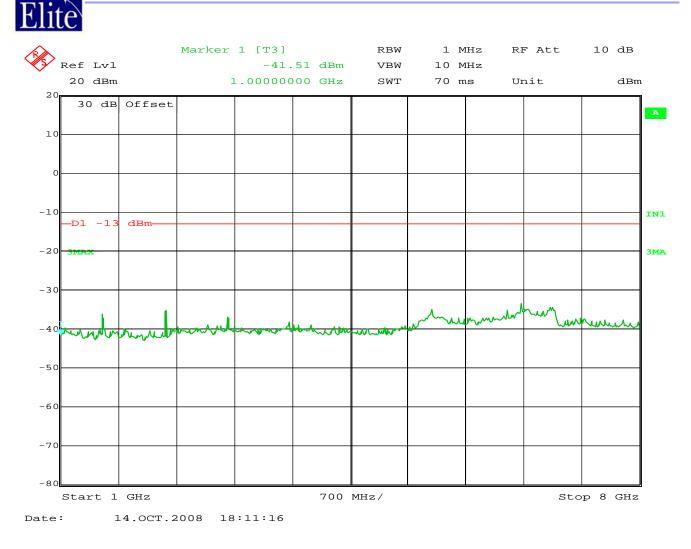
| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 2                         |
| TEST MODE      | : Tx @ 757.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |



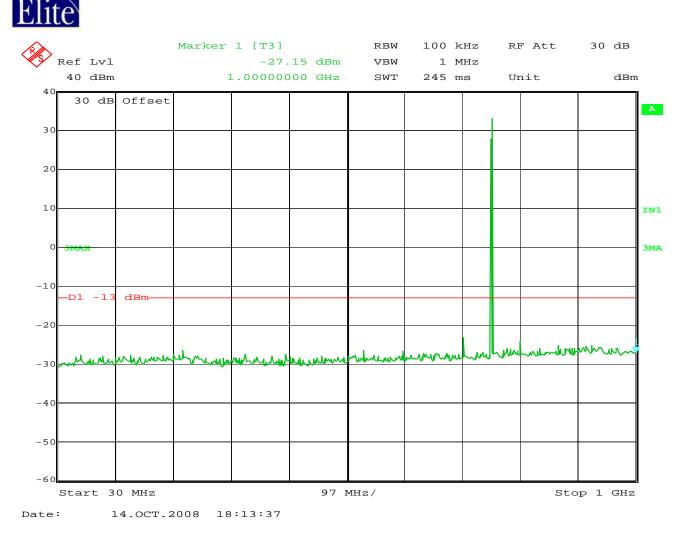

| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 2                         |
| TEST MODE      | : Tx @ 757.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |




| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 3                         |
| TEST MODE      | : Tx @ 757.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |

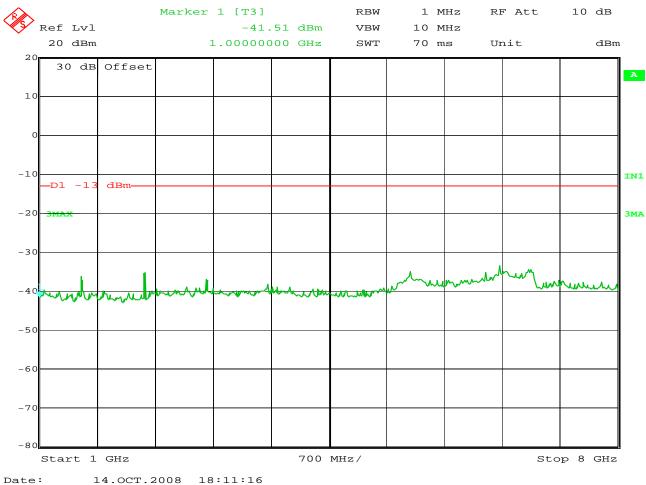




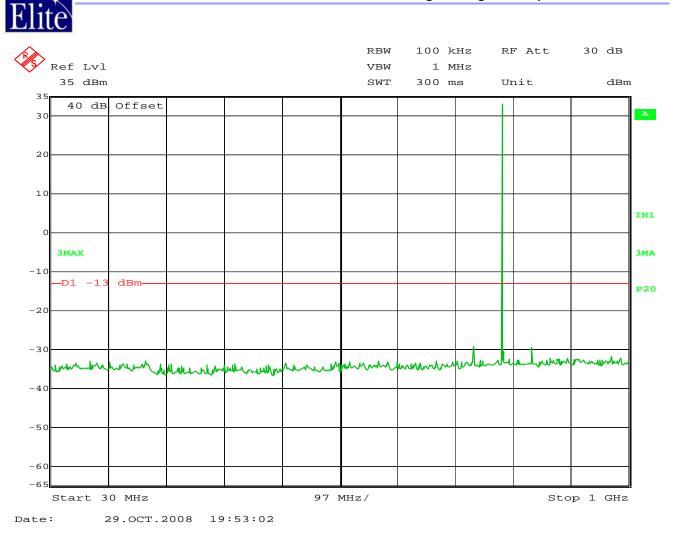


| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 3                         |
| TEST MODE      | : Tx @ 757.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |



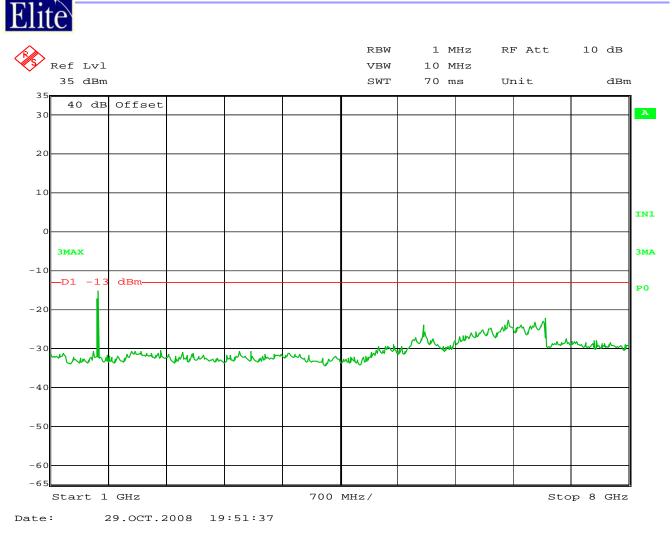
| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 4                         |
| TEST MODE      | : Tx @ 757.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |




| : Freewave Technologies Inc |
|-----------------------------|
| : LRS-760                   |
| : 700-0047                  |
| : 4                         |
| : Tx @ 757.5MHz             |
| : RBB0, T2D1, T2S7          |
|                             |

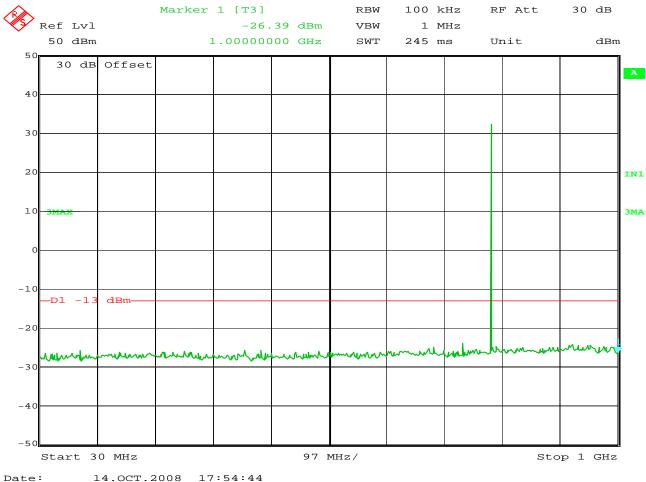



| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 5                         |
| TEST MODE      | : Tx @ 757.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |

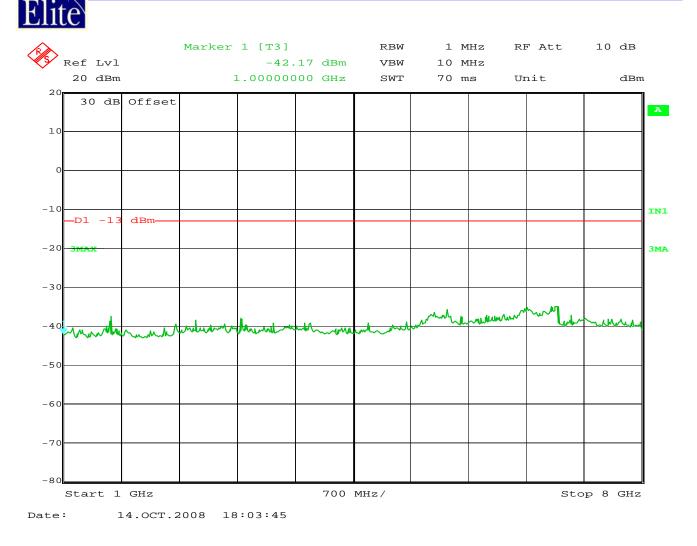


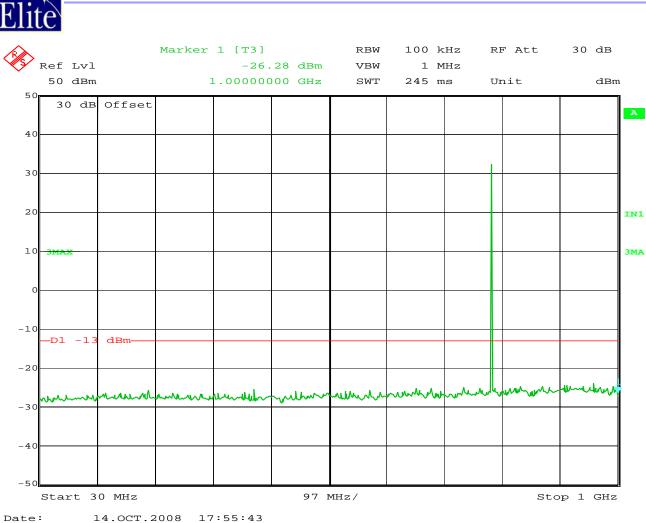


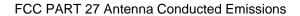

| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 5                         |
| TEST MODE      | : Tx @ 757.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |




| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 0                         |
| TEST MODE      | : Tx @ 787.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |

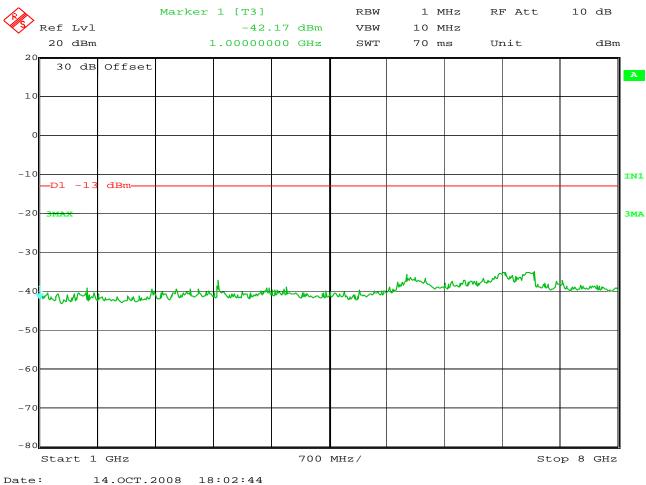




| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 0                         |
| TEST MODE      | : Tx @ 787.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |



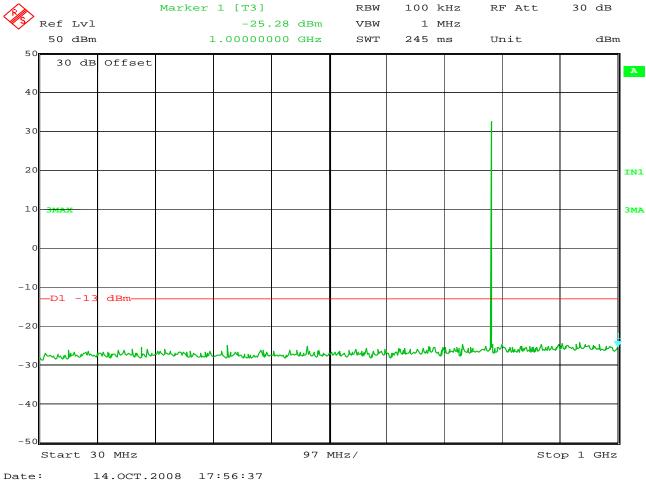



| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 1                         |
| TEST MODE      | : Tx @ 787.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |

