



# COMPLIANCE WORLDWIDE INC. TEST REPORT 146-19

In Accordance with the Requirements of

Innovation, Science and Economic Development Canada RSS 210, Issue 9 Federal Communications Commission CFR Title 47 Part 15.229 Low Power License-Exempt Radio Communication Devices Intentional Radiators

Issued to

Secure Care Products, LLC 39 Chenell Drive Concord, NH 03301 603-223-0745

for the

Secure Care 40.68 MHz Patient Worn Transmitter

> FCC ID: KNK-B IC: 5483A-B

Report Issued on March 29, 2019

Testing performed by

Brian F. Breault EMC Test Engineer

**Reviewed By** 

This test report shall not be reproduced, except in full, without written permission from Compliance Worldwide, Inc.





# **Table of Contents**

| 1. Scope                                                     | 3  |
|--------------------------------------------------------------|----|
| 2. Product Details                                           | 3  |
| 2.1. Manufacturer                                            | 3  |
| 2.2. Model Number                                            | 3  |
| 2.3. Serial Number                                           | 3  |
| 2.4. Description                                             | 3  |
| 2.5. Power Source                                            | 3  |
| 2.6. EMC Modifications                                       | 3  |
| 3. Product Configuration                                     | 3  |
| 3.1. Operational Characteristics & Software                  | 3  |
| 3.2. EUT Hardware                                            |    |
| 3.3. Support Equipment                                       | 3  |
| 3.4. Support Equipment Cables                                | 4  |
| 3.5. Block Diagram                                           | 4  |
| 4. Measurements Parameters                                   | 4  |
| 4.1. Measurement Equipment Used to Perform Test              | 4  |
| 4.2. Measurement & Equipment Setup                           | 5  |
| 4.3. Test Procedure                                          | 5  |
| 5. Choice of Equipment for Test Suits                        | 6  |
| 6. Measurement Summary                                       |    |
| 7. Measurement Data                                          |    |
| 7.1. Antenna Requirement                                     |    |
| 7.2. Emission Bandwidth                                      |    |
| 7.3. Bandwidth Requirement in the Band 40.66 MHz - 40.70 MHz |    |
| 7.4. Radiated Field Strength of Fundamental                  |    |
| 7.5. Spurious Radiated Emissions                             | 10 |
| 7.6. Frequency Stability                                     | 23 |
| 7. Test Setup Photographs                                    |    |
| 8. Test Site Description                                     | 29 |





#### 1. Scope

This test report certifies that the Secure Care Products, LLC. 40.68 MHz Patient Worn Transmitter, as tested, meets the Subpart C, FCC Part 15.229 requirements and the ISED Canada RSS 210 Annex II Rules. The scope of this test report is limited to the test sample provided by the client, only in as much as that sample represents other production units. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required

# 2. Product Details

- 2.1. Manufacturer: Secure Care Products, LLC.
- 2.2. Model Number: A22270940
- **2.3. Serial Number:** Device ID 0072
- **2.4. Description:** 40.68 MHz Patient Worn Transmitter for infant security, wandering patient, & resident protection products.
- **2.5. Power Source:** 3.0 VDC (Lithium) non-replaceable
- 2.6. EMC Modifications: None

# 3. Product Configuration

#### 3.1. Operational Characteristics & Software

#### **Operating Instructions for Test**

Use the tester to enable continuous wave features. With the transmitter at the top of the tester, push the "4" key to enable continuous wave output on the low frequency radio. This will output a continuous wave for one minute and then revert back to normal operation.

The "#" key will put the transmitter in sleep mode. The strap needs to be removed to stay in sleep mode.

The "7" key will enable a quick wakeup of the transmitter. The strap must be installed to wake up the transmitter.

#### 3.2. EUT Hardware

| Manufacturer                  | Model/Part # /<br>Options   | Serial<br>Number | Volts | Freq<br>(Hz) | Description/Function                                                                                         |
|-------------------------------|-----------------------------|------------------|-------|--------------|--------------------------------------------------------------------------------------------------------------|
| Secure Care<br>Products, LLC. | Patient Worn<br>Transmitter | ID 0072          | 3.0   | DC           | Patient protection transmitter for infant<br>security, wandering patient, & resident<br>protection products. |

# 3.3. Support Equipment

| Manufacturer                  | Model/Part # / Options | Serial<br>Number | Input<br>Voltage | Freq<br>(Hz) | Description/Function                                          |
|-------------------------------|------------------------|------------------|------------------|--------------|---------------------------------------------------------------|
| Secure Care<br>Products, LLC. | Stat40                 | 0117300128       | N/A              | -            | For setting up the DUT operation.<br>Not used during testing. |





