Amber Helm Development L.C.

92723 Michigan Hwy-152 Sister Lakes, Michigan 49047 USA Tel: 888-847-8027

Issued: February 27, 2023

BT FHSS Test Report

regarding

USA: CFR Title 47, Part 15.247 (Emissions) Canada: IC RSS-247/GENe (Emissions)

for

SG5PHX

Category: Vehicular Domain Controller

Judgments: FCC 15.247, ISED RSS-247v2 Compliant Testing Completed: February 27, 2023

Prepared for:

Ford Motor Company

Building 5 20300 Rotunda Dr., Dearborn Michigan 48124 United States Phone: 313-805-5627, Fax: 313-845-3804 Contact: David Orris, dorris@ford.com

Data Rec./Rev. by:

Rpt. Auth. by:

Joseph Brunett, EMC-002790-NE

Date of Issue:

February 27, 2023

Rpt. Prep./Rev. by:

eph Brunett, EMC-002790-NE Dr hn. ants Nantz

Report No.: SG5PHX-WR2301NABT

Revision History

\mathbf{Rev}	. No.	Date	Details	Revised By	
r0 r1		February 27, 2023 May 3, 2023	Initial Release. Updates per TCB comments.	J. Brunett J. Brunett	
Con	tents				
Revi	sion History				2
Table	e of Content	s			2
1 Te 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	 Laboratory Report Re Subcontract Test Data Limitation Copyright Endorseme Test Locat 	tention cted Testing of Results ents	<pre></pre>		$ \begin{array}{c} 4 \\ 4 \\ $
2 Te		tions and Procedures	lures		6 6
3 C 3.1	Description 3.1.1 EU 3.1.2 Mo 3.1.3 Var 3.1.4 Tes 3.1.5 Fur 3.1.6 Mo 3.1.7 Pro-	n and Declarations T Configuration des of Operation riants t Samples difications Made oduction Intent	e Equipment Under Test		7 7 8 8 8 8 8 8 9 9
4 En 4.5	4.1.1 Rad 4.1.2 Con 4.1.3 Pow 2 Intentional 4.2.1 Dur 4.2.2 Hop 4.2.3 Hop 4.2.4 Cha 4.2.5 Nur 4.2.6 Cha 4.2.7 Effe 3 Unintentio	diated Test Setup and Proceed nducted Emissions Test Setup ver Supply Variation I Emissions	edures		10 10 12 12 13 13 15 16 17 19 20 21 23

 $\mathbf{5}$

4.3.2	OOB Transmit Chain Spurious Emissions	26
Measureme	ent Uncertainty and Accreditation Documents	27

List of Tables

1	Test Site List.
2	Equipment List.
3	EUT Declarations.
4	Pulsed Emission Characteristics (Duty Cycle)
5	Hopping Channel Dwell Time
6	Intentional Emission Bandwidth.
7	Measured Number of Hopping Channels
8	Measured Channel Separation
9	Radiated Power Results
10	Transmit Chain Spurious Emissions
11	Measurement Uncertainty

List of Figures

1	Photos of EUT.	$\overline{7}$
2	EUT Test Configuration Diagram.	8
3	Radiated Emissions Diagram of the EUT.	10
4	Radiated Emissions Test Setup Photograph(s).	11
5	Conducted RF Test Setup Photograph(s).	12
6	Example Plots of Test Mode Duty Cycle.	14
7	Example Plots of Channel Dwell Time (Hopping).	15
8	Example Intentional Emission Bandwidth Plots.	18
9	Example Measured Number of Hopping Channels.	19
10	Example Measured Channel Separation.	
11	Conducted RF Power Plots	22
12	Worst Case Transmitter OOB Emissions Measured.	26
13	Accreditation Documents	27

1 Test Report Scope and Limitations

1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: 3161A and 24249). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until March 2033.

1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

1.4 Test Data

This test report contains data included within the laboratory's scope of accreditation. Any data in this report that is not covered under the laboratory's scope is clearly identified.

1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C.

1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Table 1: Test Site List.					
Description	Location	Quality Num.			
OATS (3 meter)	3615 E Grand River Rd., Williamston, Michigan 48895	OATSC			

1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 2. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards.

Table 2: Equipment List.

