

COMPLIANCE WORLDWIDE INC. TEST REPORT 144-19A

In Accordance with the Requirements of

Innovation, Science and Economic Development Canada RSS 210, Issue 9
Federal Communications Commission CFR Title 47 Part 15.231
Low Power License-Exempt Radio Communication Devices
Intentional Radiators

Issued to

Secure Care Products, LLC 39 Chenell Drive Concord, NH 03301 603-223-0745

for the

Secure Care

433.92 MHz Patient Worn Transmitter

FCC ID: KNKA IC: 5483A-A

Report Issued on March 29, 2019

Testing performed by

Brian F. Breault

EMC Test Engineer

Reviewed By

Issue Date: 3/29/2018

Table of Contents

1. Scope	3
2. Product Details	
2.1. Manufacturer	3
2.2. Model Number	3
2.3. Serial Number	
2.4. Description	3
2.5. Power Source	
2.6. EMC Modifications	3
3. Product Configuration	3
3.1. Operational Characteristics & Software	
3.2. EUT Hardware	3
3.3. Support Equipment	3
3.4. Support Equipment Cables	4
3.5. Block Diagram	
4. Measurements Parameters	4
4.1. Measurement Equipment Used to Perform Test	4
4.2. Measurement & Equipment Setup	5
5. Choice of Equipment for Test Suits	6
6. Measurement Summary	6
7. Measurement Data	
7.1. Antenna Requirement	7
7.2. Operational Requirement	
7.3. Radiated Field Strength of Fundamental	9
7.4. Radiated Field Strength of Harmonics	
7.5. Spurious Radiated Emissions	
7.6. Emission Bandwidth	
7.7. Bandwidth of Momentary Signals	
7.8. Duty Cycle Calculations	
7.9. Public Exposure to Radio Frequency Energy Levels	
8. Test Setup Photographs	34
9. Test Site Description	39

1. Scope

This test report certifies that the Secure Care Products, LLC. 433.92 MHz Patient Worn Transmitter, as tested, meets the Subpart C, FCC Part 15.231 requirements and the ISED Canada RSS 210 Annex II Rules. The scope of this test report is limited to the test sample provided by the client, only in as much as that sample represents other production units. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required

2. Product Details

2.1. Manufacturer: Secure Care Products, LLC.

2.2. Model Number: A22270912 **2.3. Serial Number:** Device ID 0601

2.4. Description: 434 MHz (433.92 MHz) Patient Worn Transmitter for infant security,

wandering patient, & resident protection products.

2.5. Power Source: 3.0 VDC (Lithium) non-replaceable

2.6. EMC Modifications: None

3. Product Configuration

3.1. Operational Characteristics & Software

Operating Instructions for Test

Use the tester to enable continuous wave features. With the transmitter at the top of the tester, push the "5" key to enable continuous wave output on the low frequency radio. This will output a continuous wave for one minute and then revert back to normal operation.

The "#" key will put the transmitter in sleep mode. The strap needs to be removed to stay in sleep mode.

The "7" key will enable a quick wakeup of the transmitter. The strap must be installed to wake up the transmitter.

3.2. EUT Hardware

Manufacturer	Model/Part # / Options	Serial Number	Volts	Freq (Hz)	Description/Function
Secure Care Products, LLC.	Patient Worn Transmitter	ID 0601	3.0	DC	Patient protection transmitter for infant security, wandering patient, & resident protection products.

3.3. Support Equipment

Manufacturer	Model/Part # / Options	Serial Number	Input Voltage	Freq (Hz)	Description/Function
Secure Care Products, LLC.	Stat	A07300943	N/A	-	For setting up the DUT operation. Not used during testing.

3. Product Configuration (continued)

3.4. Support Equipment Cables

Cable Type	Length	Shield	From	То
None				

3.5. Block Diagram

Secure Care Products, LLC. Model A22270912 Patient Worn Transmitter

4. Measurements Parameters

4.1. Measurement Equipment and Software Used to Perform Test

Device	Manufacturer	Model No.	Serial No.	Cal Due	Interval
EMI Test Receiver, 9kHz - 7GHz ¹	Rohde & Schwarz	ESR7	101156	9/10/2020	2 Years
EMI Test Receiver, 10 Hz - 7GHz ¹	Rohde & Schwarz	ESR7	101770	10/3/2020	2 Years
Spectrum Analyzer, 2 Hz to 26.5 GHz ²	Rohde & Schwarz	FSW26	102057	9/13/2020	2 Years
Spectrum Analyzer, 9 kHz to 40 GHz ³	Rohde & Schwarz	FSV40	100899	9/10/2020	2 Years
EMI Receiver 9 kHz - 1 GHz	Hewlett Packard	8546A	3650A00360	9/11/2020	2 Years
Loop Antenna 9 kHz - 30 MHz	EMCO	6512	9309-1139	1/28/2022	3 Years
Biconilog Antenna, 30 MHz - 2 GHz	Sunol Sciences	JB1	A050913	6/3/2019	2 Years
Horn Antenna, 960 MHz to 18 GHz	Electro-Metrics	EM-6961	6337	10/3/2020	2 Years
Preamplifier, 1 GHz to 26.5 GHz	Hewlett Packard	8449B	3008A01323	9/11/2020	2 Years
Digital Multimeter w/ Thermocouple	Fluke	187	83030167	3/30/2019	1 Year
Digital Barometer	Control Company	4195	ID236	4/3/2020	2 Years
Temperature Chamber	Associated Environmental	SD-308	10782	CNR	

¹ ESR7 Firmware revision: V3.46 SP1, Date installed: 12/22/2018 Firmware revision: V4.30 SP1, Date installed: 02/22/2019 Firmware revision: V2.30 SP4, Date installed: 05/04/2016

Previous V3.36 SP2, installed 12/5/2018. Previous V3.36 SP2, installed 10/26/2018. Previous V2.30 SP1, installed 10/22/2014.