# 3. Product Configuration (continued)

#### 3.4. Support Equipment Cables

| Cable Type | Length | Shield | From | То |
|------------|--------|--------|------|----|
| None       |        |        |      |    |

#### 3.5. Block Diagram



# 4. Measurements Parameters

#### 4.1. Measurement Equipment and Software Used to Perform Test

| Device                                                                                    | Manufacturer                | Model No. | Serial No.                       | Cal Due   | Interval |  |  |  |  |
|-------------------------------------------------------------------------------------------|-----------------------------|-----------|----------------------------------|-----------|----------|--|--|--|--|
| EMI Test Receiver, 9kHz - 7GHz <sup>1</sup>                                               | Rohde & Schwarz             | ESR7      | 101156                           | 9/10/2020 | 2 Years  |  |  |  |  |
| EMI Test Receiver, 10 Hz - 7GHz <sup>1</sup>                                              | Rohde & Schwarz             | ESR7      | 101770                           | 10/3/2020 | 2 Years  |  |  |  |  |
| Spectrum Analyzer, 2 Hz to 26.5 GHz <sup>2</sup>                                          | Rohde & Schwarz             | FSW26     | 102057                           | 9/13/2020 | 2 Years  |  |  |  |  |
| Spectrum Analyzer, 9 kHz to 40 GHz <sup>3</sup>                                           | Rohde & Schwarz             | FSV40     | 100899                           | 9/10/2020 | 2 Years  |  |  |  |  |
| EMI Receiver 9 kHz - 1 GHz                                                                | Hewlett Packard             | 8546A     | 3650A00360                       | 9/11/2020 | 2 Years  |  |  |  |  |
| Loop Antenna 9 kHz - 30 MHz                                                               | EMCO                        | 6512      | 9309-1139                        | 1/28/2022 | 3 Years  |  |  |  |  |
| Biconilog Antenna, 30 MHz - 2 GHz                                                         | Sunol Sciences              | JB1       | A050913                          | 6/3/2019  | 2 Years  |  |  |  |  |
| Horn Antenna, 960 MHz to 18 GHz                                                           | Electro-Metrics             | EM-6961   | 6337                             | 10/3/2020 | 2 Years  |  |  |  |  |
| Preamplifier, 1 GHz to 26.5 GHz                                                           | Hewlett Packard             | 8449B     | 3008A01323                       | 9/11/2020 | 2 Years  |  |  |  |  |
| Digital Multimeter w/ Thermocouple                                                        | Fluke                       | 187       | 83030167                         | 3/30/2019 | 1 Year   |  |  |  |  |
| Digital Barometer                                                                         | Control Company             | 4195      | ID236                            | 4/3/2020  | 2 Years  |  |  |  |  |
| Temperature Chamber                                                                       | Associated<br>Environmental | SD-308    | 10782                            | CNR       |          |  |  |  |  |
| <sup>1</sup> ESR7 Firmware revision: V3.46<br><sup>2</sup> ESW26 Firmware revision: V4.30 | ,                           |           | Previous V3.36<br>Previous V3.36 | ,         |          |  |  |  |  |

<sup>2</sup> FSW26 Firmware revision: V4.30 SP1, Date installed: 02/22/2019 <sup>3</sup> FSV40 Firmware revision: V2.30 SP4, Date installed: 05/04/2016 Previous V3.36 SP2, installed 12/3/2018. Previous V3.36 SP2, installed 10/26/2018. Previous V2.30 SP1, installed 10/22/2014.





### 4. Measurements Parameters (continued)

#### 4.2 Measurement & Equipment Setup

Test Dates: Test Engineer: Site Temperature (°C): Relative Humidity (%RH): Frequency Range: Measurement Distance: EMI Receiver IF Bandwidth:

EMI Receiver Avg Bandwidth:

**Detector Functions:** 

3/1/2019 to 3/22/2019 Brian Breault, Sean Defelice 21.4 32 30 kHz to 1 GHz 3 Meters 120 kHz (30 MHz – 1 GHz) 1 MHz (>1 GHz) 300 kHz (30 MHz – 1 GHz) 3 MHz (>1 GHz) Peak, Quasi-Peak and Average

#### 4.3 Test Procedure

Test measurements were made in accordance FCC Part 15.229: Operation within the band 40.66–40.70 MHz.

The test methods used to generate the data in this test report are in accordance with ANSI C63.10: 2013, American National Standard for Methods for Unlicensed Wireless Devices

Preliminary measurements were made with the cut-band strap installed and removed. It was determined that the highest emissions were achieved with the strap installed. Based on this criterion, all field strength measurements were made with the strap installed.