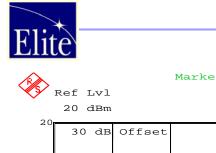


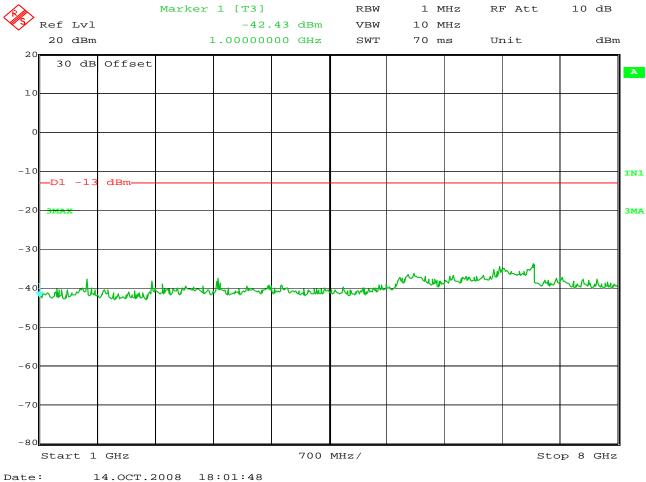






| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 2                         |
| TEST MODE      | : Tx @ 787.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |

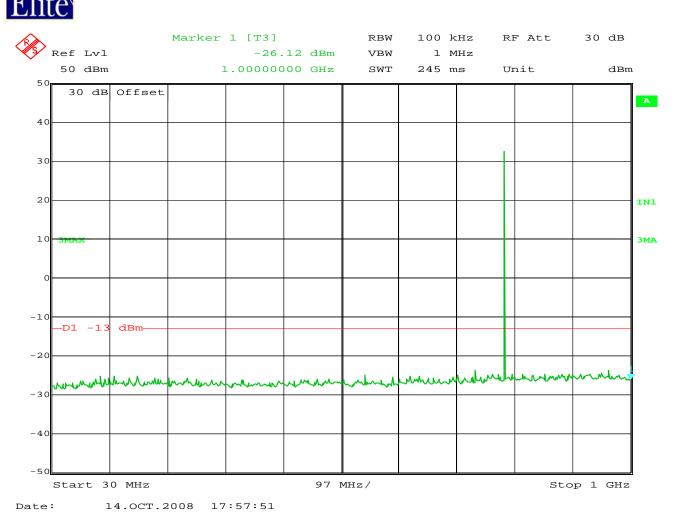






| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 2                         |
| TEST MODE      | : Tx @ 787.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |

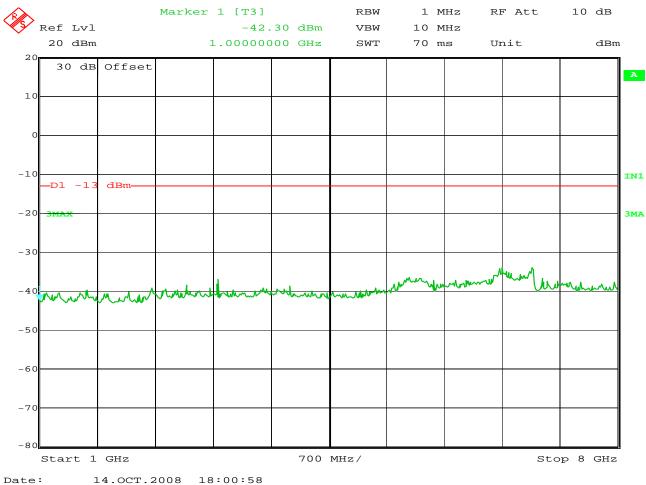




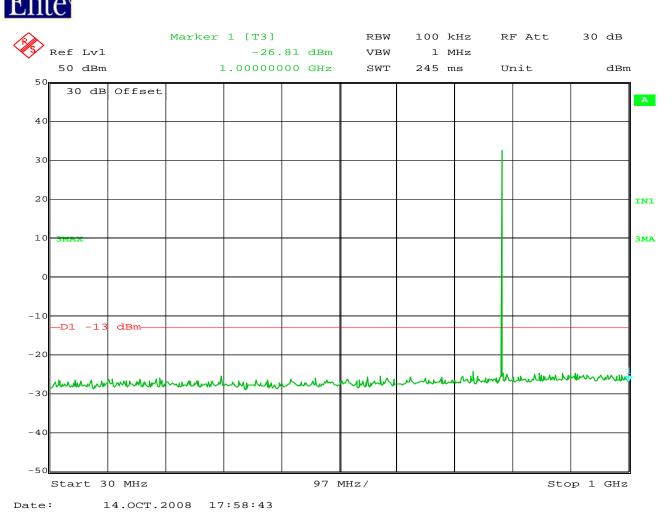

| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 3                         |
| TEST MODE      | : Tx @ 787.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |



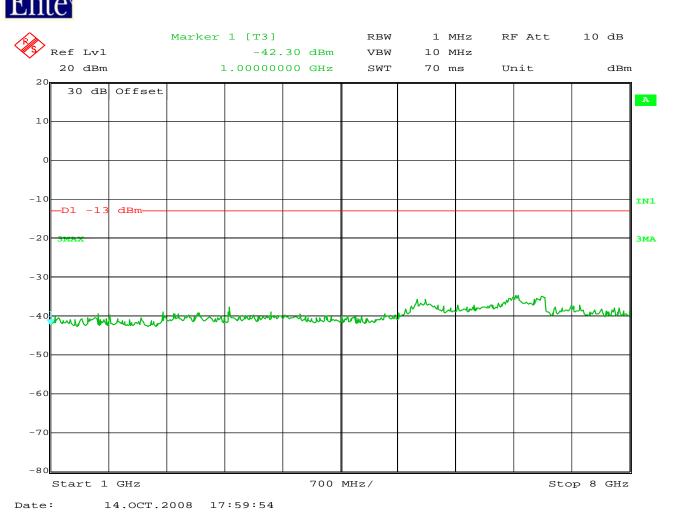





| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 3                         |
| TEST MODE      | : Tx @ 787.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |

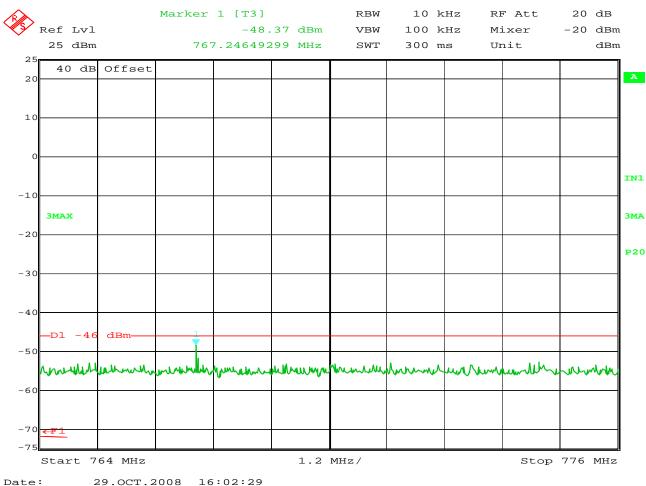



| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 4                         |
| TEST MODE      | : Tx @ 787.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |






| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 4                         |
| TEST MODE      | : Tx @ 787.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |

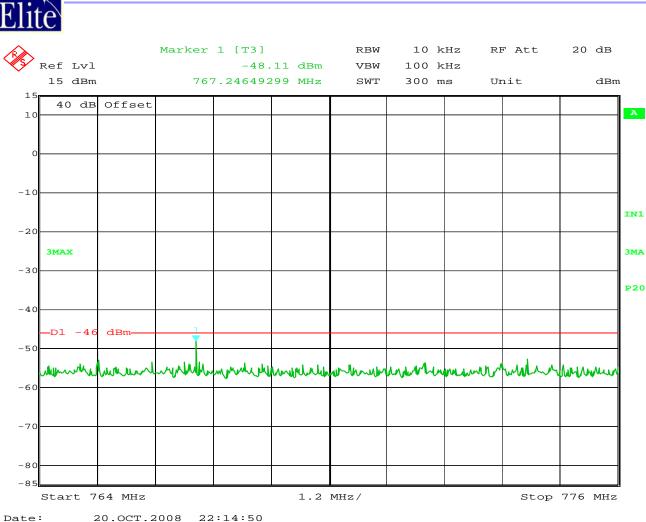



| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 5                         |
| TEST MODE      | : Tx @ 787.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |



| MANUFACTURER   | : Freewave Technologies Inc |
|----------------|-----------------------------|
| MODEL NUMBER   | : LRS-760                   |
| SERIAL NUMBER  | : 700-0047                  |
| DATA RATE      | : 5                         |
| TEST MODE      | : Tx @ 787.5MHz             |
| EQUIPMENT USED | : RBB0, T2D1, T2S7          |





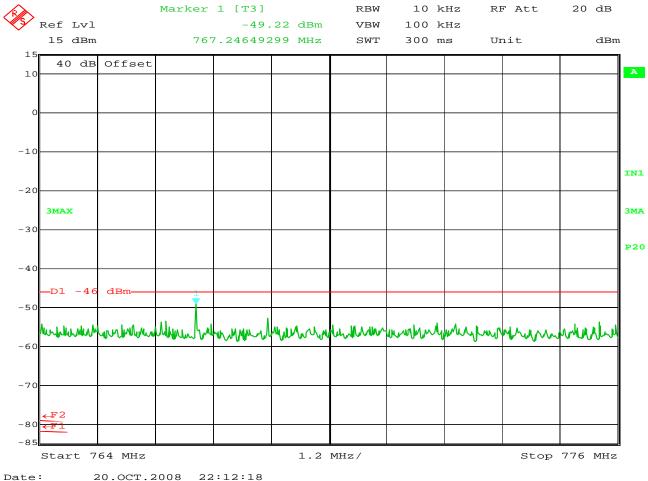

| MANUFACTURER   | : Freewave         |
|----------------|--------------------|
| MODEL NUMBER   | : LRS760-C         |
| SERIAL NUMBER  | : none             |
| DATA RATE      | : 0                |
| TEST MODE      | : Tx @ 757.5MHz    |
| EQUIPMENT USED | : RBB0, T2D1, T2S7 |





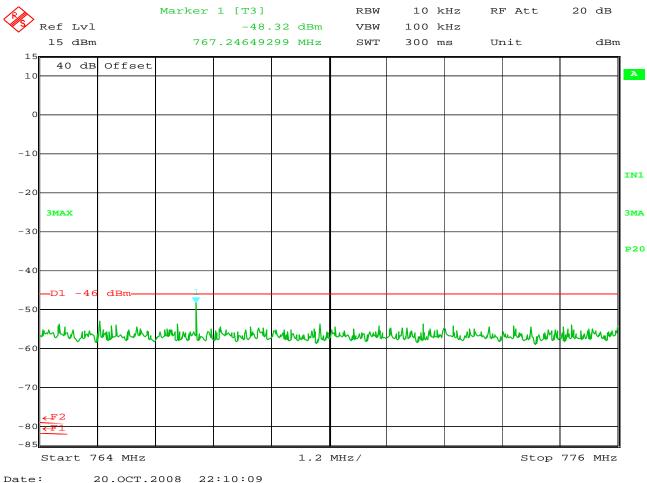

| MANUFACTURER   | : Freewave         |
|----------------|--------------------|
| MODEL NUMBER   | : LRS760-C         |
| SERIAL NUMBER  | : none             |
| DATA RATE      | :1                 |
| TEST MODE      | : Tx @ 757.5MHz    |
| EQUIPMENT USED | : RBB0, T2D1, T2S7 |




| MANUFACTURER   | : Freewave         |
|----------------|--------------------|
| MODEL NUMBER   | : LRS760-C         |
| SERIAL NUMBER  | : none             |
| DATA RATE      | : 2                |
| TEST MODE      | : Tx @ 757.5MHz    |
| EQUIPMENT USED | : RBB0, T2D1, T2S7 |

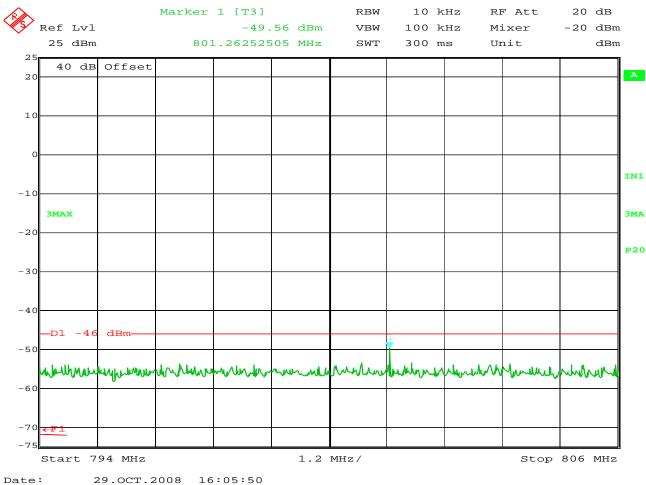





| MANUFACTURER   | : Freewave         |
|----------------|--------------------|
| MODEL NUMBER   | : LRS760-C         |
| SERIAL NUMBER  | : none             |
| DATA RATE      | : 3                |
| TEST MODE      | : Tx @ 757.5MHz    |
| EQUIPMENT USED | : RBB0, T2D1, T2S7 |