4. Measurements Parameters (continued)

4.2 Measurement & Equipment Setup

Test Dates: 3/1/2019 to 3/22/2019
Test Engineer: Brian Breault, Sean Defelice

Site Temperature (°C): 21.4 Relative Humidity (%RH): 32

Frequency Range: 30 kHz to 4.4 GHz

Measurement Distance: 3 Meters

EMI Receiver IF Bandwidth: 120 kHz (30 MHz – 1 GHz)

1 MHz (>1 GHz)

EMI Receiver Avg Bandwidth: 300 kHz (30 MHz – 1 GHz)

3 MHz (>1 GHz)

Detector Functions: Peak, Quasi-Peak and

Average

4.3 Test Procedure

Test measurements were made in accordance FCC Part 15.231: Periodic operation within the bands 40.66 – 40.70 MHz and above 70 MHz. All references to IC RSS-Gen refer to Issue 4, November 2014.

The test methods used to generate the data in this test report are in accordance with ANSI C63.10: 2013, American National Standard for Methods for Unlicensed Wireless Devices

Preliminary measurements were made with the cut-band strap installed and removed. It was determined that the highest emissions were achieved with the strap installed. Based on this criterion, all field strength measurements were made with the strap installed.

In addition, the measurements were performed with the device in three orthogonal positions in accordance with ANSI C63.10-2013, sections 5.10.1, 6.4.6 and Annex H. The three orthogonal axes were defined as follows:

Z-Axis

X-Axis Y-Axis

X Axis Upright (Strap toward rear) Front of unit is facing the antenna at 0° Y Axis Horizontal on left edge Front of unit is facing the antenna at 0°

Z Axis Face Up (Strap down) Bottom edge of the unit is facing the antenna at 0°

5. Choice of Equipment for Test Suits

5.1. Choice of Model

This test report is based on the test samples supplied by the manufacturer and are reported by the manufacturer to be equivalent to the production units.

5.2. Presentation

The test sample was tested complete with all required ancillary equipment. Refer to Section 3 of this report for the product equipment configuration.

5.3. Choice of Operating Frequencies

The transmitter in the unit under test utilizes a single operating frequency at approximately 433.92 MHz

6. Measurement Summary

Test Requirement	FCC Requirement	ISED Requirement	Test Report Section	Result	Comment
Antenna Requirement	15.203	RSS-210 A1.1	7.1	Compliant	The antenna is enclosed within the device under test.
	15.231 (a)(1)	N/A	7.2.1	Compliant	This clause does not apply to the unit under test.
	15.231 (a)(2)	N/A	7.2.2	N/A	
Operational Requirements	15.231 (a)(3)	N/A	7.2.3	N/A	This clause does not apply to the unit under test.
	15.231 (a)(4)	N/A	7.2.4	N/A	This clause does not apply to the unit under test.
	15.231 (a)(5)	N/A	7.2.5	N/A	This clause does not apply to the unit under test.
Radiated Field Strength of Fundamental	15.231 (b)	RSS-210 A1.1.2	7.3	Compliant	
Radiated Field Strength of Harmonics	15.231 (b)(3)	N/A	7.4	Compliant	
Spurious Radiated Emissions	15.231 (b)(3), 15.209	RSS-GEN 6.13.2	7.5	Compliant	
Emission Bandwidth	15.231 (c)	Not Required	7.6	Compliant	
Bandwidth of Momentary Signals	Not Required	IC RSS-210 A1.3	7.7	N/A	
Conducted Emissions	15.207			Not Required	Unit operates on an internal battery.
Determination of Average Factor (Duty Cycle)	15.35 (c)		7.8	Not Required	
Public Exposure to Radio Frequency Energy Levels.	15.247(i) 1.1307 (b)(1)	RSS-GEN 5.5, RSS 102	7.9	Compliant	

7. Measurement Data

7.1. Antenna Requirement (Section 15.203)

Requirement: An intentional radiator shall be designed to ensure that no antenna

other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.

Status: Compliant - The antenna utilized by the device under test is contained

inside a sealed plastic enclosure.

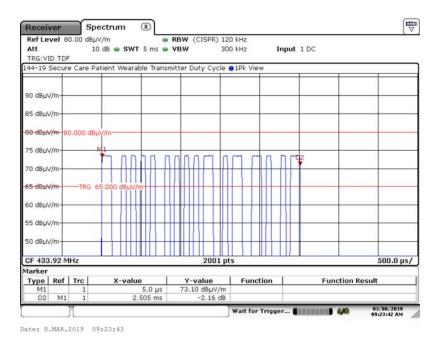
7.2. Operational Requirements (Section 15.231(a))

7.2.1. Requirement: A manually operated transmitter shall employ a switch that will

automatically deactivate the transmitter within not more than 5

seconds of being released (Section 15.231(a)(1)).