In addition, the measurements were performed with the device in three orthogonal positions in accordance with ANSI C63.10-2013, sections 5.10.1, 6.4.6 and Annex H. The three orthogonal axes were defined as follows:







### 5. Choice of Equipment for Test Suits

#### 5.1. Choice of Model

This test report is based on the test samples supplied by the manufacturer and are reported by the manufacturer to be equivalent to the production units.

#### 5.2. Presentation

The test sample was tested complete with all required ancillary equipment. Refer to Section 3 of this report for the product equipment configuration.

#### 5.3. Choice of Operating Frequencies

The transmitter in the unit under test utilizes a single operating frequency at approximately 40.68 MHz

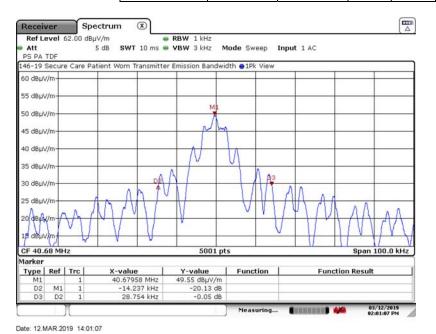
#### 6. Measurement Summary

| Test Requirement                                           | FCC<br>Requirement       | ISED<br>Requirement                     | Test<br>Report<br>Section | Result    | Comment                                               |
|------------------------------------------------------------|--------------------------|-----------------------------------------|---------------------------|-----------|-------------------------------------------------------|
| Antenna Requirement                                        | 15.203                   | RSS-210<br>A1.1                         | 7.1                       | Compliant | The antenna is enclosed within the device under test. |
| Emission Bandwidth                                         | C63.10-2013<br>§6.9      | Not Required                            | 7.2                       | Compliant |                                                       |
| Bandwidth Requirement in the<br>Band 40.66 MHz - 40.70 MHz | Not Required             | RSS-210<br>B.7(b)                       | 7.3                       | Compliant |                                                       |
| Radiated Field Strength of<br>Fundamental                  | 15.229 (b)               | RSS-210<br>B.7                          | 7.4                       | Compliant |                                                       |
| Spurious and Harmonic<br>Radiated Emissions                | 15.231 (b)(3),<br>15.209 | RSS-210<br>B.7(c & d)<br>RSS-GEN<br>7.3 | 7.5                       | Compliant |                                                       |
| Frequency Stability                                        | 15.229 (d)               | RSS-210<br>B.7(e)                       | 7.6                       | Compliant |                                                       |





#### 7. Measurement Data


#### 7.1. Antenna Requirement (Section 15.203)

- Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.
- Status: The antenna utilized by the device under test is contained inside a sealed unit.

#### 7.2. Emission Bandwidth

- Requirement: The bandwidth requirement for FCC Part 15.229 is not specified. The 20 dB bandwidth has been included as part of this test report.
- Test Note: Reference ANSI C63.10-2013, Section 6.9.1. The span range for the SA display shall be between two times and five times the OBW. The nominal IF filter bandwidth (3 dB RBW) should be approximately 1% to 5% of the OBW, unless otherwise specified, depending on the applicable requirement. The dynamic range of the SA at the selected RBW shall be more than 10 dB below the target "dB down" (attenuation) requirement.

| Fundamental<br>Frequency |        |       | Result    |
|--------------------------|--------|-------|-----------|
| (MHz)                    | (kHz)  | (kHz) |           |
| 40.68                    | 28.754 | N/A   | Compliant |

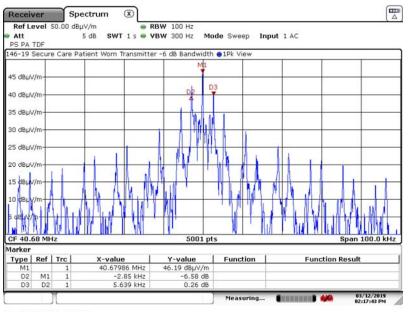


Page 7 of 29





#### 7.3. Bandwidth Requirement in the Band 40.66 MHz - 40.70 MHz


#### (ISED RSS-210 2.7, RSS-Gen 4.6.2)

Requirement: The -6 dB bandwidth of the emission shall be confined within the 40.66 - 40.70 MHz band edges.