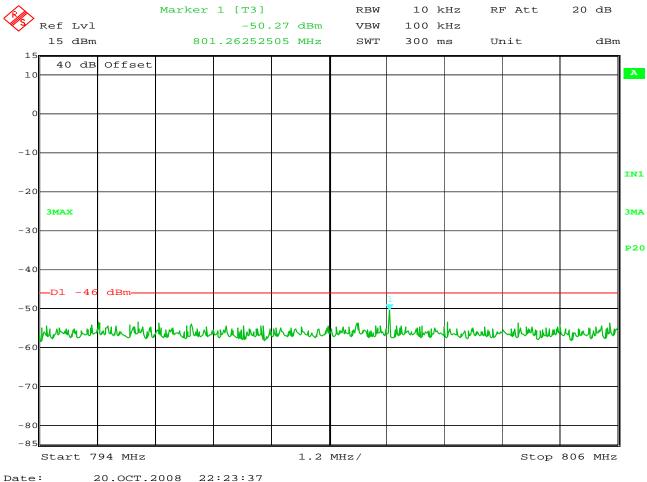





| MANUFACTURER   | : Freewave         |
|----------------|--------------------|
| MODEL NUMBER   | : LRS760-C         |
| SERIAL NUMBER  | : none             |
| DATA RATE      | : 4                |
| TEST MODE      | : Tx @ 757.5MHz    |
| EQUIPMENT USED | : RBB0, T2D1, T2S7 |
|                |                    |

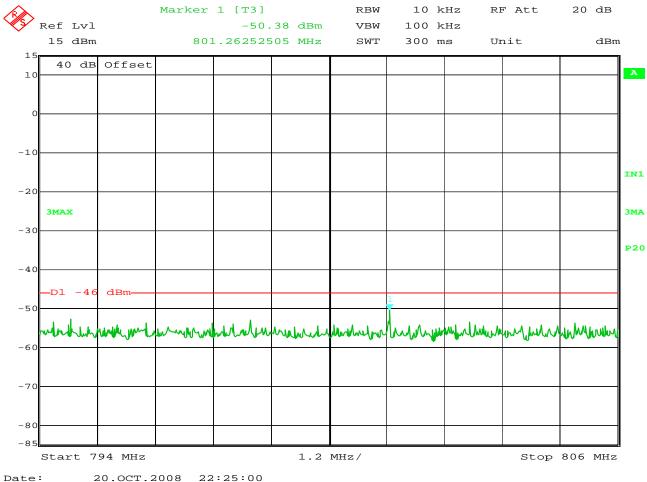





| MANUFACTURER   | : Freewave         |
|----------------|--------------------|
| MODEL NUMBER   | : LRS760-C         |
| SERIAL NUMBER  | : none             |
| DATA RATE      | : 5                |
| TEST MODE      | : Tx @ 757.5MHz    |
| EQUIPMENT USED | : RBB0, T2D1, T2S7 |
| TEST MODE      | : Tx @ 757.5MHz    |

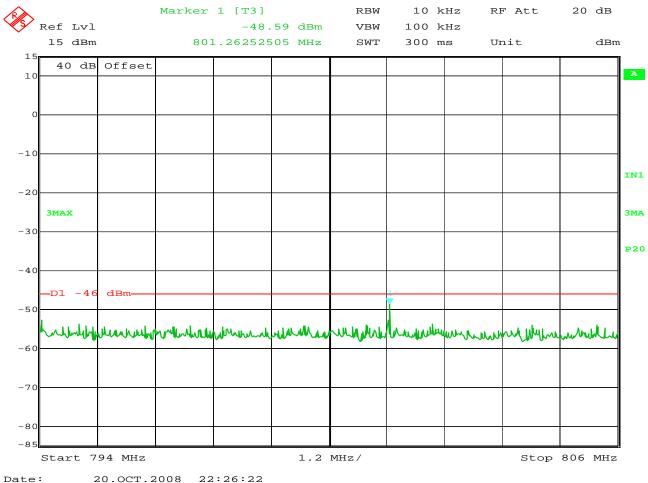





| MANUFACTURER   | : Freewave         |
|----------------|--------------------|
| MODEL NUMBER   | : LRS760-C         |
| SERIAL NUMBER  | : none             |
| DATA RATE      | : 0                |
| TEST MODE      | : Tx @ 787.5MHz    |
| EQUIPMENT USED | : RBB0, T2D1, T2S7 |

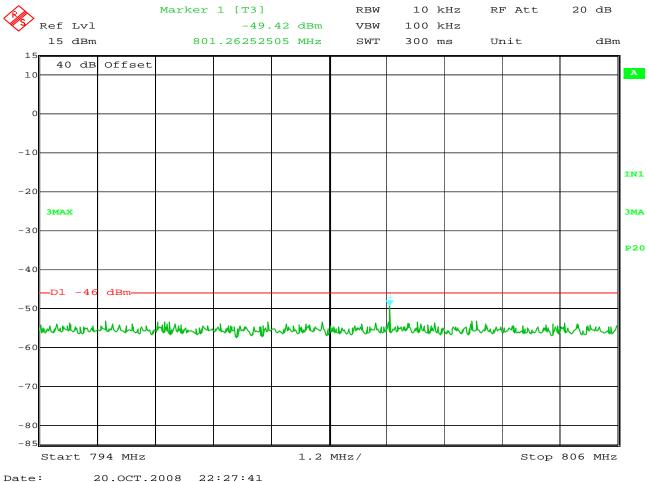





| MANUFACTURER   | : Freewave         |
|----------------|--------------------|
| MODEL NUMBER   | : LRS760-C         |
| SERIAL NUMBER  | : none             |
| DATA RATE      | :1                 |
| TEST MODE      | : Tx @ 787.5MHz    |
| EQUIPMENT USED | : RBB0, T2D1, T2S7 |
|                |                    |

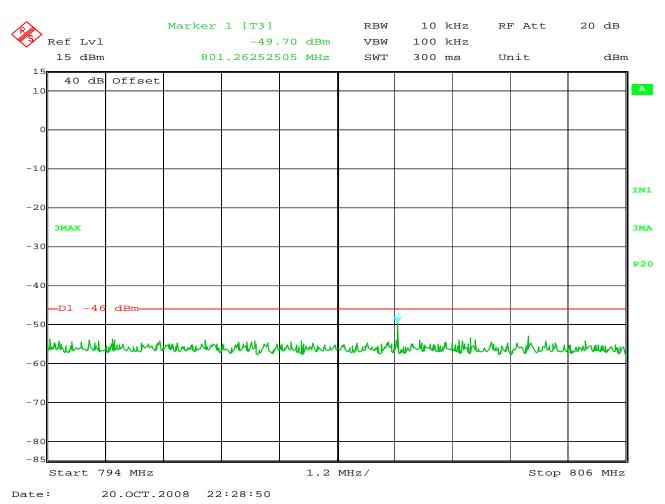





| MANUFACTURER   | : Freewave         |
|----------------|--------------------|
| MODEL NUMBER   | : LRS760-C         |
| SERIAL NUMBER  | : none             |
| DATA RATE      | : 2                |
| TEST MODE      | : Tx @ 787.5MHz    |
| EQUIPMENT USED | : RBB0, T2D1, T2S7 |

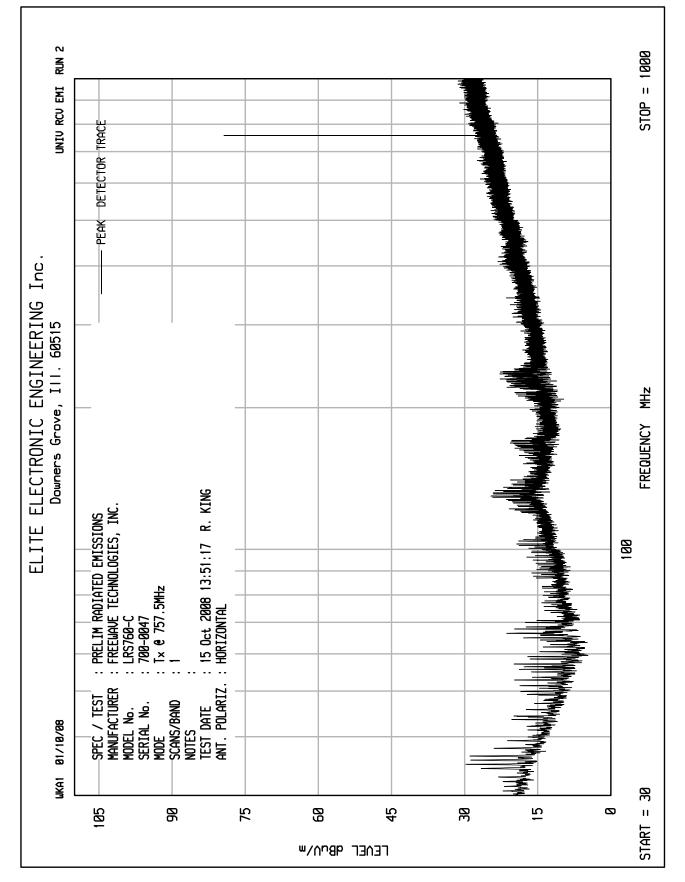




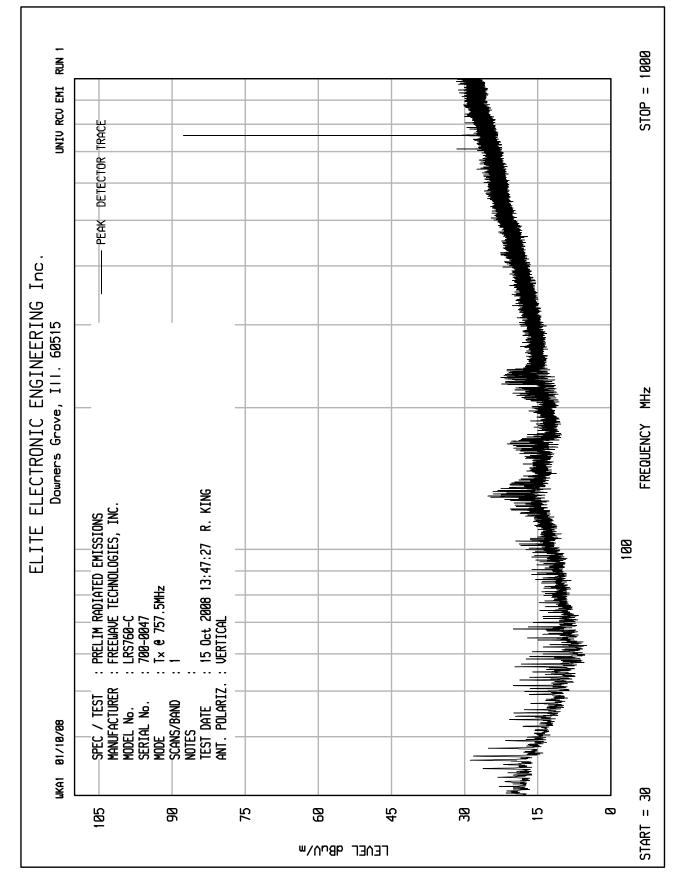

| MANUFACTURER   | : Freewave         |
|----------------|--------------------|
| MODEL NUMBER   | : LRS760-C         |
| SERIAL NUMBER  | : none             |
| DATA RATE      | : 3                |
| TEST MODE      | : Tx @ 787.5MHz    |
| EQUIPMENT USED | : RBB0, T2D1, T2S7 |



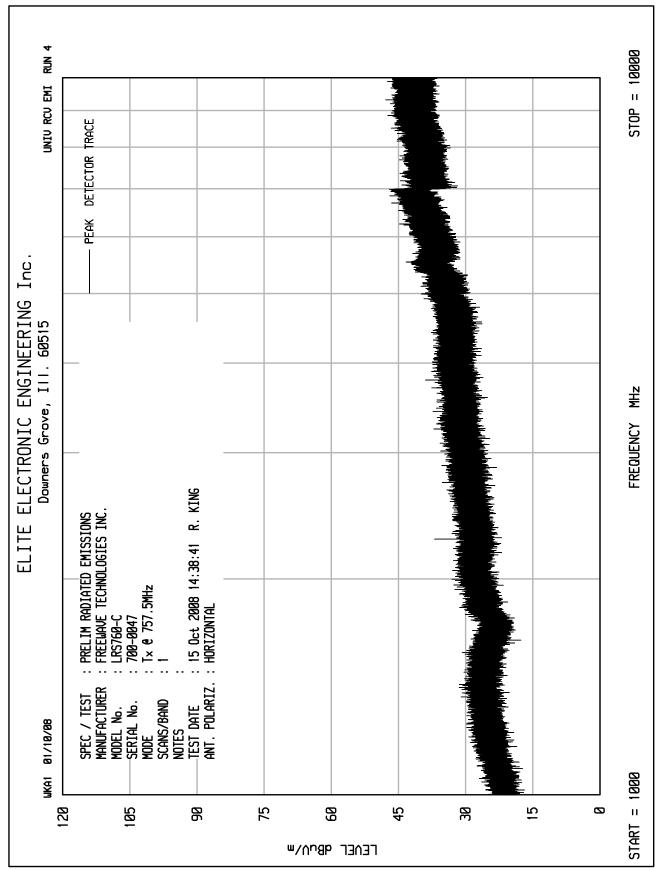



| MANUFACTURER   | : Freewave         |
|----------------|--------------------|
| MODEL NUMBER   | : LRS760-C         |
| SERIAL NUMBER  | : none             |
| DATA RATE      | : 4                |
| TEST MODE      | : Tx @ 787.5MHz    |
| EQUIPMENT USED | : RBB0, T2D1, T2S7 |