Description	Manufacturer/Model	\mathbf{SN}	Quality Num.	Cal/Ver By / Date Due
EMI Receiver	R & S / ESW26	101313	RSESW2601	RS / October-2023
Spec. Analyzer 70GHz	Anritsu / MS2760A	1705006	ANMS2760A1	ANR / Sept-2023
Pk/Avg Pwr Mtr	BK Prec. / RFP3008	620C22101	BKPM300801	BK / Mar-2024
Power Meter	R & S / NRP50S	101087	RSNRP50	RS / Nov-2024

2 Test Specifications and Procedures

2.1 Test Specification and General Procedures

The goal of Ford Motor Company is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Ford Motor Company SG5PHX for compliance to:

Country/Region	Rules or Directive	Referenced Section(s)
United States Canada	Code of Federal Regulations ISED Canada	CFR Title 47, Part 15.247 IC RSS-247/GENe
this testing. In conjunction with t	1 1 0	rules and directives above at the date of becifications and procedures are followed ons.
ANSI C63.4:2014	"Methods of Measurement of Radio-No cal and Electronic Equipment in the R	ise Emissions from Low-Voltage Electri- ange of 9 kHz to 40 GHz"
ANSI C63.10:2013	"American National Standard of Proc censed Wireless Devices"	edures for Compliance Testing of Unli-
KDB 558074 D01 v05r02	TRANSMISSION SYSTEM, FREQU	MEASUREMENTS ON DIGITAL JENCY HOPPING SPREAD SPEC- TEM DEVICES OPERATING UNDER ES "
KDB 662911 D01v02r01	"Emissions Testing of Transmitters wit	h Multiple Outputs in the Same Band"
KDB 662911 D02 v01	"MIMO with Cross-Polarized Antenna	"
TP0102RA	"AHD Internal Document TP0102 - R	adiated Emissions Test Procedure"

Date: February 27, 2023

3 Configuration and Identification of the Equipment Under Test

3.1 Description and Declarations

The equipment under test is a vehicle entertainment and information system containing Bluetooth, BLE, and 2x2 WiFi. The EUT is approximately 15 x 22 x 4 cm in dimension, and is depicted in Figure 1. It is powered by 13.5 VDC nominal vehicular power system. In use, this device is a vehicle entertainment module permanently installed into Ford motor vehicles. Table 3 outlines provider declared EUT specifications.

Figure 1: Photos of EUT.