Test Note: Reference RSS-Gen, Section 4.6.2. Where indicated, the -6 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 6 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

#### Conclusion: The Emissions from the DUT meets the above requirement.

|                          | -6 dB Ba      | ndwidth       | Band I        |               |           |
|--------------------------|---------------|---------------|---------------|---------------|-----------|
| Fundamental<br>Frequency | Lower<br>Edge | Upper<br>Edge | Lower<br>Edge | Upper<br>Edge | Result    |
| (MHz)                    | (MHz)         | (MHz)         | (MHz)         | (MHz)         |           |
| 40.68                    | 40.6770       | 40.6855       | 40.66         | 40.70         | Compliant |



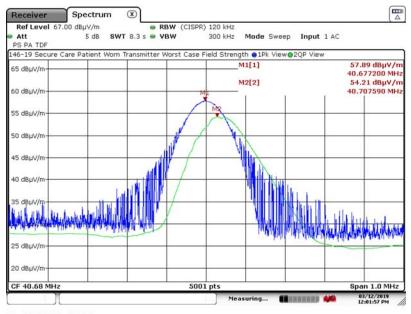
Date: 12.MAR.2019 14:17:43





#### 7.4. Radiated Field Strength of Fundamental (15.229, Section (a))

Requirement: Unless operating pursuant to the provisions in section 15.231, the field strength of any emissions within this band shall not exceed 1,000 microvolts/meter at 3 meters.


| Fundamental Frequency | Field Strength of Fundamental |  |  |  |
|-----------------------|-------------------------------|--|--|--|
| (MHz)                 | (μV/m)                        |  |  |  |
| 40.66 - 40.70         | 1000 µV/m                     |  |  |  |

Fundamental Limit at 40.68 MHz = 1000 µV/m = 60.00 dBµV/m

- Test Note: The data detailed in this section of the test report represents the worst case product orientation.
- Conclusion: The radiated field strength of the device under test complies with the requirements detailed in FCC Part 15.229, Section (a).

#### 7.3.1. Worst Case Radiated Field Strength of Fundamental

| Frequency<br>(MHz) | Ampl<br>(dBµ | itude <sup>1</sup><br>V/m) | Limit<br>(dBµV/m) |       | Margin<br>(dB) |       | Ant<br>Polarity | Ant<br>Height | Turntable<br>Azimuth | Result    |
|--------------------|--------------|----------------------------|-------------------|-------|----------------|-------|-----------------|---------------|----------------------|-----------|
| ()                 | Peak         | QP                         | Peak              | QP    | Peak           | QP    | H/V             | cm            | Deg                  |           |
| 40.68              | 57.89        | 54.21                      | 80.00             | 60.00 | -22.11         | -5.79 | V               | 100           | 174                  | Compliant |



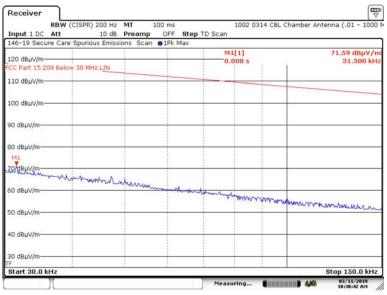




- 7.5. Spurious & Harmonic Radiated Emissions, 30 MHz to 1.0 GHz (15.229 Section (c), 15.209, ISED B.7 (c), ISED B.7 (d)
  - Requirement: The spurious radiated emissions requirements for intentional radiators shall demonstrate compliance with the field strength limits detailed in Part 15.229, Section (c): The field strength of any emissions appearing outside of this band shall not exceed the general radiated emissions limits in Section 15.209.

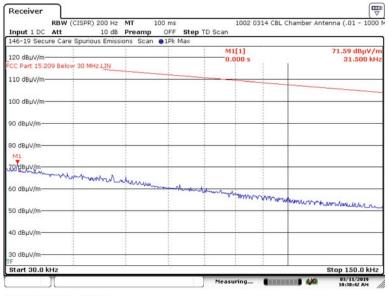
Harmonic radiated emissions not exceed 225  $\mu\text{V/m}$  at 3 m measured with a quasi-peak detector.

- Procedure: This test was performed in accordance with the information provided in ANSI C63.10-2013, Section 7.5.
- Test Notes: Section 7.5.3 screen captures test notes:
  - 1. The emission marked by the pair of vertical cursors in the section 7.5.3 screen captures is the 40.68 MHz fundamental intentional radiator frequency.
  - 2. The emission marked by marker M1 is the 433.92 MHz intentional emission controlling the door functions. This transmitter is detailed in a separate test report. In some of the plots, the second harmonic of this frequency is also marked.
- Conclusion: Compliant. The Emissions from the DUT did not exceed the field strength levels specified in FCC Part 15.209.