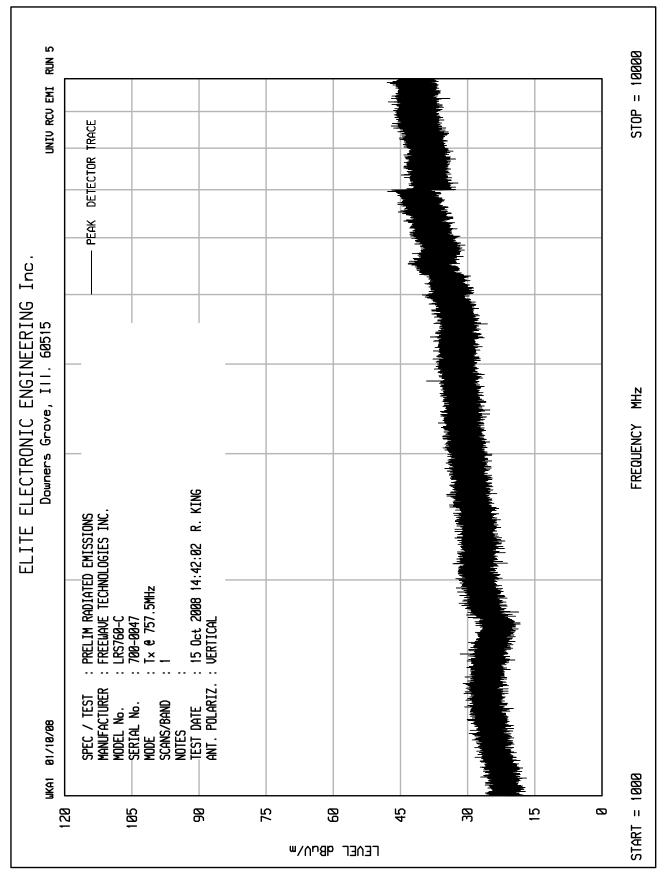




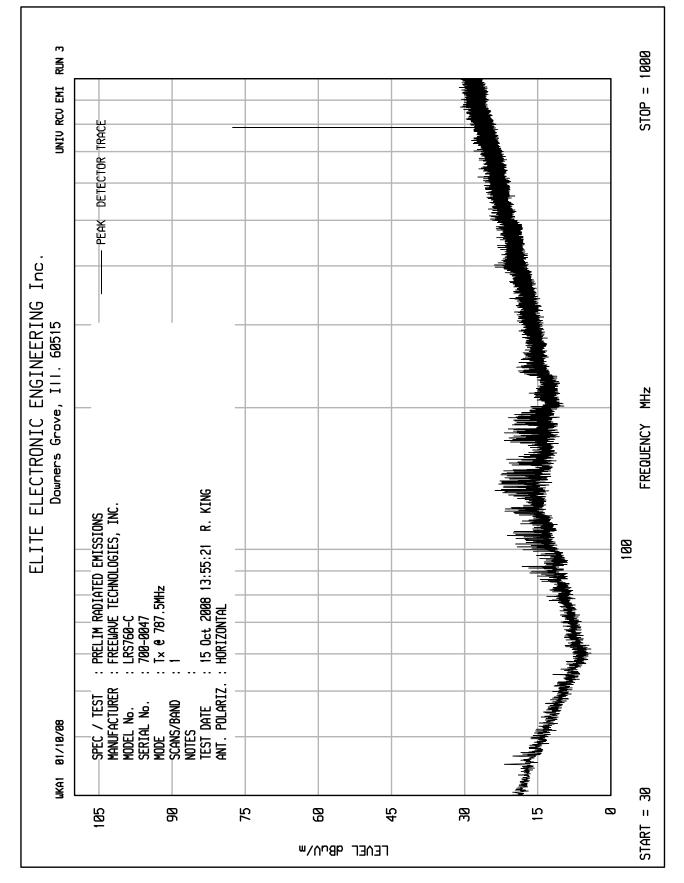

| : Freewave         |
|--------------------|
| : LRS760-C         |
| : none             |
| : 5                |
| : Tx @ 787.5MHz    |
| : RBB0, T2D1, T2S7 |
|                    |



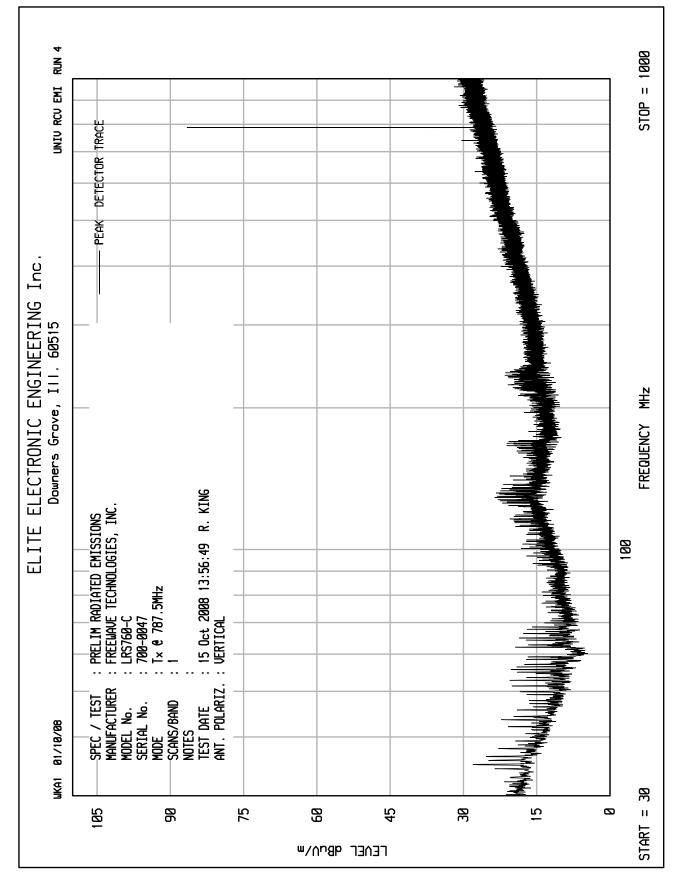


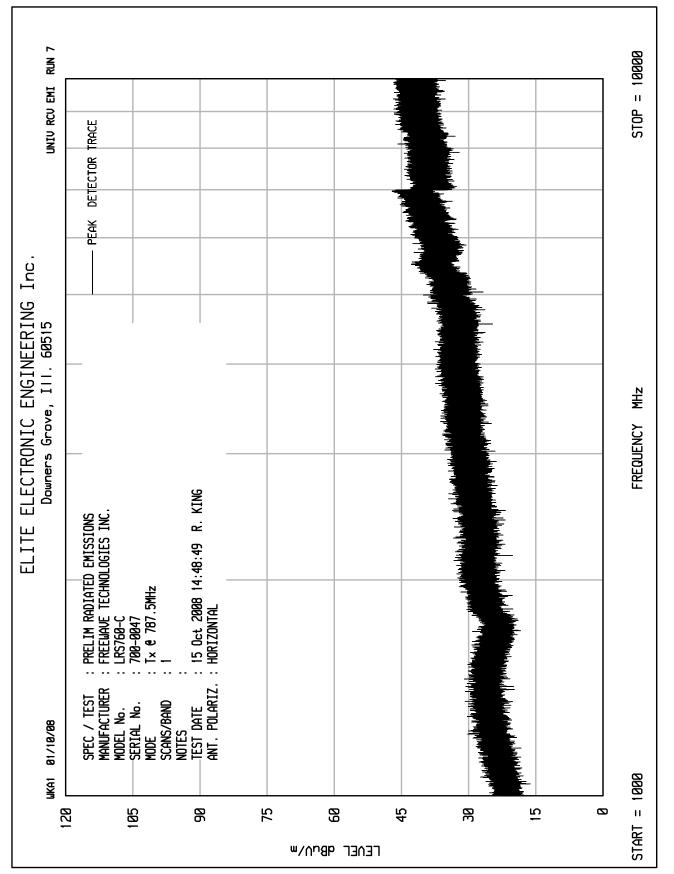


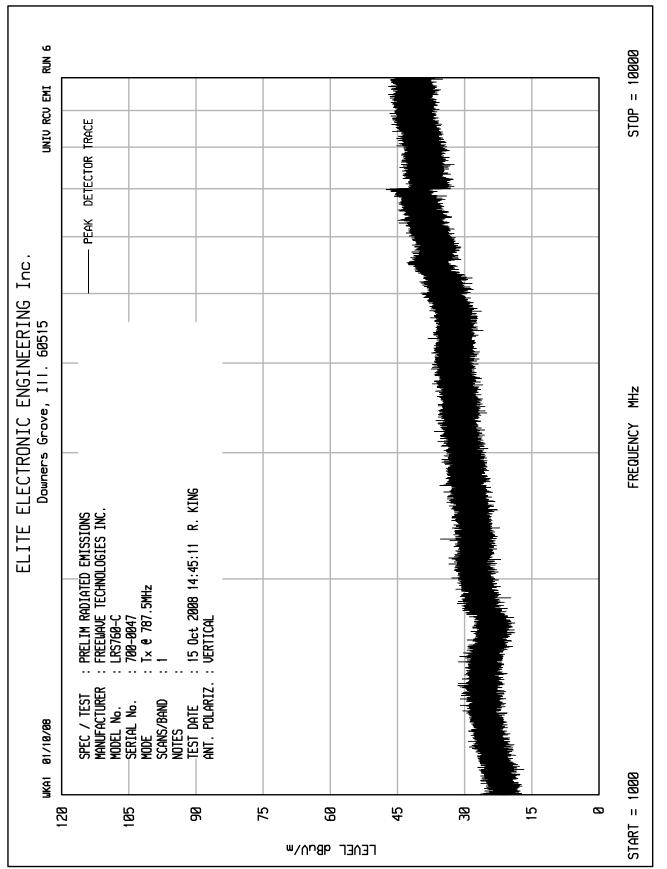



















## Data Page

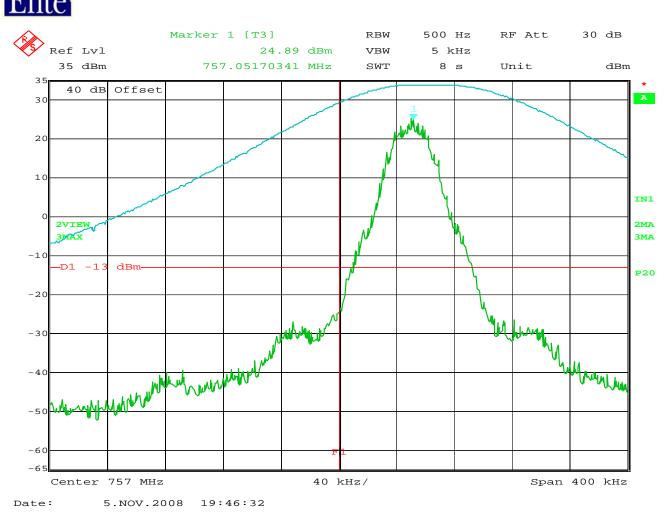
| : Freewave Technologies Inc          |
|--------------------------------------|
| : LRS-760                            |
| : 700-0047                           |
| : FCC-27 Spurious Radiated Emissions |
| : October 15, 2008                   |
| : Test Distance is 3 Meters          |
|                                      |

| Freq<br>(MHz) | An<br>t<br>Pol | Meter<br>Readin<br>g<br>(dBuV) | Ambien<br>t | Matched<br>SIG.<br>GEN.<br>(dB) | Equilent<br>Ant<br>Gain<br>(dB) | CBL<br>(dB) | Total<br>(dBm) | Limit | Minimum<br>Attenuatio<br>n |
|---------------|----------------|--------------------------------|-------------|---------------------------------|---------------------------------|-------------|----------------|-------|----------------------------|
| 1515.0        | Н              | 24.2                           | *           | -72.8                           | 4.9                             | 2.5         | -70.4          | 103.4 | 46                         |
| 1515.0        | V              | 24.0                           | *           | -74.6                           | 4.9                             | 2.5         | -72.2          | 105.2 | 46                         |
| 2272.5        | Н              | 25.2                           | *           | -77.2                           | 5.4                             | 3.0         | -74.8          | 107.8 | 46                         |
| 2272.5        | V              | 25.3                           | *           | -71.6                           | 5.4                             | 3.0         | -69.2          | 102.2 | 46                         |
| 3030.0        | Η              | 24.4                           | *           | -64.6                           | 5.4                             | 3.3         | -62.4          | 95.4  | 46                         |
| 3030.0        | V              | 24.1                           | *           | -65.5                           | 5.4                             | 3.3         | -63.3          | 96.3  | 46                         |
| 3787.5        | Η              | 24.6                           | *           | -62.6                           | 6.9                             | 3.9         | -59.6          | 92.6  | 46                         |
| 3787.5        | V              | 24.4                           | *           | -63.0                           | 6.9                             | 3.9         | -60.0          | 93.0  | 46                         |
| 4545.0        | Η              | 24.8                           | *           | -64.8                           | 8.3                             | 4.4         | -60.9          | 93.9  | 46                         |
| 4545.0        | V              | 25.5                           | *           | -63.8                           | 8.3                             | 4.4         | -59.9          | 92.9  | 46                         |
| 5302.5        | Η              | 27.7                           | *           | -60.7                           | 7.6                             | 4.9         | -58.0          | 91.0  | 46                         |
| 5302.5        | V              | 27.7                           | *           | -61.4                           | 7.6                             | 4.9         | -58.7          | 91.7  | 46                         |
| 6060.0        | Η              | 31.3                           | *           | -64.7                           | 7.7                             | 5.4         | -62.3          | 95.3  | 46                         |
| 6060.0        | V              | 31.1                           | *           | -64.7                           | 7.7                             | 5.4         | -62.3          | 95.3  | 46                         |
| 6817.5        | Н              | 32.2                           | *           | -50.3                           | 8.0                             | 5.9         | -48.3          | 81.3  | 46                         |
| 6817.5        | V              | 33.0                           | *           | -50.3                           | 8.0                             | 5.9         | -48.2          | 81.2  | 46                         |
| 7575.0        | Н              | 28.5                           | *           | -50.3                           | 7.6                             | 6.2         | -48.9          | 81.9  | 46                         |
| 7575.0        | V              | 28.5                           | *           | -50.3                           | 7.6                             | 6.2         | -48.9          | 81.9  | 46                         |