Status: The transmitter is activated automatically. Therefore this section


does not apply. Refer to section 6.2.2.

7.2.2. Requirement: A transmitter activated automatically shall cease transmission

within 5 seconds after activation (Section 15.231(a)(2)).

Status: Compliant - This transmitter is activated automatically and ceases

transmission after 2.51 milliseconds.

ACCREDITED
TESTING CERT #1673.01

Test Number: 144-19A Issue Date: 3/29/2018

7.2. Operational Requirements (Section 15.231(a)) (continued)

7.2.3. Requirement: Periodic transmissions at regular predetermined intervals are not

permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour (Section 15.231(a)(3)).

Status: This clause does not apply to the unit under test.

7.2.4. Requirement: Intentional radiators which are employed for radio control

purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the

pendency of the alarm condition. (Section 15.231(a)(4)).

Status: This clause does not apply to the unit under test.

7.2.5. Requirement: Transmission of set-up information for security systems may

exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include

data.

Status: Noted.

7. Measurement Data (continued)

7.3. Radiated Field Strength of Fundamental (15.231, Section (b))

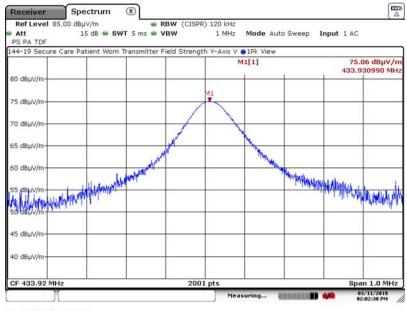
Requirement: The 3 meter field strength of the fundamental emissions from intentional radiators operating within the 260-470 MHz frequency bands shall comply with the limits specified in FCC Part 15.231, Section (b). The limit is based on a linear interpolation of the following field strength:

Fundamental Frequency	Field Strength of Fundamental
(MHz)	(μV/m)
260–470	3,750 to 12,500 μV/m

Fundamental Limit at 433.92 MHz = $10,997 \mu V/m = 80.83 dB\mu V/m$

Test Note: The data detailed in this section of the test report represents the worst

case product orientation (Y-Axis). The peak field strength met the


average limit for thIS measurement.

Conclusion: Compliant - The radiated field strength of the device under test complies

with the requirements detailed in FCC Part 15.231, Section (b).

7.3.1. Worst Case Radiated Field Strength of Fundamental

Frequency (MHz)	Amplitude ¹ (dBµV/m)		Limit (dBµV/m)		Margin (dB)		Ant Polarity	Ant Height	Turntable Azimuth	Result
()	Peak	Avg	Peak	Avg	Peak	Avg	H/V	cm	Deg	
433.931	75.06		100.83	80.83		-5.77	V	231	70	Compliant

Date: 11.MAR.2019 14:02:30

7. Measurement Data (continued)

7.4. Radiated Field Strength of Harmonics (15.231, Section (b))

Requirement: The 3 meter field strength of the harmonic emissions from intentional radiators operating within the 260-470 MHz frequency band shall comply with the limits specified in FCC Part 15.231, Section (b). The limit is based on a linear interpolation of the following field strength:

Fundamental Frequency	Field Strength of Spurious Emissions
(MHz)	(µV/m)
260–470	375 to 1250

Spurious Emissions Limit = $1,099.72 \mu V/m = 60.83 dB\mu V/m$

Test Notes: For emissions falling within in the restricted bands of operation

(reference FCC Part 15.205), the lower FCC Part 15.209 limits take precedence. The peak field strength may not be greater than 20 dB

above the average limit.

The data detailed in this section of the test report represents the worst

case product orientation for each tabled emission.

Conclusion: Compliant - The device under test complies with the requirements

detailed in FCC 15.231, Section B.

7.4.1. Harmonics < 1 GHz

Freq. (MHz)	Measured Peak Field Strength (dBµV/m)		Cycle CF	CISPR QP Field Strength (dBµV/m) ¹	LIII	Limit (dBµV/m)		Margin (dBµV/m)²		• •		Ant. Ht. (cm)	Table Position (Deg)	Result
	Peak	Avg.	(ub)	(ασμν/ιιι)	Peak	Avg.	Peak	Avg.						
867.840	52.29		-5.97	46.32	80.83	60.83	-29.43	-15.66	Н	156	80	Compliant		

7.4.2. Harmonics > 1 GHz (Tabled data represents the worst case orthogonal position)

Freq. (MHz)	Measured Peak Field Strength (dBµV/m)		Duty Cycle CF	Average Field Strength	Limit (dBµV/m)		eld (dBµV/m)			Margin (dBμV/m)²										Ant. Ht. (cm)	Table Position (Deg)	Result
	Peak	Avg.	(dB)	(dBµV/m) ¹	Peak	Avg.	Peak	Avg.														
1301.760	51.23		-5.97	45.26	74.00	54.00	-22.77	-8.74	Н	170	36	Compliant										
1735.680	48.16		-5.97	42.19	80.83	60.83	-32.67	-18.64	Н	152	0	Compliant										
2169.600	44.53		-5.97	38.56	80.83	60.83	-36.30	-22.27	V	154	22	Compliant										
2603.520	43.27		-5.97	37.30	80.83	60.83	-37.56	-23.53	Н	164	359	Compliant										
3037.440	49.38		-5.97	43.41	80.83	60.83	-31.45	-17.42	Н	182	0	Compliant										
3471.360	49.77		-5.97	43.80	80.83	60.83	-31.06	-17.03	Н	152	0	Compliant										
3905.280	47.90		-5.97	41.93	74.00	54.00	-26.10	-12.07	V	149	359	Compliant										
4339.200	47.82		-5.97	41.85	74.00	54.00	-26.18	-12.15	٧	155	0	Compliant										