7.5. Spurious & Harmonic Radiated Emissions, 30 MHz to 1.0 GHz (15.229 Section (c), 15.209, ISED B.7 (c), ISED B.7 (d)


7.5.1. Spurious Radiated Emissions, 30 kHz to 150 kHz Test Results

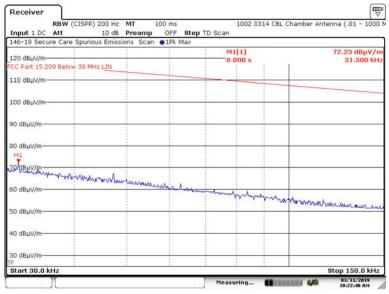
#### 7.5.1.1. X-Axis, Parallel Antenna



Date: 11.MAR.2019 10:30:43

# 7.5.1.2. X-Axis, Perpendicular Antenna




Date: 11.MAR.2019 10:30:43

Page 11 of 29





- 7.5. Spurious & Harmonic Radiated Emissions, 30 MHz to 1.0 GHz (15.229 Section (c), 15.209, ISED B.7 (c), ISED B.7 (d)
  - 7.5.1. Spurious Radiated Emissions, 30 kHz to 150 kHz Test Results
    - 7.5.1.3. X-Axis, Ground Parallel Antenna

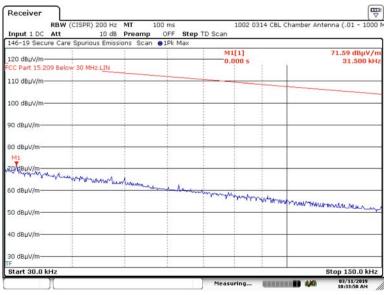


Date: 11.MAR.2019 10:22:41

# 7.5.1.4. Y-Axis, Parallel Antenna

|                   |          | ISPR) 200 Hz   | MT        | 100 ms   | 1002 (        | 0314 CBL Chambe   | r Antenna (.01 - 1000                          |
|-------------------|----------|----------------|-----------|----------|---------------|-------------------|------------------------------------------------|
| Input 1 DC        |          |                |           | OFF Step | TD Scan       |                   |                                                |
| 146-19 Secu       | ire Care | Spurious Emiss | ions Scan | 1Pk Max  |               |                   |                                                |
| 120 dBuV/m-       |          |                |           | 12       | M1[1]         |                   | 71.51 dBµV/n<br>31.500 kH                      |
| CC Part 15.2      |          | 30 MHz.LIN     |           |          | 0.000 \$      | 1                 | 31.500 KH                                      |
| 110 dBuV/m-       |          |                |           |          |               |                   |                                                |
| 110 0Bpv/m-       |          |                |           |          |               |                   |                                                |
|                   |          |                |           |          |               |                   |                                                |
| 100 dBµV/m-       | -        |                |           |          |               |                   |                                                |
|                   |          |                |           |          |               |                   |                                                |
| 90 dBµV/m—        |          |                |           |          |               |                   |                                                |
|                   |          |                |           |          |               |                   |                                                |
| 80 dBµV/m—        |          |                |           | -        |               |                   |                                                |
| MI                |          |                |           |          |               |                   |                                                |
| 70/dBuV/m-        |          | 10000 10 V     | -         |          |               |                   |                                                |
| 1.7               | J.M.M.   | mounteret      | down      |          |               |                   | holdentertertertertertertertertertertertertert |
| 60 dBµV/m—        | -        |                |           | mandande | infrahunding. | 1 111             |                                                |
|                   |          |                |           |          | 1 1 1 1 1 1   | miner water where | holder harden and a second                     |
| 50 dBµV/m-        |          |                |           |          |               |                   | A CONTRACTOR OF A CALLARY                      |
|                   |          |                |           |          |               |                   |                                                |
| 40 dBµV/m-        |          |                | -         |          |               |                   |                                                |
|                   |          |                |           |          |               |                   |                                                |
| 30 dBµV/m—        |          |                | -         |          |               |                   |                                                |
| F<br>Start 30.0 k | 1.1.2    |                | 1         |          |               |                   | Ptop 150 0 kUs                                 |
| atart 30.0 P      | (HZ      |                |           |          |               |                   | Stop 150.0 kHz                                 |

Date: 11.MAR.2019 10:45:56


Page 12 of 29





- 7.5. Spurious & Harmonic Radiated Emissions, 30 MHz to 1.0 GHz (15.229 Section (c), 15.209, ISED B.7 (c), ISED B.7 (d)
  - 7.5.1. Spurious Radiated Emissions, 30 kHz to 150 kHz Test Results