Table 3: EU	Declarations.
-------------	---------------

Equipment Type:Vehicular Domain ControllerCountry of Origin:Not DeclaredNominal Supply:13.5 VDC nominalOper. Temp Range: -40° C to $+75^{\circ}$ CFrequency Range:BT/BLE/2G WLAN (2400 – 2483.5 MHz)Antenna Dimension:IntegralAntenna Type:PCB TraceAntenna Gain:4.3 dBi max. (2400 – 2483.5 MHz)Number of Channels:BT, BASIC/EDR2M/EDR3M (0-79)Channel Spacing:BT 1 MHzAlignment Range:Not DeclaredType of Modulation:BT: GFSK, $\pi/4$ -DQPSK, 8DPSKUnited StatesFCC ID Number:FCC ID Number:KMH-SG5PHXClassification:FHSSCanadaI422A-SG5PHX	General Declarations	
Nominal Supply:13.5 VDC nominalOper. Temp Range: -40° C to $+75^{\circ}$ CFrequency Range:BT/BLE/2G WLAN (2400 - 2483.5 MHz)Antenna Dimension:IntegralAntenna Type:PCB TraceAntenna Gain:4.3 dBi max. (2400 - 2483.5 MHz)Number of Channels:BT, BASIC/EDR2M/EDR3M (0-79)Channel Spacing:BT 1 MHzAlignment Range:Not DeclaredType of Modulation:BT: GFSK, $\pi/4$ -DQPSK, 8DPSKUnited StatesFCC ID Number:KMH-SG5PHXClassification:CanadaFHSS	Equipment Type:	Vehicular Domain Controller
Oper. Temp Range: -40° C to $+75^{\circ}$ CFrequency Range:BT/BLE/2G WLAN (2400 - 2483.5 MHz)Antenna Dimension:IntegralAntenna Type:PCB TraceAntenna Gain:4.3 dBi max. (2400 - 2483.5 MHz)Number of Channels:BT, BASIC/EDR2M/EDR3M (0-79)Channel Spacing:BT 1 MHzAlignment Range:Not DeclaredType of Modulation:BT: GFSK, $\pi/4$ -DQPSK, 8DPSKUnited StatesFCC ID Number:FCC ID Number:KMH-SG5PHXClassification:FHSS	Country of Origin:	Not Declared
Frequency Range:BT/BLE/2G WLAN (2400 – 2483.5 MHz)Antenna Dimension:IntegralAntenna Type:PCB TraceAntenna Gain:4.3 dBi max. (2400 – 2483.5 MHz)Number of Channels:BT, BASIC/EDR2M/EDR3M (0-79)Channel Spacing:BT 1 MHzAlignment Range:Not DeclaredType of Modulation:BT: GFSK, π/4-DQPSK, 8DPSKUnited StatesFCC ID Number:FCC ID Number:KMH-SG5PHXClassification:FHSS	Nominal Supply:	13.5 VDC nominal
Antenna Dimension:IntegralAntenna Type:PCB TraceAntenna Gain:4.3 dBi max. (2400 – 2483.5 MHz)Number of Channels:BT, BASIC/EDR2M/EDR3M (0-79)Channel Spacing:BT 1 MHzAlignment Range:Not DeclaredType of Modulation:BT: GFSK, π/4-DQPSK, 8DPSKUnited StatesFCC ID Number:FCC ID Number:KMH-SG5PHXClassification:FHSS	Oper. Temp Range:	-40° C to $+75^{\circ}$ C
Antenna Type: PCB Trace Antenna Gain: 4.3 dBi max. (2400 – 2483.5 MHz) Number of Channels: BT, BASIC/EDR2M/EDR3M (0-79) Channel Spacing: BT 1 MHz Alignment Range: Not Declared Type of Modulation: BT: GFSK, π/4-DQPSK, 8DPSK United States FCC ID Number: KMH-SG5PHX FHSS Canada	Frequency Range:	BT/BLE/2G WLAN (2400 – 2483.5 MHz)
Antenna Gain: 4.3 dBi max. (2400 – 2483.5 MHz) Number of Channels: BT, BASIC/EDR2M/EDR3M (0-79) Channel Spacing: BT 1 MHz Alignment Range: Not Declared Type of Modulation: BT: GFSK, π/4-DQPSK, 8DPSK United States FCC ID Number: KMH-SG5PHX FHSS Canada FHSS	Antenna Dimension:	Integral
Number of Channels: BT, BASIC/EDR2M/EDR3M (0-79) Channel Spacing: BT 1 MHz Alignment Range: Not Declared Type of Modulation: BT: GFSK, π/4-DQPSK, 8DPSK United States FCC ID Number: KMH-SG5PHX FHSS Canada	Antenna Type:	PCB Trace
Channel Spacing: BT 1 MHz Alignment Range: Not Declared Type of Modulation: BT: GFSK, π/4-DQPSK, 8DPSK United States FCC ID Number: KMH-SG5PHX FHSS Canada FHSS	Antenna Gain:	4.3 dBi max. (2400 – 2483.5 MHz)
Alignment Range: Not Declared Type of Modulation: BT: GFSK, π/4-DQPSK, 8DPSK United States FCC ID Number: KMH-SG5PHX FHSS Canada FHSS	Number of Channels:	BT, BASIC/EDR2M/EDR3M (0-79)
Type of Modulation: BT: GFSK, π/4-DQPSK, 8DPSK United States FCC ID Number: KMH-SG5PHX FHSS Canada FHSS	Channel Spacing:	BT 1 MHz
United States FCC ID Number: KMH-SG5PHX Classification: FHSS Canada	Alignment Range:	Not Declared
FCC ID Number: KMH-SG5PHX Classification: FHSS Canada Canada	Type of Modulation:	BT: GFSK, $\pi/4$ -DQPSK, 8DPSK
Classification: FHSS Canada	United States	
Canada	FCC ID Number:	KMH-SG5PHX
	Classification:	FHSS
IC Number: 1422A-SG5PHX	Canada	
	IC Number:	1422A-SG5PHX
Classification: Vehicle Entertainment/Network Device	Classification:	Vehicle Entertainment/Network Device

3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 2.