¹ Average Field Strength = Peak Field Strength – Duty Cycle Correction Factor

7. Measurement Data (continued)

7.5. Spurious Radiated Emissions, 150 kHz to 5 GHz (15.231, Section (b))

Requirement: The spurious radiated emissions requirements for intentional radiators

shall demonstrate compliance with the field strength limits detailed in Part 15.231, Section B, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a

CISPR quasi-peak detector.

Procedure: This test was performed in accordance with the information provided in

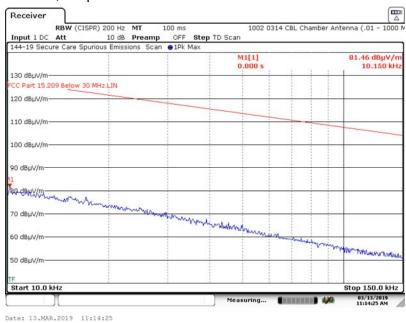
47CFR Part 15.231, Section (b).

Test measurements were made in accordance with ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices.

Conclusion: Compliant - The Emissions from the DUT did not exceed the field

strength levels specified in Part 15.231, Section B.

7. Measurement Data (continued)

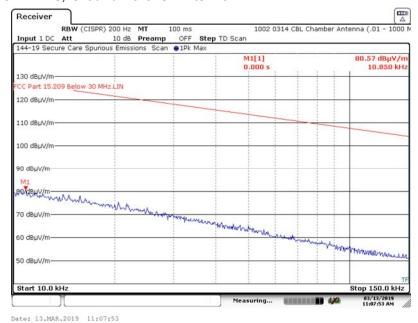

7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)

7.5.1. Spurious Radiated Emissions, 30 kHz to 150 kHz Test Results

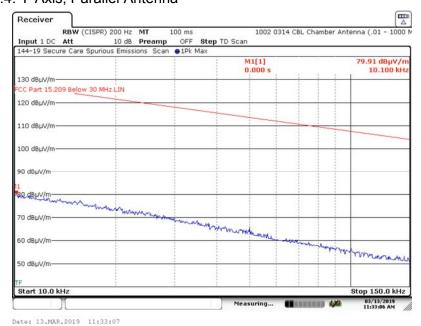
7.5.1.1. X-Axis, Parallel Antenna

7.5.1.2. X-Axis, Perpendicular Antenna

Page 12 of 39



7. Measurement Data (continued)

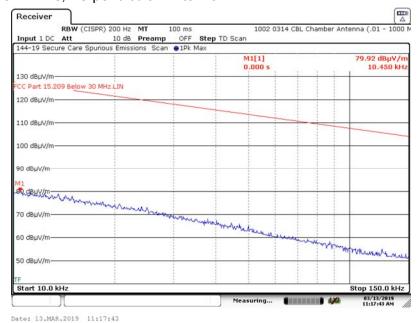

7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)

7.5.1. Spurious Radiated Emissions, 30 kHz to 150 kHz Test Results

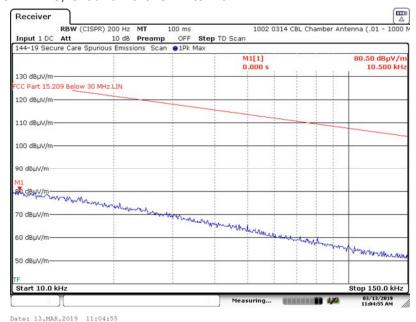
7.5.1.3. X-Axis, Ground Parallel Antenna

7.5.1.4. Y-Axis, Parallel Antenna

Page 13 of 39



7. Measurement Data (continued)

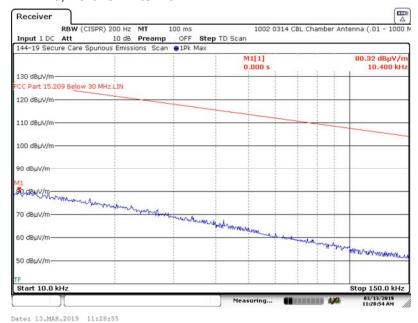

7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)

7.5.1. Spurious Radiated Emissions, 30 kHz to 150 kHz Test Results

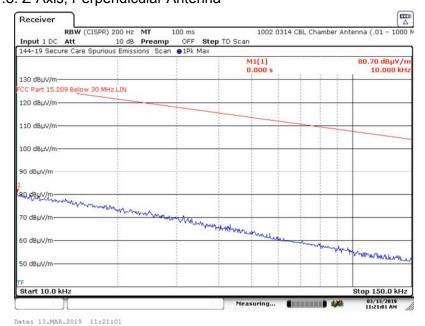
7.5.1.5. Y-Axis, Perpendicular Antenna

7.5.1.6. Y-Axis, Ground Parallel Antenna

Page 14 of 39



7. Measurement Data (continued)


7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)