#### 7.5.1.5. Y-Axis, Perpendicular Antenna

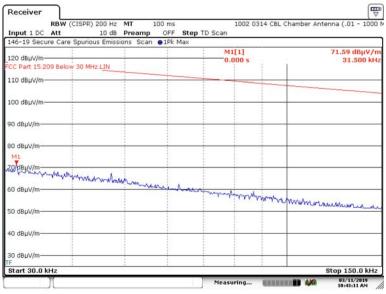


Date: 11.MAR.2019 10:33:51

# 7.5.1.6. Y-Axis, Ground Parallel Antenna

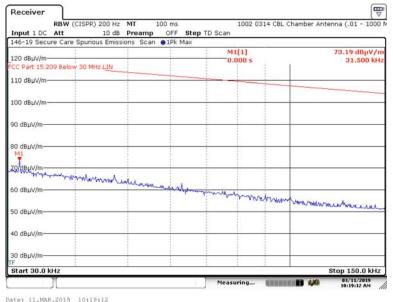
| RBW<br>Input 1 DC Att | (CISPR) 200 Hz | MT 1<br>Preamp | OO ms<br>OFF Step |                  | amber Antenna (.01 - 1000  |
|-----------------------|----------------|----------------|-------------------|------------------|----------------------------|
| 146-19 Secure Car     |                |                |                   | TD Scall         |                            |
| 120 dBµV/m            | w 30 MHz.LIN   |                |                   | M1[1]<br>0.000 s | 73.19 dBµV/n<br>31.500 kH; |
| 110 dBµV/m            |                |                |                   |                  |                            |
| 100 dBµV/m            |                |                |                   |                  |                            |
| 90 dBµV/m             |                |                |                   |                  |                            |
| 30 dBµV/m             |                | -              |                   |                  |                            |
| COLEBRA/W             | Workermann     |                |                   | manyward         |                            |
| 50 dBµV/m             |                | mulum          | minhorm           | pmandee          |                            |
|                       |                |                |                   | manuppont        | warmen when and            |
| 50 dBµV/m             |                |                |                   |                  |                            |
| 40 dBµV/m             |                | _              |                   |                  |                            |
| 30 dBµV/m             |                |                |                   |                  |                            |
| Start 30.0 kHz        |                |                |                   |                  | Stop 150.0 kHz             |

Page 13 of 29






7.5. Spurious & Harmonic Radiated Emissions, 30 MHz to 1.0 GHz (15.229 Section (c), 15.209, ISED B.7 (c), ISED B.7 (d)


7.5.1. Spurious Radiated Emissions, 30 kHz to 150 kHz Test Results

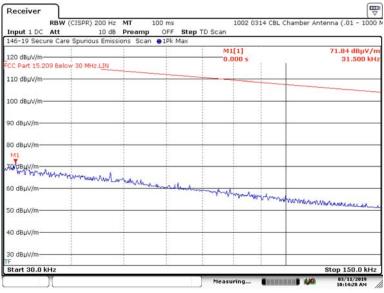
#### 7.5.1.7. Z-Axis, Parallel Antenna



Date: 11.MAR.2019 10:43:11

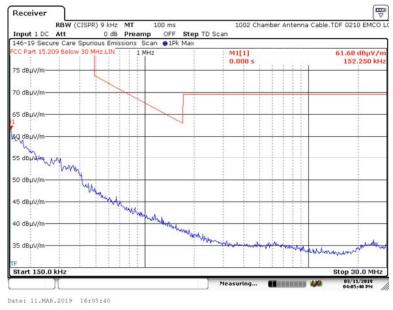
# 7.5.1.8. Z-Axis, Perpendicular Antenna




Page 14 of 29






- 7.5. Spurious & Harmonic Radiated Emissions, 30 MHz to 1.0 GHz (15.229 Section (c), 15.209, ISED B.7 (c), ISED B.7 (d)
  - 7.5.1. Spurious Radiated Emissions, 30 kHz to 150 kHz Test Results

#### 7.5.1.9. Z-Axis, Ground Parallel Antenna



Date: 11.MAR.2019 10:14:28

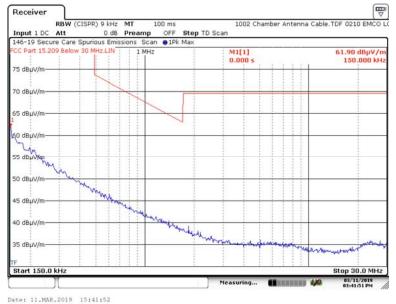
# 7.5.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results 7.5.2.1. X-Axis, Parallel Antenna



Page 15 of 29






- 7.5. Spurious & Harmonic Radiated Emissions, 30 MHz to 1.0 GHz (15.229 Section (c), 15.209, ISED B.7 (c), ISED B.7 (d)
  - 7.5.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results

#### 7.5.2.2. X-Axis, Perpendicular Antenna



Date: 11.MAR.2019 15:58:39

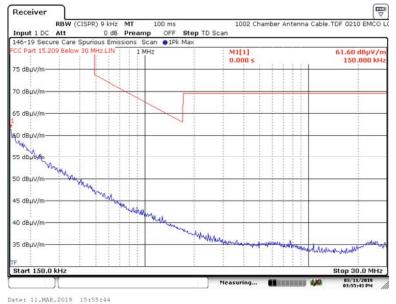
# 7.5.2.3. X-Axis, Ground Parallel Antenna