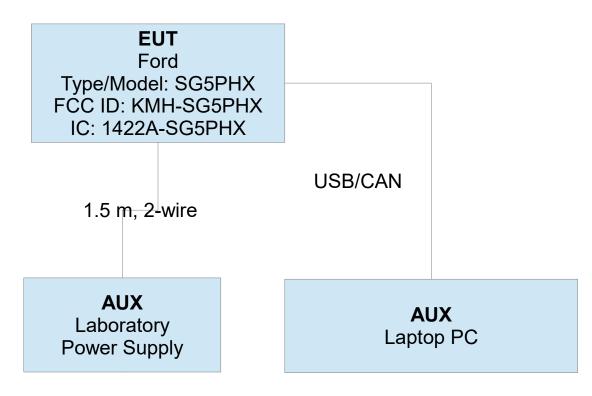


Figure 2: EUT Test Configuration Diagram.

3.1.2 Modes of Operation

The EUT employs two radio paths (PATH A and PATH B), over six modes (BT, BLE, 2G-BG-STA, 2G-N-STA, 5G-STA, 5G-AP). This report addresses only the following mode: **MODE BT**: In this mode the EUT operates as a Bluetooth 5.2 FHSS device including BASIC, EDR 2Mb, and EDR 3Mb data rates in the 2.4-2.4835 GHz band. This mode only employs radio PATH A.

3.1.3 Variants

There is only a single variant of the EUT, as tested.

3.1.4 Test Samples

Four samples of the EUT were provided in total, two normal (production ready) samples (SN: 2020, 2021) with integral antennas and two with the antennas replaced by coaxial cable connections (SN:2016, 1376). Each sample provided was capable of receiving radio instructions via CAN + USB interface to a personal computer. The manufacturer provided software tools and firmware need to place the EUT radio into test and normal operating modes.

3.1.5 Functional Exerciser

Normal functionality was confirmed by measurement of transmitted signals.

3.1.6 Modifications Made

There were no modifications made to the EUT by this laboratory.

3.1.7 Production Intent

The EUT appears to be a production ready sample.

3.1.8 Declared Exemptions and Additional Product Notes

The EUT is permanently installed in a transportation vehicle. As such, digital emissions are exempt from US and Canadian digital emissions regulations (per FCC 15.103(a) and IC correspondence on ICES-003). General spurious emissions (cabinet emissions with the EUT antenna ports terminated) are reported in the associated spurious emission test report for this product.

4 Emissions

4.1 General Test Procedures

4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 3. All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

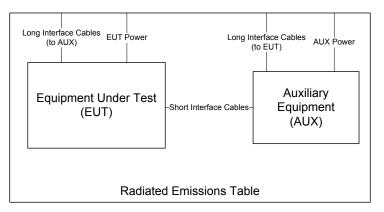


Figure 3: Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broadband probes are used depending on the regulation. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, 10cm diameter single-axis broadband probes meeting the requirements of ISED SPR-002 section 5.2 are employed. Measurements are repeated and summed over three axes, and the entire frequency range is measured with and without the EUT transmitting.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4×5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to $dB\mu V/m$ at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

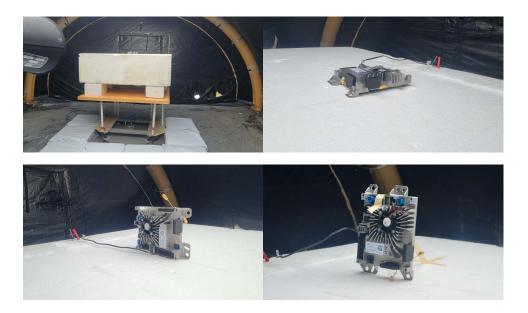


Figure 4: Radiated Emissions Test Setup Photograph(s).

4.1.2 Conducted Emissions Test Setup and Procedures

Transmit Antenna Port Conducted Emissions At least one sample EUT supplied for testing was provided with a 50Ω antenna port. Conducted transmit chain emissions measurements (where applicable) are made by connecting the EUT antenna port directly to the test receiver port. Photographs of the test setup employed are depicted in Figure 5.

Figure 5: Conducted RF Test Setup Photograph(s).

4.1.3 Power Supply Variation

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

C9

4.2 Intentional Emissions

4.2.1 Duty and Transmission Cycle, Pulsed Operation

C4

The details and results of testing the EUT for pulsed operation are summarized in Table 4.

C5

Table 4: Pulsed Emission Characteristics (Duty Cycle).