7.5.1. Spurious Radiated Emissions, 30 kHz to 150 kHz Test Results

7.5.1.7. Z-Axis, Parallel Antenna

7.5.1.8. Z-Axis, Perpendicular Antenna

Page 15 of 39

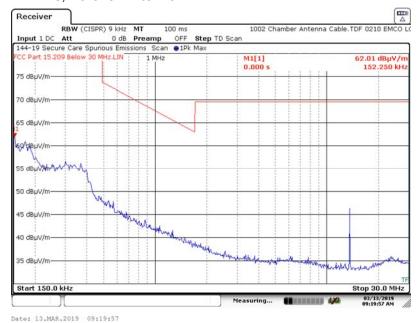
7. Measurement Data (continued)

7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)

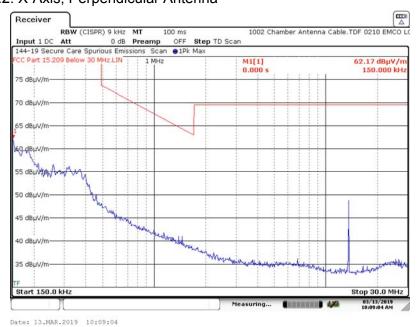
7.5.1. Spurious Radiated Emissions, 30 kHz to 150 kHz Test Results

7.5.1.9. Z-Axis, Ground Parallel Antenna

Date: 13.MAR.2019 11:00:57



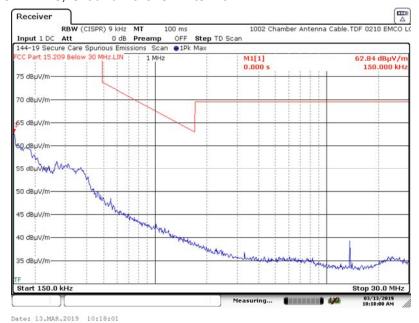
7. Measurement Data (continued)


7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)

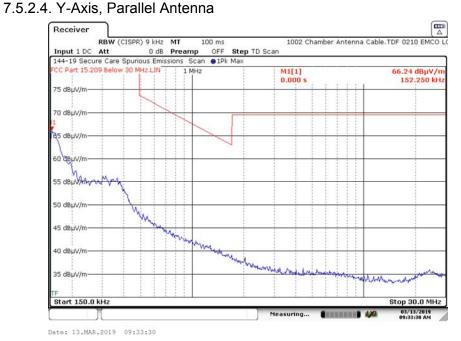
7.5.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results

7.5.2.1. X-Axis, Parallel Antenna

7.5.2.2. X-Axis, Perpendicular Antenna



7. Measurement Data (continued)


7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)

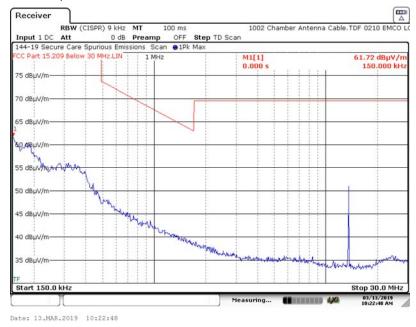
7.5.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results

7.5.2.3. X-Axis, Ground Parallel Antenna

4 3/ A : D II I A (



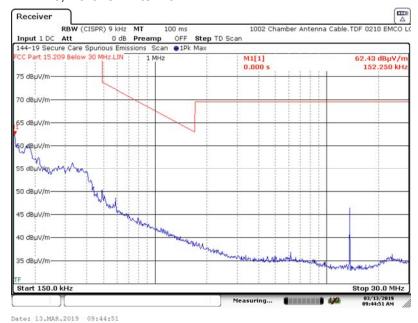
7. Measurement Data (continued)


7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)

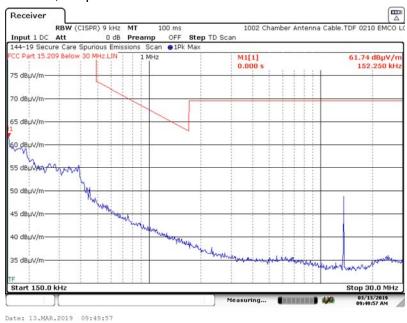
7.5.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results

7.5.2.5. Y-Axis, Perpendicular Antenna

7.5.2.6. Y-Axis, Ground Parallel Antenna



7. Measurement Data (continued)


7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)

7.5.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results

7.5.2.7. Z-Axis, Parallel Antenna

7.5.2.8. Z-Axis, Perpendicular Antenna

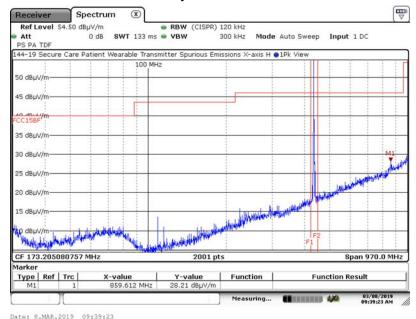
7. Measurement Data (continued)

7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)