Page 16 of 29






- 7.5. Spurious & Harmonic Radiated Emissions, 30 MHz to 1.0 GHz (15.229 Section (c), 15.209, ISED B.7 (c), ISED B.7 (d)
  - 7.5.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results

#### 7.5.2.4. Y-Axis, Parallel Antenna



Date: 11.MAR.2019 16:10:08

# 7.5.2.5. Y-Axis, Perpendicular Antenna



Page 17 of 29





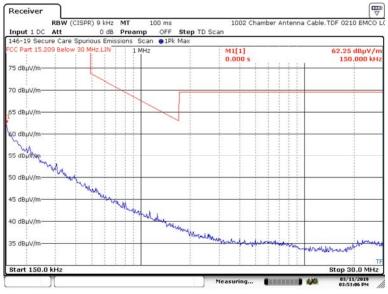
- 7.5. Spurious & Harmonic Radiated Emissions, 30 MHz to 1.0 GHz (15.229 Section (c), 15.209, ISED B.7 (c), ISED B.7 (d)
  - 7.5.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results
    - 7.5.2.6. Y-Axis, Ground Parallel Antenna



Date: 11.MAR.2019 15:44:31

# 7.5.2.7. Z-Axis, Parallel Antenna




Page 18 of 29





- 7.5. Spurious & Harmonic Radiated Emissions, 30 MHz to 1.0 GHz (15.229 Section (c), 15.209, ISED B.7 (c), ISED B.7 (d)
  - 7.5.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results