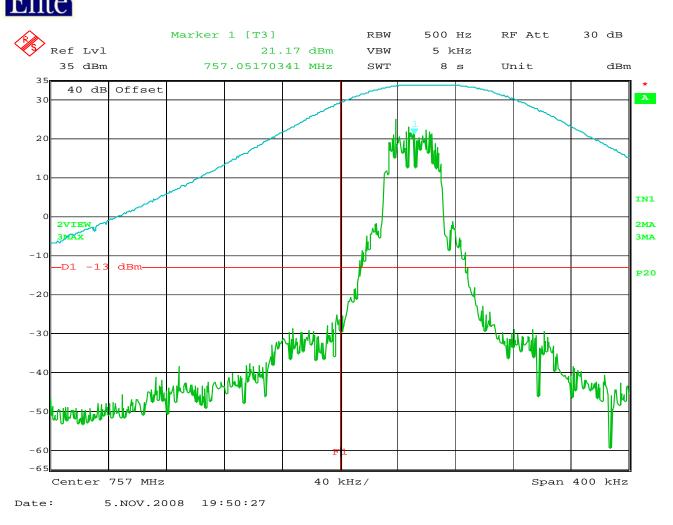
Checked BY : RICHARD E. King

Richard E. King

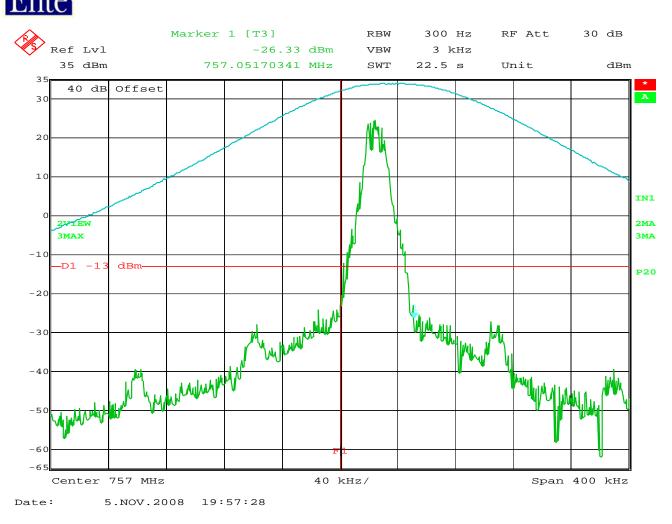



## Data Page

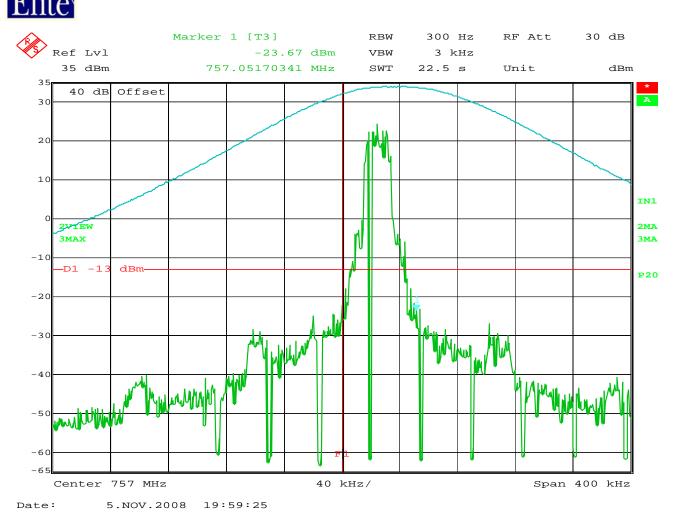
| MANUFACTURER  | : Freewave Technologies Inc          |
|---------------|--------------------------------------|
| MODEL NO.     | : LRS-760                            |
| SERIAL NO.    | : 700-0047                           |
| SPECIFICATION | : FCC-27 Spurious Radiated Emissions |
| DATE          | : October 15, 2008                   |
| NOTES         | : Test Distance is 3 Meters          |


| Freq<br>(MHz) | An<br>t<br>Pol | Meter<br>Readin<br>g<br>(dBuV) | Ambien<br>t | Matched<br>SIG.<br>GEN.<br>(dB) | Equilent<br>Ant<br>Gain<br>(dB) | CBL<br>(dB) | Total<br>(dBm) | Limit | Minimum<br>Attenuatio<br>n |
|---------------|----------------|--------------------------------|-------------|---------------------------------|---------------------------------|-------------|----------------|-------|----------------------------|
| 1575.0        | Η              | 35.6                           | *           | -72.8                           | 5.2                             | 2.5         | -70.1          | 103.1 | 46                         |
| 1575.0        | V              | 34.3                           | *           | -74.6                           | 5.2                             | 2.5         | -71.9          | 104.9 | 46                         |
| 2362.5        | Η              | 23.8                           | *           | -77.2                           | 5.7                             | 3.0         | -74.5          | 107.5 | 46                         |
| 2362.5        | V              | 23.5                           | *           | -71.6                           | 5.7                             | 3.0         | -68.9          | 101.9 | 46                         |
| 3150.0        | Η              | 24.8                           | *           | -64.6                           | 5.7                             | 3.3         | -62.1          | 95.1  | 46                         |
| 3150.0        | V              | 24.9                           | *           | -65.5                           | 5.7                             | 3.3         | -63.0          | 96.0  | 46                         |
| 3937.5        | Η              | 25.1                           | *           | -62.6                           | 7.2                             | 3.9         | -59.2          | 92.2  | 46                         |
| 3937.5        | V              | 26.8                           | *           | -63.0                           | 7.2                             | 3.9         | -59.6          | 92.6  | 46                         |
| 4725.0        | Η              | 25.1                           | *           | -64.8                           | 8.6                             | 4.4         | -60.6          | 93.6  | 46                         |
| 4725.0        | V              | 25.2                           | *           | -63.8                           | 8.6                             | 4.4         | -59.6          | 92.6  | 46                         |
| 5512.5        | Н              | 28.3                           | *           | -60.7                           | 7.9                             | 4.9         | -57.6          | 90.6  | 46                         |
| 5512.5        | V              | 26.8                           | *           | -61.4                           | 7.9                             | 4.9         | -58.3          | 91.3  | 46                         |
| 6300.0        | Η              | 29.1                           | *           | -64.7                           | 8.1                             | 5.4         | -62.0          | 95.0  | 46                         |
| 6300.0        | V              | 28.6                           | *           | -64.7                           | 8.1                             | 5.4         | -62.0          | 95.0  | 46                         |
| 7087.5        | Н              | 29.6                           | *           | -50.3                           | 8.3                             | 5.9         | -47.9          | 80.9  | 46                         |
| 7087.5        | V              | 27.9                           | *           | -50.3                           | 8.3                             | 5.9         | -47.9          | 80.9  | 46                         |
| 7875.0        | Н              | 28.1                           | *           | -50.3                           | 7.9                             | 6.2         | -48.6          | 81.6  | 46                         |
| 7875.0        | V              | 28.2                           | *           | -50.3                           | 7.9                             | 6.2         | -48.6          | 81.6  | 46                         |

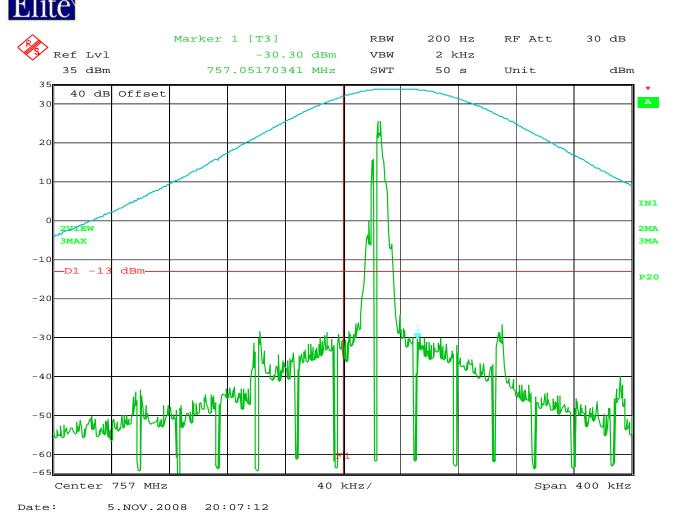
Checked BY : RICHARD E. King


Richard E. King

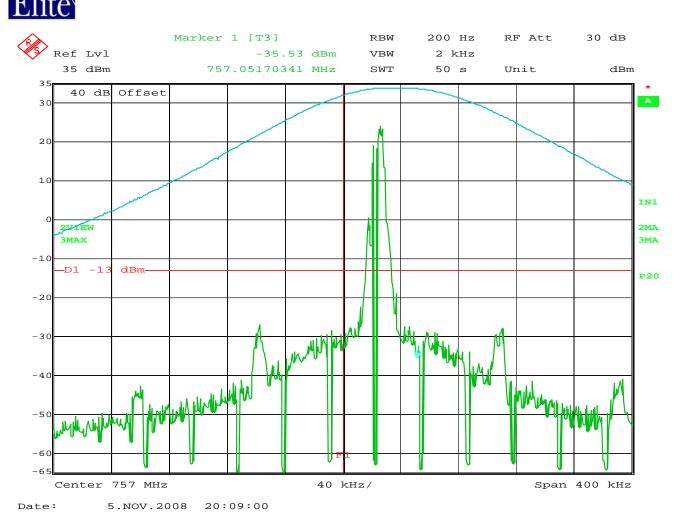



| MANUFACTURER   | : Freewave Technologies Inc            |
|----------------|----------------------------------------|
| MODEL NUMBER   | : LRS-760                              |
| SERIAL NUMBER  | : 700-0047                             |
| DATA RATE      | : 0                                    |
| TEST MODE      | : Tx @ 757.0500MHz                     |
|                | : 757+ (8*.00625) = transmit frequency |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                     |

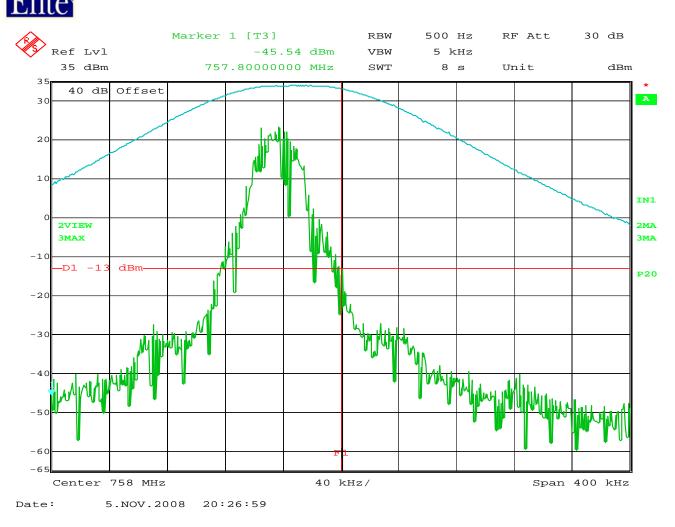



| : Freewave Technologies Inc           |
|---------------------------------------|
| : LRS-760                             |
| : 700-0047                            |
| :1                                    |
| : Tx @ 757.0500MHz                    |
| : 757+(8*.00625) = transmit frequency |
| : RBB0, T2D1, T2S7                    |
|                                       |