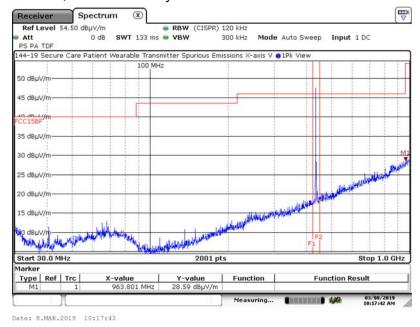
7.5.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results

7.5.2.9. Z-Axis, Ground Parallel Antenna

Date: 13.MAR.2019 10:32:37



7. Measurement Data (continued)

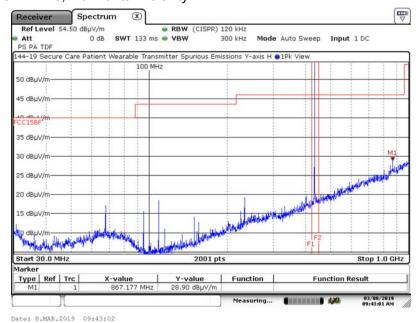

7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)

7.5.3. Spurious Radiated Emissions, 30 MHz to 1 GHz Test Results

7.5.3.1. X-Axis, Horizontal Polarity

7.5.3.2. X-Axis, Vertical Polarity

Page 22 of 39



7. Measurement Data (continued)

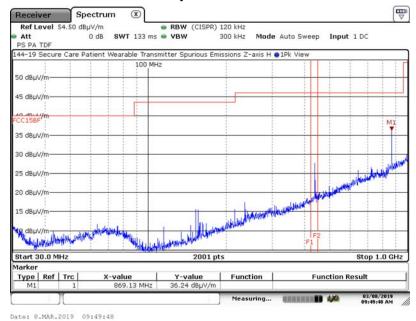
7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)

7.5.3. Spurious Radiated Emissions, 30 MHz to 1 GHz Test Results

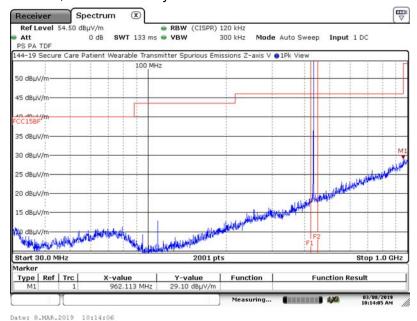
7.5.3.3. Y-Axis, Horizontal Polarity

7.5.3.4. Y-Axis, Vertical Polarity

Page 23 of 39



7. Measurement Data (continued)

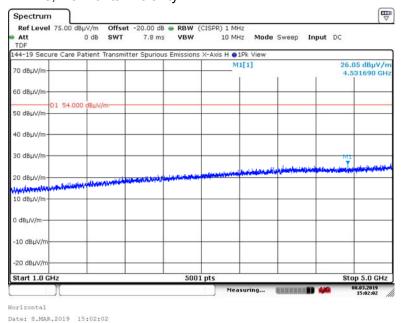

7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)

7.5.3. Spurious Radiated Emissions, 30 MHz to 1 GHz Test Results

7.5.3.5. Z-Axis, Horizontal Polarity

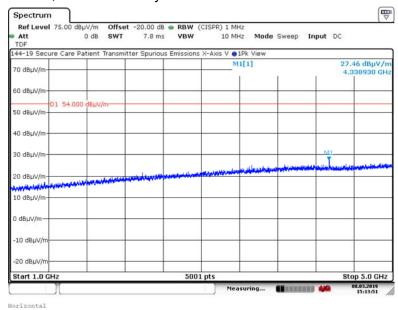
7.5.3.6. Z-Axis, Vertical Polarity

Page 24 of 39



7. Measurement Data (continued)

7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)


7.5.4. Spurious Radiated Emissions, 1 GHz to 4.4 GHz Test Results

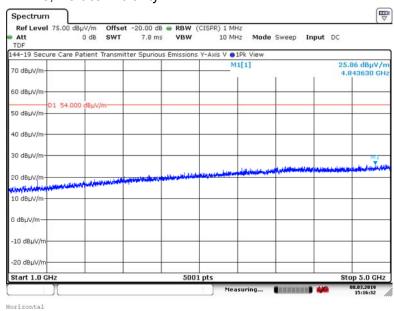
7.5.4.1. X-Axis, Horizontal Polarity

7.5.4.2. X-Axis, Vertical Polarity

Date: 8.MAR.2019 15:13:51

7. Measurement Data (continued)

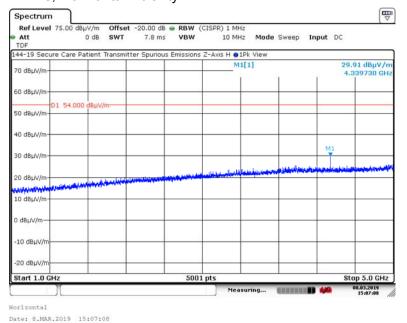
7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b)) (cont'd)