#### 7.5.2.8. Z-Axis, Perpendicular Antenna

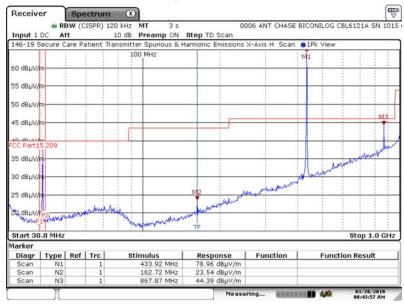


Date: 11.MAR.2019 15:53:06

# 7.5.2.9. Z-Axis, Ground Parallel Antenna

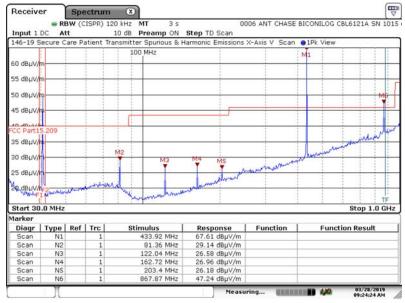


Page 19 of 29






7.5. Spurious & Harmonic Radiated Emissions, 30 MHz to 1.0 GHz (15.229 Section (c), 15.209, ISED B.7 (c), ISED B.7 (d)


7.5.3. Spurious Radiated Emissions, 30 MHz to 1 GHz Test Results

#### 7.5.3.1. X-Axis, Horizontal Polarity



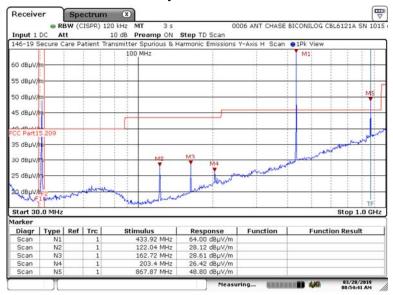
Date: 28.MAR.2019 08:43:57

#### 7.5.3.2. X-Axis, Vertical Polarity



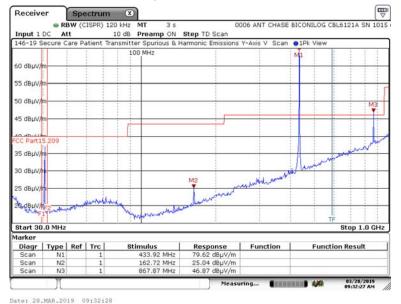
Date: 28.MAR.2019 09:24:24

Page 20 of 29






7.5. Spurious & Harmonic Radiated Emissions, 30 MHz to 1.0 GHz (15.229 Section (c), 15.209, ISED B.7 (c), ISED B.7 (d)


#### 7.5.3. Spurious Radiated Emissions, 30 MHz to 1 GHz Test Results

#### 7.5.3.3. Y-Axis, Horizontal Polarity

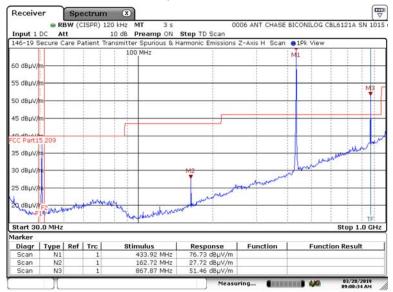


Date: 28.MAR.2019 08:54:41

#### 7.5.3.4. Y-Axis, Vertical Polarity

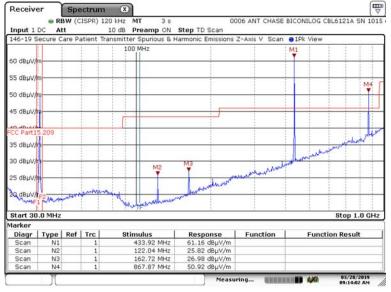


Page 21 of 29






7.5. Spurious & Harmonic Radiated Emissions, 30 MHz to 1.0 GHz (15.229 Section (c), 15.209, ISED B.7 (c), ISED B.7 (d)


7.5.3. Spurious Radiated Emissions, 30 MHz to 1 GHz Test Results

#### 7.5.3.5. Z-Axis, Horizontal Polarity



Date: 28.MAR.2019 09:00:34

#### 7.5.3.6. Z-Axis, Vertical Polarity



Date: 28.MAR.2019 09:14:03

Page 22 of 29





# 7.6. Frequency Stability (15.229 Section (d))

- Requirement: The frequency tolerance of the carrier signal shall be maintained within  $\pm 0.01\%$  of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.
- Test Note: The Secure Care ENVisionIT<sup>®</sup> model A20450952 All in One is housed in a sealed enclosure with a permanent Lithium battery.
- Conclusion: The intentional emission falls within the frequency tolerance required by FCC Part 15.229 Section (d)).

| Assigned<br>Freq. | Temperature | Voltage | Meas.<br>Frequency | Tolerance<br>% | Result    |
|-------------------|-------------|---------|--------------------|----------------|-----------|
| MHz               | Deg. C      | VDC     | MHz                |                |           |
| 40.68             | Nominal     | 3 VDC   | 40.679249          | N/A            | N/A       |
|                   | 50          |         | 40.679490          | 0.000600       | Compliant |
|                   | 40          |         | 40.680443          | 0.002900       | Compliant |
|                   | 30          |         | 40.679454          | 0.000500       | Compliant |
|                   | 20          |         | 40.679880          | 0.001600       | Compliant |
|                   | 10          |         | 40.679955          | 0.001700       | Compliant |
|                   | 0           |         | 40.679190          | 0.000100       | Compliant |
|                   | -10         |         | 40.679747          | 0.001200       | Compliant |
|                   | -20         |         | 40.680438          | 0.002300       | Compliant |





8.1. Radiated Emissions Front View



Page 24 of 29





8.2. Radiated Emissions Rear View < 30 MHz




Page 25 of 29





#### 8.3. Radiated Emissions Rear View 30 MHz - 1 GHz



Page 26 of 29







# 8.4. Frequency Stability Test Setup



Page 27 of 29





# 8.5. Frequency Stability device Under Test



Page 28 of 29





### 9. Test Site Description

Compliance Worldwide is located at 357 Main Street in Sandown, New Hampshire. The test sites at Compliance Worldwide are used for conducted and radiated emissions testing in accordance with the Federal Communications Commission (FCC) and Industry Canada standards. Through our American Association for Laboratory Accreditation (A2LA) ISO Guide 17025:2005 Accreditation our test sites are designated with the FCC (designation number **US1091**), Industry Canada (file number **IC 3023A-1)** and VCCI (Member number 3168) under registration number A-0208.

Compliance Worldwide is also designated as a Phase 1 CAB under APEC-MRA (US0132) for Australia/New Zealand AS/NZS CISPR 22, Chinese-Taipei (Taiwan) BSMI CNS 13438 and Korea (RRA) KN 11, KN 13, KN 14-1, KN 22, KN 32, KN 61000-6-3, KN 61000-6-4.

The radiated emissions test site is a 3 and 10 meter enclosed open area test site (OATS). Personnel, support equipment and test equipment are located in the basement beneath the OATS ground plane.

The conducted emissions site is part of a 16' x 20' x 12' ferrite tile chamber and uses one of the walls for the vertical ground plane required by EN 55022. A second conducted emissions site is also located in the basement of the OATS site with a 2.3 x 2.5 meter ground plane and a 2.4 x 2.4 meter vertical wall.

Both sites are designed to test products or systems 1.5 meters W x 1.5 meters L x 2.0 meters H, floor standing or table top.