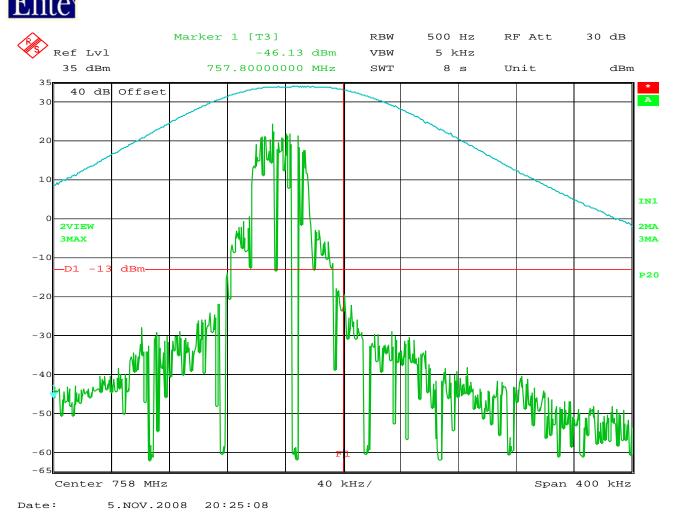



| MANUFACTURER   | : Freewave Technologies Inc                     |
|----------------|-------------------------------------------------|
| MODEL NUMBER   | : LRS-760                                       |
| SERIAL NUMBER  | : 700-0047                                      |
| DATA RATE      | : 2                                             |
| TEST MODE      | : Tx @ 757.0250MHz                              |
|                | $: 757+(4^*.00625) = \text{transmit frequency}$ |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                              |
|                |                                                 |

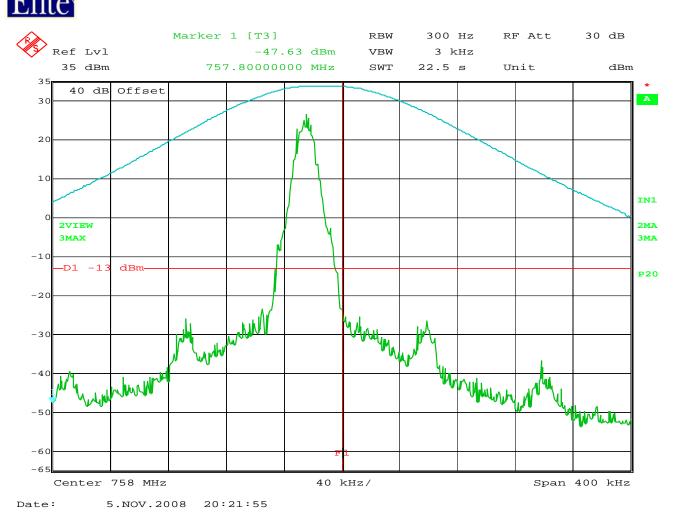



| : Freewave Technologies Inc                       |
|---------------------------------------------------|
| : LRS-760                                         |
| : 700-0047                                        |
| : 3                                               |
| : Tx @ 757.0250MHz                                |
| $: 757+(4^{*}.00625) = \text{transmit frequency}$ |
| : RBB0, T2D1, T2S7                                |
|                                                   |

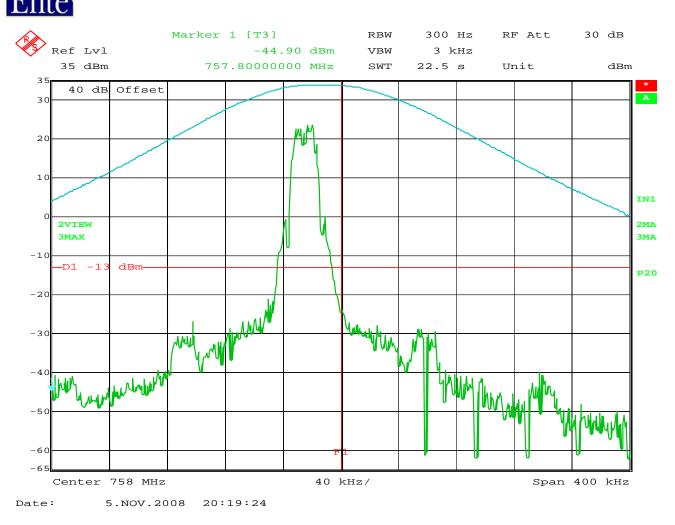



| MANUFACTURER   | : Freewave Technologies Inc           |
|----------------|---------------------------------------|
| MODEL NUMBER   | : LRS-760                             |
| SERIAL NUMBER  | : 700-0047                            |
| DATA RATE      | : 4                                   |
| TEST MODE      | : Tx @ 757.025MHz                     |
|                | : 757+(4*.00625) = transmit frequency |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                    |
|                |                                       |

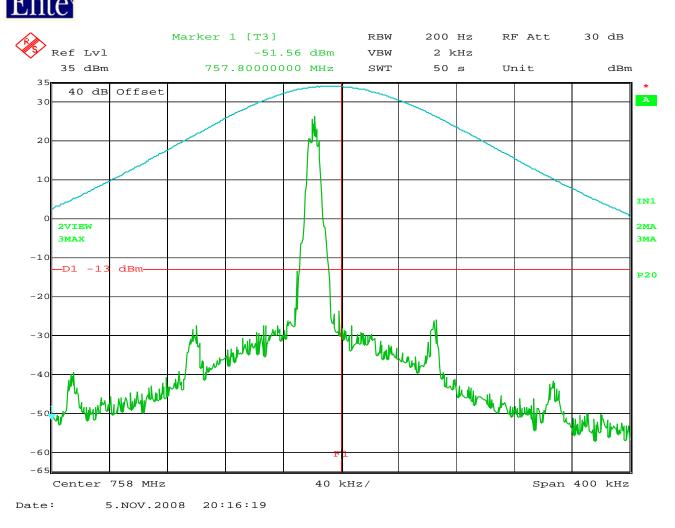



| : Freewave Technologies Inc                     |
|-------------------------------------------------|
| : LRS-760                                       |
| : 700-0047                                      |
| : 5                                             |
| : Tx @ 757.025MHz                               |
| $: 757+(4^*.00625) = \text{transmit frequency}$ |
| : RBB0, T2D1, T2S7                              |
|                                                 |

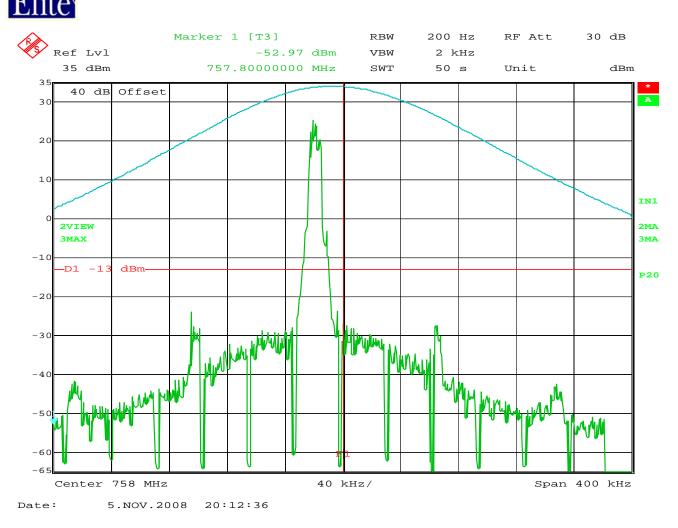



| MANUFACTURER   | : Freewave Technologies Inc             |
|----------------|-----------------------------------------|
| MODEL NUMBER   | : LRS-760                               |
| SERIAL NUMBER  | : 700-0047                              |
| DATA RATE      | : 0                                     |
| TEST MODE      | : Tx @ 757.95625MHz                     |
|                | : 757+(153*.00625) = transmit frequency |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                      |
|                |                                         |

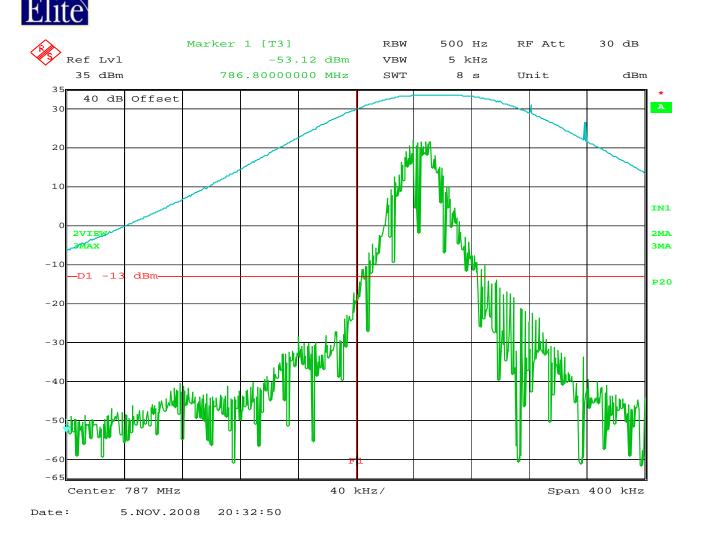



| MANUFACTURER   | : Freewave Technologies Inc              |
|----------------|------------------------------------------|
| MODEL NUMBER   | : LRS-760                                |
| SERIAL NUMBER  | : 700-0047                               |
| DATA RATE      | : 1                                      |
| TEST MODE      | : Tx @ 757.95625MHz                      |
|                | : 757+ (153*.00625) = transmit frequency |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                       |
|                |                                          |

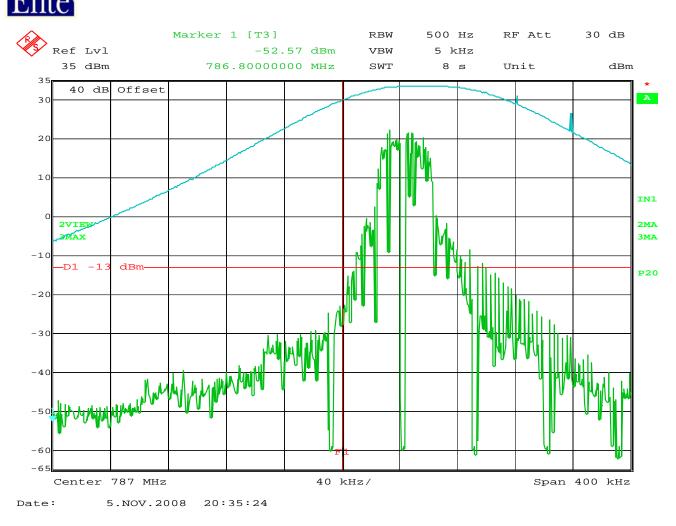



| MANUFACTURER   | : Freewave Technologies Inc             |
|----------------|-----------------------------------------|
| MODEL NUMBER   | : LRS-760                               |
| SERIAL NUMBER  | : 700-0047                              |
| DATA RATE      | : 2                                     |
| TEST MODE      | : Tx @ 757.975MHz                       |
|                | : 757+(156*.00625) = transmit frequency |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                      |
|                |                                         |

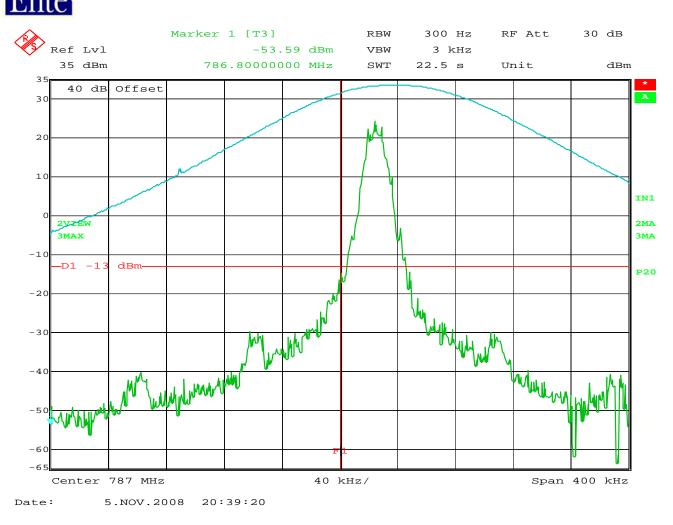



| MANUFACTURER                            | : Freewave Technologies Inc              |
|-----------------------------------------|------------------------------------------|
| MODEL NUMBER                            | : LRS-760                                |
| SERIAL NUMBER                           | : 700-0047                               |
| DATA RATE                               | : 3                                      |
| TEST MODE                               | : Tx @ 757.975MHz                        |
|                                         | : 757+ (156*.00625) = transmit frequency |
| EQUIPMENT USED                          | : RBB0, T2D1, T2S7                       |
| SERIAL NUMBER<br>DATA RATE<br>TEST MODE | : 700-0047<br>: 3<br>: Tx @ 757.975MHz   |