							Test Date: Test Engineer: EUT Meas. Distance:	J. Brunett Ford SG5PHX
			Test M	Mode Pulsed Operat	ion / Average Measu	rement Duty Cycle		
	Mode	Data Rate	Voltage	Oper. Freq	Pulse Length	Pulse Period	Duty Cycle	Power Duty Correction
Iviode		Mbps	V	MHz	ruise Lengui	r uise r erioù	%	dB
	GFSK (1 Mbps)	0.500	13.4	2440.0	15.41	18.76	82.1	0.9
	Pi/4 DPSK (2 Mbps)	1.000	13.4	2440.0	15.46	18.76	82.4	0.8
	8DPSK (3 Mbps)	2.000	13.4	2440.0	15.46	18.91	81.8	0.9

C1 C3 (ROW) (COLUMN) NOTE

C8

R0 R1 R2 R3 #

Duty Cycle is measured in line with DTS guidance 558074 D01 v5 r02 section 6(b) for averaging only over full-power transmission pulses.

C7

C8

For a FHSS Bluetooth, the peak to average ratio in any given 100 ms window is always <10%. Thus, maximum 15.35 duty of 20 dB can be applied to peak measurements for demonstrating average field strength compliance, were applicable. However, no duty cycle is applied herein for demonstrating compliance.

C6

R0

Figure 6: Example Plots of Test Mode Duty Cycle.

4.2.2 Hopping Channel Dwell Time

The average time of occupancy on any hopping channel must not be greater than 0.4 seconds. For this test, the EUT was set for data transmission with hopping enabled. Results of this testing are depicted in Table 5. Plots showing example measurements made to obtain these values are provided in Figure 7.

Table 5: Hopping Channel Dwell Time.

	Frequency Range 25 MHz ≤ f ≤ 1 000 MHz f > 1 000 MHz			Det Pk/QPk Pk		IF Bandwidth 100/120 kHz 3 MHz	Video Bandwidth 300 kHz 3 MHz	Test Date: Test Engineer: EUT: Meas. Distance:	24-Feb-23 Joseph Brunett Ford SG5PHX Conducted
					Dwel	Time			
	MODE	Frequency	# Bursts	Observation Time	Window	Active Time	Total On Time**	Limit	Pass/Fail
R0	MODE	(MHz)	#	(sec)	(sec)	(sec)	(s)	(s)	
R1	GFSK (1 Mbps)	2440.0	75	31.6	31.6	0.00289	0.2168	<0.4	Pass
R2	Pi/4 DPSK (2 Mbps)	2440.0	55	31.6	31.6	0.00289	0.1590	<0.4	Pass
R3	8DPSK (3 Mbps)	2440.0	64	31.6	31.6	0.00289	0.1850	<0.4	Pass
#	C1	C2	C3	C4		C5	C6	C7	C8
(ROW)	(COLUMN)	NOTE							
ALL	C5	Dwell Time Observed with EUT placed into self-test hopping mode via Bluetooth tester.							
ALL	C6	The measured dwell time may not indicate the actual single channel dwell time of the DUT. A dwell time of 0.3797 seconds in data mode is independent from the packet type (packet length) for all Bluetooth devices. Therefore, Bluetooth devices comply with the dwell time requirement.							

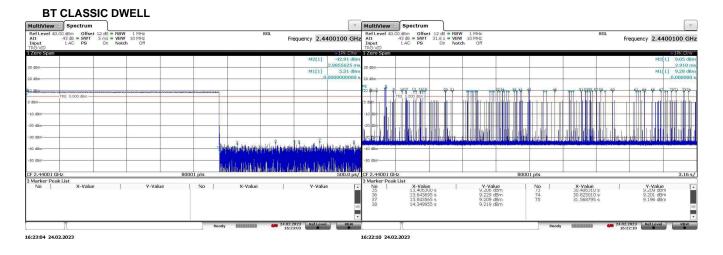


Figure 7: Example Plots of Channel Dwell Time (Hopping).

4.2.3 Hopping Sequence and Spectrum Use

It is required that the EUT hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average. In addition, system receivers are required to have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and that shift frequencies in synchronization with the transmitted signals. Furthermore, the system must be designed to comply should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. Finally, the incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

This product complies with the Bluetooth Core Specification which ensures compliance with these requirements.

4.2.4**Channel Bandwidth**

For this test, the EUT was set continuous data transmission (hopping disabled) in each modulation. The 20-dB bandwidth as well as 99% emission bandwidth were measured for the low, middle, and high channels. Results of these measurements are shown in Table 6. Plots showing example measurements employed to obtain this data are provided in Figure 10.