7.5.4. Spurious Radiated Emissions, 1 GHz to 4.4 GHz Test Results

7.5.4.3. Y-Axis, Horizontal Polarity

7.5.4.4. Y-Axis, Vertical Polarity

Date: 8.MAR.2019 15:16:32



7. Measurement Data (continued)

7.5. Spurious Radiated Emissions, 30 kHz to 5GHz (15.231, Section (b)) (cont'd)

7.5.4. Spurious Radiated Emissions, 1 GHz to 4.4 GHz Test Results

7.5.4.5. Z-Axis, Horizontal Polarity

7.5.4.6. Z-Axis, Vertical Polarity

Date: 8.MAR.2019 15:09:48

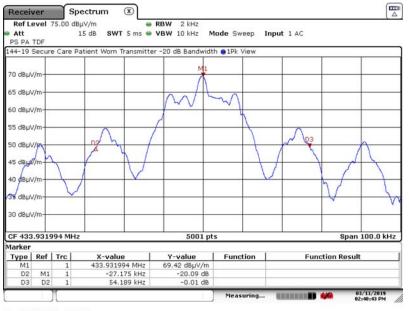
7. Measurement Data (continued)

7.6. Emission Bandwidth

Requirement: The bandwidth of the emission shall be no wider than 0.25% of the center

frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated

carrier.


Test Note: Reference ANSI C63.10:2013, Section 6.9.2. The span range for the SA

display shall be between two times and five times the OBW. The nominal IF filter bandwidth (3 dB RBW) should be approximately 1% to 5% of the OBW, unless otherwise specified, depending on the applicable requirement. The dynamic range of the SA at the selected RBW shall be more than 10 dB below the target "dB down" (attenuation) requirement.

Conclusion: Compliant - The DUT emission bandwidth meets the above requirement.

Site Temperature: 22.4°C Site Humidity: 31% RH

	Fundamental Frequency	-20 dB Bandwidth	Limit	Result
Ī	(MHz)	(MHz)	(MHz)	
	433.915	0.05419	1.0848	Compliant

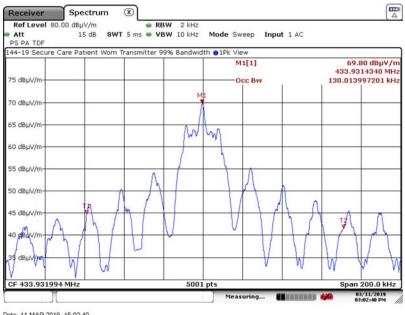
Date: 11.MAR.2019 14:40:43

7. Measurement Data (continued)

7.7. Bandwidth of Momentary Signals (IC RSS-210 A1.1.3)

Requirement: The 99% bandwidth of the emission shall be no wider than 0.25% of the

center frequency for devices operating between 70 MHz - 900 MHz.


Test Note: Reference RSS-Gen, Section 4.6.1. The transmitter shall be operated at

> its maximum carrier power measured under normal test conditions. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak

hold may produce a wider bandwidth than actual.

Conclusion: Compliant - The DUT bandwidth meets the above requirement.

Fundamental Frequency	99% Bandwidth	Limit	Result
(MHz)	(MHz)	(MHz)	
433.915	0.1300	1.0850	Compliant

Note:

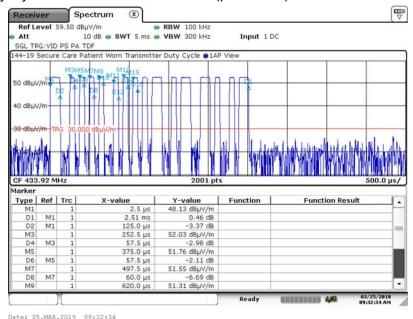
Test Number: 144-19A Issue Date: 3/29/2018

7. Measurement Data (continued)

7.8. Duty Cycle Calculations (ANSI C63.10:2013, Section 7.5)

Requirement: When the average value of the pulsed emissions from a DUT must be determined, the average can be found by measuring the peak pulse amplitude and determining the duty cycle correction factor of the pulse modulation. The duty cycle correction factor δ may be expressed in dB as in the following equation:

$$\delta$$
 (dB) = 20_{logdB} (δ)

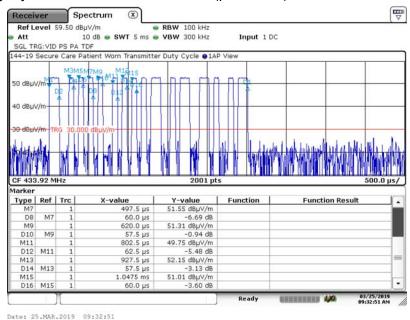

This correction factor can then be applied to the peak pulse amplitude to find the average emission. This correction is applied for all emissions including the fundamental and harmonics.

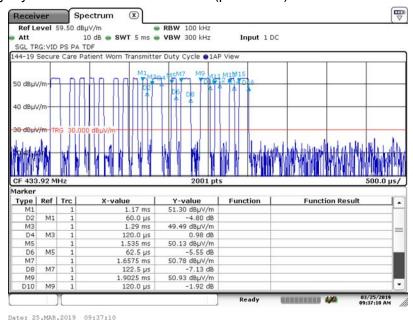
The DUT was operated at its maximum transmission rate under normal operations to produce the following duty cycle.