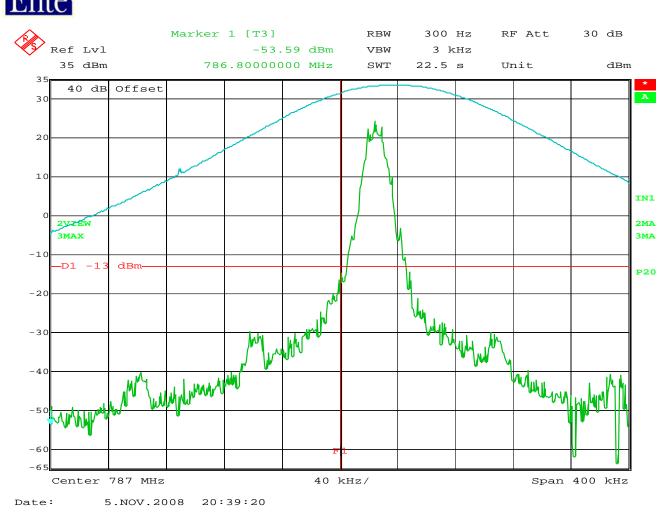


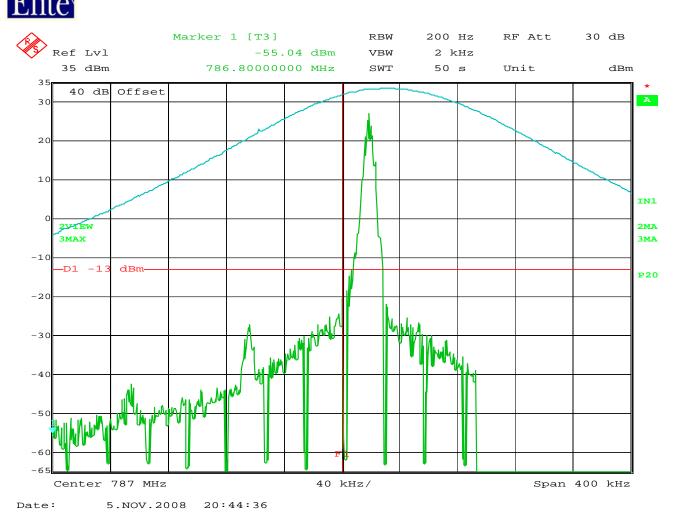

| MANUFACTURER   | : Freewave Technologies Inc              |
|----------------|------------------------------------------|
| MODEL NUMBER   | : LRS-760                                |
| SERIAL NUMBER  | : 700-0047                               |
| DATA RATE      | : 4                                      |
| TEST MODE      | : Tx @ 757.98125MHz                      |
|                | : 757+ (157*.00625) = transmit frequency |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                       |
|                |                                          |



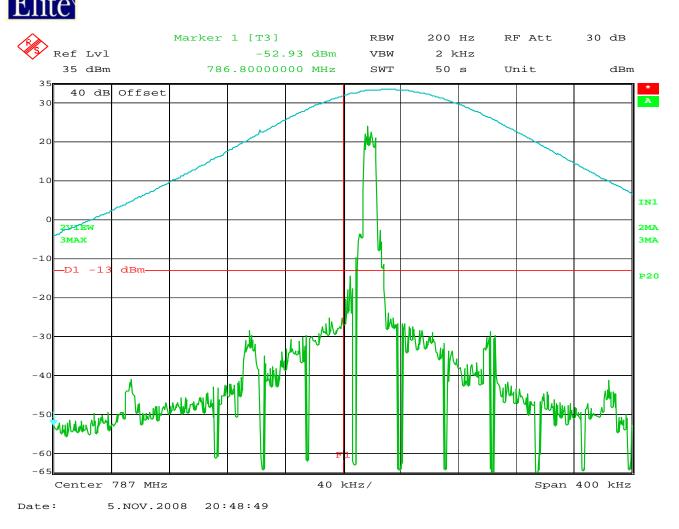

| MANUFACTURER   | : Freewave Technologies Inc              |
|----------------|------------------------------------------|
| MODEL NUMBER   | : LRS-760                                |
| SERIAL NUMBER  | : 700-0047                               |
| DATA RATE      | : 5                                      |
| TEST MODE      | : Tx @ 757.98125MHz                      |
|                | : 757+ (157*.00625) = transmit frequency |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                       |
|                |                                          |



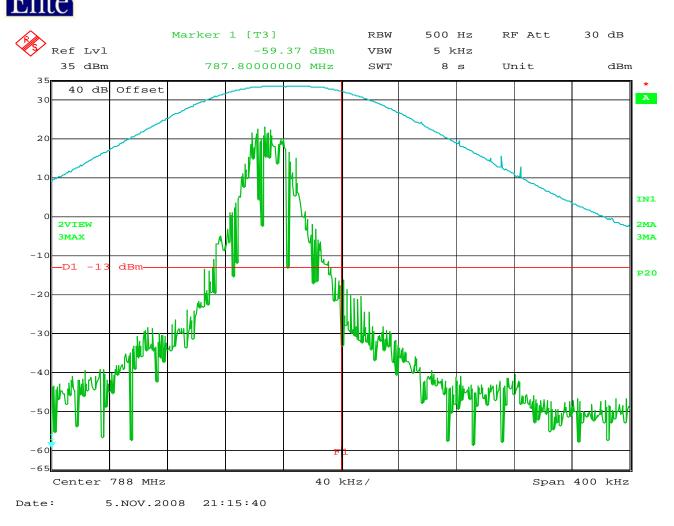

| MANUFACTURER   | : Freewave Technologies Inc                   |
|----------------|-----------------------------------------------|
| MODEL NUMBER   | : LRS-760                                     |
| SERIAL NUMBER  | : 700-0047                                    |
| DATA RATE      | : 0                                           |
| TEST MODE      | : Tx @ 787.04375MHz                           |
|                | : 787+((167-160)*.00625) = transmit frequency |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                            |



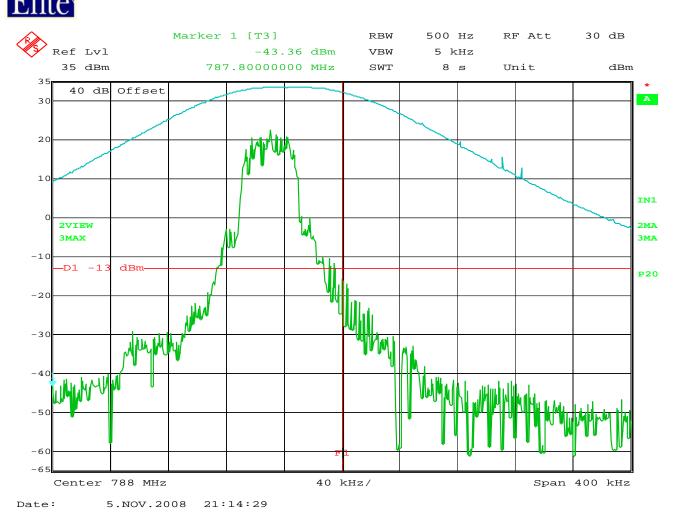

| MANUFACTURER   | : Freewave Technologies Inc                   |
|----------------|-----------------------------------------------|
| MODEL NUMBER   | : LRS-760                                     |
| SERIAL NUMBER  | : 700-0047                                    |
| DATA RATE      | :1                                            |
| TEST MODE      | : Tx @ 787.04375MHz                           |
|                | : 787+ ((167-160)*.00625)= transmit frequency |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                            |
|                |                                               |



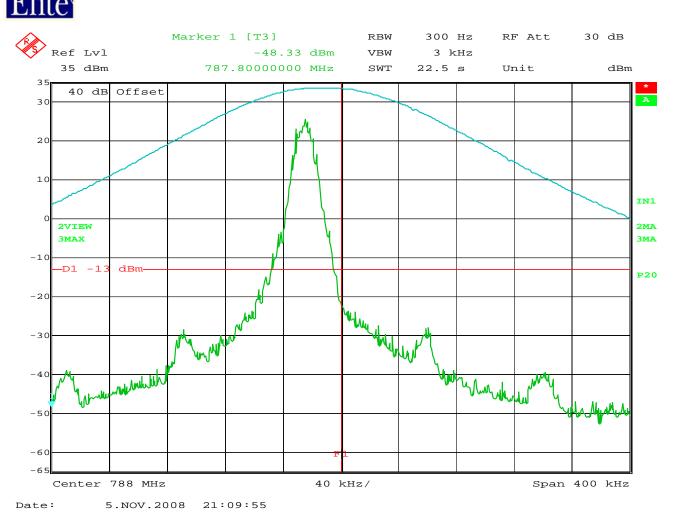

| MANUFACTURER   | : Freewave Technologies Inc                                        |
|----------------|--------------------------------------------------------------------|
| MODEL NUMBER   | : LRS-760                                                          |
| SERIAL NUMBER  | : 700-0047                                                         |
| DATA RATE      | : 2                                                                |
| TEST MODE      | : Tx @ 787.025MHz                                                  |
|                | : 787+ ((164-160)*.00625)= transmit frequency                      |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                                                 |
| TEST MODE      | : Tx @ 787.025MHz<br>: 787+ ((164-160)*.00625)= transmit frequency |



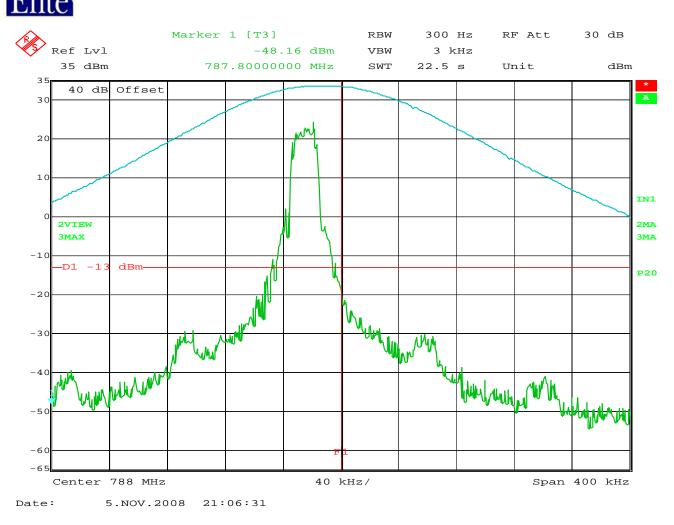




| MANUFACTURER   | : Freewave Technologies Inc                    |
|----------------|------------------------------------------------|
| MODEL NUMBER   | : LRS-760                                      |
| SERIAL NUMBER  | : 700-0047                                     |
| DATA RATE      | : 4                                            |
| TEST MODE      | : Tx @ 787.01875MHz                            |
|                | : 787+ ((163-160)*.00625) = transmit frequency |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                             |
|                |                                                |

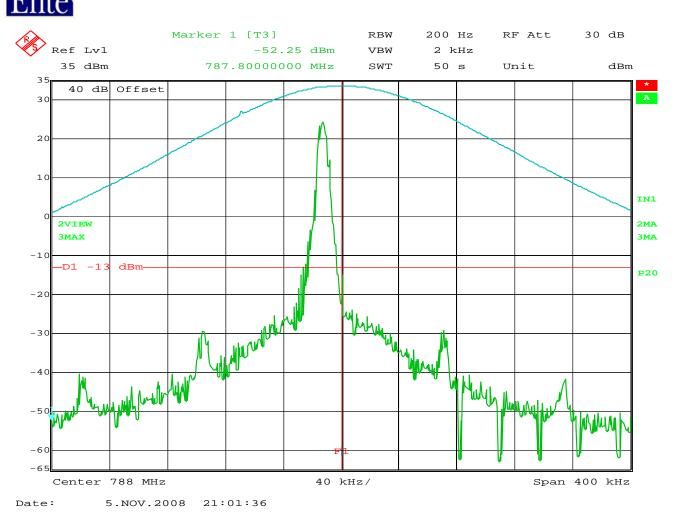



| MANUFACTURER   | : Freewave Technologies Inc                    |
|----------------|------------------------------------------------|
| MODEL NUMBER   | : LRS-760                                      |
| SERIAL NUMBER  | : 700-0047                                     |
| DATA RATE      | : 5                                            |
| TEST MODE      | : Tx @ 787.01875MHz                            |
|                | : 787+ ((163-160)*.00625) = transmit frequency |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                             |
| TEST MODE      | : Tx @ 787.01875MHz                            |

