FCC ID: KNY-820181531119

Maximum Permissible Exposure calculations

To whom it may concern,

FreeWave Technologies is submitting a low power output 902-928 MHz frequency DTS transceiver (FCC ID: KNY-820181531119).

The MPE distance will be calculated for the worst case of a 100% transmitter duty cycle.

For an isotropic radiator the surface area of a sphere can be used to determine the area over which the transceiver energy is radiated.

Surface area of a sphere = $4 * \pi * radius^2$

In the case where there is an antenna gain, the worst case energy density is increased by the antenna gain. In this case, the exposure level for a controlled environment can be calculated as follows:

MPE distance = $((output\ power*duty\ cycle*10*(antenna\ gain/10))/(4*\pi*Exposure\ Limit\ [mW/cm^2]))^{1/2}$

In the case of 6 dBi antenna

MPE distance =
$$((1000 \text{ mW} * 1 * 3.98) / (4 * 3.14 * 0.6))^{1/2}$$

= 22.981 cm

Sincerely,

Rich Arment

Engineering Technician

Richard Ames