7.8.1. Duty Cycle for the Device as Tested

Time of One Full Cycle (mS)	Time On During One Full Cycle (mS)	Duty Cycle	Duty Cycle Correction Factor (dB)	Applied Duty Cycle Correction Factor (dB)
2.5100	1.2625	50.30%	-5.969	-5.969

7.8.1a Duty Cycle for the Device as Tested (plot 1 of 4)



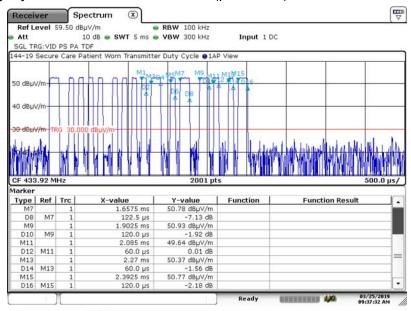

7. Measurement Data (continued)

7.8. Duty Cycle Calculations (ANSI C63.10:2013, Section 7.5)

7.8.1b Duty Cycle for the Device as Tested (plot 2 of 4)

7.8.1c Duty Cycle for the Device as Tested (plot 3 of 4)

Page 31 of 39



7. Measurement Data (continued)

7.8. Duty Cycle Calculations (ANSI C63.10:2013, Section 7.5)

7.8.1d Duty Cycle for the Device as Tested (plot 4 of 4)

Date: 25.MAR.2019 09:37:32

8. Measurement Data (continued)

8.12. Public Exposure to Radio Frequency Energy Levels (15.247(i) (1.1307 (b)(1)) RSS-GEN, ISSUE 4 5.5, RSS 102)

8.12.1. 15.247(i) (1.1307 (b)(1) Requirements

Requirement: Portable devices are subject to radio frequency radiation exposure

requirements.

For a 1-g SAR, the test exclusion result must be \leq 3.0.

Test Notes: The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6

GHz at test separation distances ≤ 50 mm are determined by the

following formula:

SAR Test Exclusion =
$$\frac{P_{MAX}}{d_{MIN}} \chi \sqrt{f_{(GHz)}}$$
 (1)

mW Maximum power of channel, including tune-up tolerance

 $d_{MIN} \hspace{0.5cm} mm \hspace{0.5cm} Minimum \hspace{0.1cm} test \hspace{0.1cm} separation \hspace{0.1cm} distance, \hspace{0.1cm} mm \hspace{0.1cm} (\leq 50 \hspace{0.1cm} mm)$

 $f_{(\text{GHz})} - \text{GHz} - f_{(\text{GHz})}$ is the RF channel transmit frequency in GHz (>100 MHz and <6 GHz)

(1) FCC OET 447498 - Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

Conclusion: Compliant - The device under test meets the exclusion requirement detailed in FCC OET 447498.

Test Exclusion: 0.0007 Limit Exemption: 3.0000

8.12.2. RSS-102 Issue 5 Requirements

 $\mathsf{P}_{\mathsf{MAX}}$

Requirement: SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device

operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1. Portable devices are subject to radio frequency

radiation exposure requirements.

Test Notes: The limit was taken from Table 1 of RSS-102 Issue 5.

Frequency	Separation Distance	Maximum Power	RSS-102 Limit	Result
(MHz)	(mm)	(mW)	(mW)	
433.92	≤5	0.0057	25.03	Compliant

¹ Taken from column 5 of the table in Section 7.4 of this test report.

WORLDWIDE
Test Number: 144-19A
Issue Date: 3/29/2018

8. Test Setup Photographs

8.1. Radiated Emissions Front View

WORLDWIDE
Test Number: 144-19A
Issue Date: 3/29/2018

8. Test Setup Photographs

8.2. Radiated Emissions Rear View < 30 MHz

WORLDWIDE
Test Number: 144-19A
Issue Date: 3/29/2018

8. Test Setup Photographs

8.3. Radiated Emissions Rear View 30 MHz - 1 GHz

TESTING CERT #1673.01

8. Test Setup Photographs

8.5. Radiated Emissions Front View > 1 GHz

TESTING CERT #1673.01

8. Test Setup Photographs

8.5. Radiated Emissions Rear View > 1 GHz

9. Test Site Description

Compliance Worldwide is located at 357 Main Street in Sandown, New Hampshire. The test sites at Compliance Worldwide are used for conducted and radiated emissions testing in accordance with the Federal Communications Commission (FCC) and Industry Canada standards. Through our American Association for Laboratory Accreditation (A2LA) ISO Guide 17025:2005 Accreditation our test sites are designated with the FCC (designation number US1091), Industry Canada (file number IC 3023A-1) and VCCI (Member number 3168) under registration number A-0208.

Compliance Worldwide is also designated as a Phase 1 CAB under APEC-MRA (US0132) for Australia/New Zealand AS/NZS CISPR 22, Chinese-Taipei (Taiwan) BSMI CNS 13438 and Korea (RRA) KN 11, KN 13, KN 14-1, KN 22, KN 32, KN 61000-6-3, KN 61000-6-4.

The radiated emissions test site is a 3 and 10 meter enclosed open area test site (OATS). Personnel, support equipment and test equipment are located in the basement beneath the OATS ground plane.

The conducted emissions site is part of a 16' \times 20' \times 12' ferrite tile chamber and uses one of the walls for the vertical ground plane required by EN 55022. A second conducted emissions site is also located in the basement of the OATS site with a 2.3 \times 2.5 meter ground plane and a 2.4 \times 2.4 meter vertical wall.

Both sites are designed to test products or systems 1.5 meters W x 1.5 meters L x 2.0 meters H, floor standing or table top.