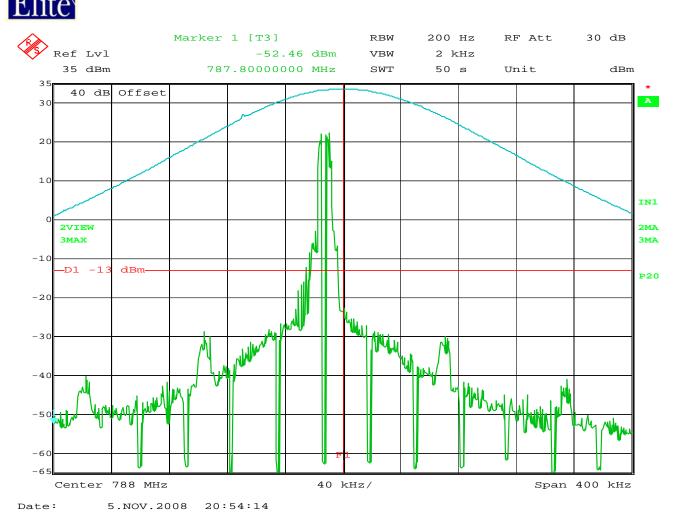



| MANUFACTURER   | : Freewave Technologies Inc                    |
|----------------|------------------------------------------------|
| MODEL NUMBER   | : LRS-760                                      |
| SERIAL NUMBER  | : 700-0047                                     |
| DATA RATE      | : 0                                            |
| TEST MODE      | : Tx @ 787.950MHz                              |
|                | : 787+ ((312-160)*.00625) = transmit frequency |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                             |
|                |                                                |




| MANUFACTURER                            | : Freewave Technologies Inc                                                |
|-----------------------------------------|----------------------------------------------------------------------------|
| MODEL NUMBER                            | : LRS-760                                                                  |
| SERIAL NUMBER                           | : 700-0047                                                                 |
| DATA RATE                               | : 1                                                                        |
| TEST MODE                               | : Tx @ 787.950MHz                                                          |
|                                         | : 787+ ((312-160)*.00625) = transmit frequency                             |
| EQUIPMENT USED                          | : RBB0, T2D1, T2S7                                                         |
| SERIAL NUMBER<br>DATA RATE<br>TEST MODE | : 1<br>: Tx @ 787.950MHz<br>: 787+ ((312-160)*.00625) = transmit frequency |




| : Freewave Technologies Inc                    |
|------------------------------------------------|
| : LRS-760                                      |
| : 700-0047                                     |
| : 2                                            |
| : Tx @ 787.975MHz                              |
| : 787+ ((316-160)*.00625) = transmit frequency |
| : RBB0, T2D1, T2S7                             |
|                                                |



|                | : Freewave Technologies Inc                    |
|----------------|------------------------------------------------|
| MODEL NUMBER   | : LRS-760                                      |
| SERIAL NUMBER  | : 700-0047                                     |
| DATA RATE      | : 3                                            |
| TEST MODE      | : Tx @ 787.975MHz                              |
|                | : 787+ ((316-160)*.00625) = transmit frequency |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                             |



| : Freewave Technologies Inc                    |
|------------------------------------------------|
| : LRS-760                                      |
| : 700-0047                                     |
| : 4                                            |
| : Tx @ 787.9875MHz                             |
| : 787+ ((318-160)*.00625) = transmit frequency |
| : RBB0, T2D1, T2S7                             |
|                                                |



| MANUFACTURER   | : Freewave Technologies Inc                    |
|----------------|------------------------------------------------|
| MODEL NUMBER   | : LRS-760                                      |
| SERIAL NUMBER  | : 700-0047                                     |
| DATA RATE      | : 5                                            |
| TEST MODE      | : Tx @ 787.9875MHz                             |
|                | : 787+ ((318-160)*.00625) = transmit frequency |
| EQUIPMENT USED | : RBB0, T2D1, T2S7                             |
|                |                                                |



| MANUFACTURER  | : Freewave Technologies Inc                       |
|---------------|---------------------------------------------------|
| MODEL NO.     | : LRS-760                                         |
| SERIAL NO.    | : 700-0047                                        |
| SPECIFICATION | : FCC Part 27 Frequency Stability vs. Temperature |
|               | : FCC Part 27 Frequency Stability vs. Voltage     |
| DATE          | : November 6, 2008                                |
| NOTES         | : Lower Band Edge of 757MHz                       |
|               |                                                   |

| Temperature<br>(degrees) | Nominal<br>frequency<br>(Hz) | Measured<br>Frequency<br>(Hz) | Frequency<br>Change<br>(Hz) | Limit<br>Bandedge<br>(Hz) | Frequency<br>Tolerance*<br>(Hz) |
|--------------------------|------------------------------|-------------------------------|-----------------------------|---------------------------|---------------------------------|
| -30                      | 757012528                    | 757011802                     | 726                         | 757000000                 | 2006                            |
| -20                      | 757012528                    | 757012266                     | 262                         | 757000000                 | 2006                            |
| -10                      | 757012528                    | 757012290                     | 238                         | 757000000                 | 2006                            |
| 0                        | 757012528                    | 757012451                     | 77                          | 757000000                 | 2006                            |
| 10                       | 757012528                    | 757012553                     | -25                         | 757000000                 | 2006                            |
| 20                       | 757012528                    | 757012528                     | 0                           | 757000000                 | 2006                            |
| 30                       | 757012528                    | 757012635                     | -107                        | 757000000                 | 2006                            |
| 40                       | 757012528                    | 757012968                     | -440                        | 757000000                 | 2006                            |
| 50                       | 757012528                    | 757012747                     | -219                        | 757000000                 | 2006                            |

| Supply Voltage<br>(VDC) | Nominal<br>frequency<br>(Hz) | Measured<br>Frequency<br>(Hz) | Frequency<br>Change<br>(Hz) | Limit<br>Bandedge<br>(Hz) | Frequency Tolerance*<br>(Hz) |
|-------------------------|------------------------------|-------------------------------|-----------------------------|---------------------------|------------------------------|
| +12                     | 757012455                    | 757012455                     | 0                           | 757000000                 | 2006                         |
| 10.2 (85%)              | 757012455                    | 757012452                     | 3                           | 757000000                 | 2006                         |
| 13.8 (115%)             | 757012455                    | 757012452                     | 3                           | 757000000                 | 2006                         |

\* The frequency tolerance was determined from the bandedge compliance measurements.

Checked BY : RICHARD E. King



| MANUFACTURER  | : Freewave Technologies Inc                       |
|---------------|---------------------------------------------------|
| MODEL NO.     | : LRS-760                                         |
| SERIAL NO.    | : 700-0047                                        |
| SPECIFICATION | : FCC Part 27 Frequency Stability vs. Temperature |
|               | : FCC Part 27 Frequency Stability vs. Voltage     |
| DATE          | : November 6, 2008                                |
| NOTES         | : Lower Band Edge of 787MHz                       |
|               | -                                                 |

| Temperature<br>(degrees) | Nominal<br>frequency<br>(Hz) | Measured<br>Frequency<br>(Hz) | Frequency<br>Change<br>(Hz) | Limit<br>Bandedge<br>(Hz) | Frequency<br>Tolerance*<br>(Hz) |
|--------------------------|------------------------------|-------------------------------|-----------------------------|---------------------------|---------------------------------|
| -30                      | 787187898                    | 787186952                     | 946                         | 787000000                 | 3440                            |
| -20                      | 787187898                    | 787187241                     | 657                         | 787000000                 | 3440                            |
| -10                      | 787187898                    | 787187278                     | 620                         | 787000000                 | 3440                            |
| 0                        | 787187898                    | 787187471                     | 427                         | 787000000                 | 3440                            |
| 10                       | 787187898                    | 787187513                     | 385                         | 787000000                 | 3440                            |
| 20                       | 787187898                    | 787187898                     | 0                           | 787000000                 | 3440                            |
| 30                       | 787187898                    | 787187645                     | 253                         | 787000000                 | 3440                            |
| 40                       | 787187898                    | 787188068                     | -170                        | 787000000                 | 3440                            |
| 50                       | 787187898                    | 787187847                     | -347                        | 787000000                 | 3440                            |

| Supply Voltage<br>(VDC) | Nominal<br>frequency<br>(Hz) | Measured<br>Frequency<br>(Hz) | Frequency<br>Change<br>(Hz) | Limit<br>Bandedge<br>(Hz) | Frequency Tolerance*<br>(Hz) |
|-------------------------|------------------------------|-------------------------------|-----------------------------|---------------------------|------------------------------|
| +12                     | 787187442                    | 787187442                     | 0                           | 787000000                 | 3440                         |
| 10.2 (85%)              | 787187442                    | 787187440                     | 2                           | 787000000                 | 3440                         |
| 13.8 (115%)             | 787187442                    | 787187442                     | 0                           | 787000000                 | 3440                         |

\* The frequency tolerance was determined from the bandedge compliance measurements.

Checked BY : RICHARD E. King



| : Freewave Technologies Inc                       |
|---------------------------------------------------|
| : LRS-760                                         |
| : 700-0047                                        |
| : FCC Part 27 Frequency Stability vs. Temperature |
| : FCC Part 27 Frequency Stability vs. Voltage     |
| : November 6, 2008                                |
| : Upper Band Edge of 758MHz                       |
|                                                   |

| Temperature<br>(degrees) | Nominal<br>frequency<br>(Hz) | Measured<br>Frequency<br>(Hz) | Frequency<br>Change<br>(Hz) | Limit<br>Bandedge<br>(Hz) | Frequency<br>Tolerance*<br>(Hz) |
|--------------------------|------------------------------|-------------------------------|-----------------------------|---------------------------|---------------------------------|
| -30                      | 757981353                    | 757980418                     | 935                         | 758000000                 | 1300                            |
| -20                      | 757981353                    | 757980886                     | 467                         | 758000000                 | 1300                            |
| -10                      | 757981353                    | 757980820                     | 533                         | 758000000                 | 1300                            |
| 0                        | 757981353                    | 757981141                     | 212                         | 758000000                 | 1300                            |
| 10                       | 757981353                    | 757981403                     | -50                         | 758000000                 | 1300                            |
| 20                       | 757981353                    | 757981353                     | 0                           | 758000000                 | 1300                            |
| 30                       | 757981353                    | 757981535                     | -182                        | 758000000                 | 1300                            |
| 40                       | 757981353                    | 757981898                     | -545                        | 758000000                 | 1300                            |
| 50                       | 757981353                    | 757981797                     | -444                        | 758000000                 | 1300                            |

| Supply Voltage<br>(VDC) | Nominal<br>frequency<br>(Hz) | Measured<br>Frequency<br>(Hz) | Frequency<br>Change<br>(Hz) | Limit<br>Bandedge<br>(Hz) | Frequency Tolerance*<br>(Hz) |
|-------------------------|------------------------------|-------------------------------|-----------------------------|---------------------------|------------------------------|
| +12                     | 757981150                    | 757981150                     | 0                           | 758000000                 | 1300                         |
| 10.2 (85%)              | 757981150                    | 757981140                     | 10                          | 758000000                 | 1300                         |
| 13.8 (115%)             | 757981150                    | 757981144                     | 6                           | 758000000                 | 1300                         |

\* The frequency tolerance was determined from the bandedge compliance measurements.

Checked BY : RICHARD E. King



| : Freewave Technologies Inc                       |
|---------------------------------------------------|
| : LRS-760                                         |
| : 700-0047                                        |
| : FCC Part 27 Frequency Stability vs. Temperature |
| : FCC Part 27 Frequency Stability vs. Voltage     |
| : November 6, 2008                                |
| : Upper Band Edge of 788MHz                       |
|                                                   |

| Temperature<br>(degrees) | Nominal<br>frequency<br>(Hz) | Measured<br>Frequency<br>(Hz) | Frequency<br>Change<br>(Hz) | Limit<br>Bandedge<br>(Hz) | Frequency<br>Tolerance*<br>(Hz) |
|--------------------------|------------------------------|-------------------------------|-----------------------------|---------------------------|---------------------------------|
| -30                      | 787987998                    | 787986766                     | 1232                        | 788000000                 | 2700                            |
| -20                      | 787987998                    | 787987081                     | 917                         | 788000000                 | 2700                            |
| -10                      | 787987998                    | 787986908                     | 1090                        | 788000000                 | 2700                            |
| 0                        | 787987998                    | 787987367                     | 631                         | 788000000                 | 2700                            |
| 10                       | 787987998                    | 787987563                     | 435                         | 788000000                 | 2700                            |
| 20                       | 787987998                    | 787987998                     | 0                           | 788000000                 | 2700                            |
| 30                       | 787987998                    | 787988288                     | -290                        | 788000000                 | 2700                            |
| 40                       | 787987998                    | 787988376                     | -378                        | 788000000                 | 2700                            |
| 50                       | 787987998                    | 787988221                     | -223                        | 788000000                 | 2700                            |

| Supply Voltage<br>(VDC) | Nominal<br>frequency<br>(Hz) | Measured<br>Frequency<br>(Hz) | Frequency<br>Change<br>(Hz) | Limit<br>Bandedge<br>(Hz) | Frequency Tolerance*<br>(Hz) |
|-------------------------|------------------------------|-------------------------------|-----------------------------|---------------------------|------------------------------|
| +12                     | 787987470                    | 787987470                     | 0                           | 788000000                 | 2700                         |
| 10.2 (85%)              | 787987470                    | 787987466                     | 4                           | 788000000                 | 2700                         |
| 13.8 (115%)             | 787987470                    | 787987471                     | -1                          | 788000000                 | 2700                         |

\* The frequency tolerance was determined from the bandedge compliance measurements.

Checked BY : RICHARD E. King