Table 6: Intentional Emission Bandwidth.

	Test Date:	24-Feb-23
	Test Engineer:	J. Brunett
	EUT:	Ford SG5PHX
	Meas. Distance:	Conducted
99% OBW	20 dB BW	

				(Occupied Bandwidth				
	Transmit Mode	Data Rate	Voltage	Oper. Freq	6 dB BW	6 dB BW Limit	99% OBW	20 dB BW	Pass/Fail
R0	I failsfillt fvlode	(Mbps)	(V)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	r ass/r an
R1				2402.0			0.903	1.140	Pass
R2	GFSK (1 Mbps)	1.000	13.4	2440.0			0.899	1.140	Pass
R3				2480.0			0.898	1.130	Pass
R4				2402.0			1.204	1.430	Pass
R5	Pi/4 DPSK (2 Mbps)	2.000	13.4	2440.0			1.203	1.430	Pass
R6				2480.0			1.208	1.450	Pass
R7				2402.0			1.205	1.430	Pass
R8	8DPSK (3 Mbps)	3.000	13.4	2440.0			1.207	1.440	Pass
R9				2480.0			1.214	1.440	Pass
#	C1	C2	C3	C4	C5	C6	C7	C8	C9
	ROW	COLUMN	NOTE						
	R1-R12	C5							

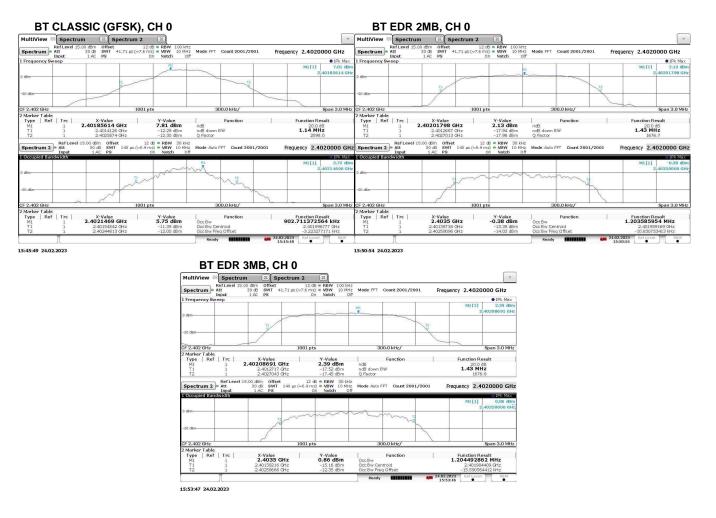


Figure 8: Example Intentional Emission Bandwidth Plots.

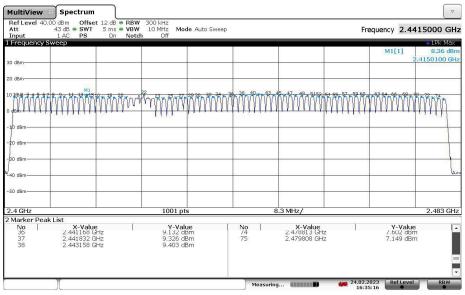
Date: February 27, 2023

4.2.5 Number of Hopping Channels

For this test, the EUT was enabled for data transmission with hopping. The number of channels measured is reported here in Table 7. Plots showing example measurements employed to obtain this data are provided in Figure 9.

Table 7: Measured Number of Hopping Channels.

Test Date:	24-Feb-23
Test Engineer:	Joseph Brunett
EUT:	Ford SG5PHX
Meas. Distance:	Conducted


	Number of Hopping Channels										
	Mode	Start Frequency	Stop Frequency	Number of Channels Observed	Total Number	Limit	Pass/Fail				
R0	Widde	(MHz)	(MHz)	(#)	(#)	(#)					
R1	ALL	2400.0	2483.5	79	79	15.0	Pass				
R2											
#	C1	C2	C3	C4	C5	C6	C7				

(ROW)	(COLUMN)

C4

NOTE

Number of Hopping Channels the same for all modes.

16:35:17 24.02.2023

Figure 9: Example Measured Number of Hopping Channels.

ALL

4.2.6 Channel Separation

For this test, the EUT was enabled for data transmission with hopping. The Carrier Separation was measured for low, mid, and high channels. Results of these measurements are shown in Table 8.

Table 8: Measured Channel Separation.

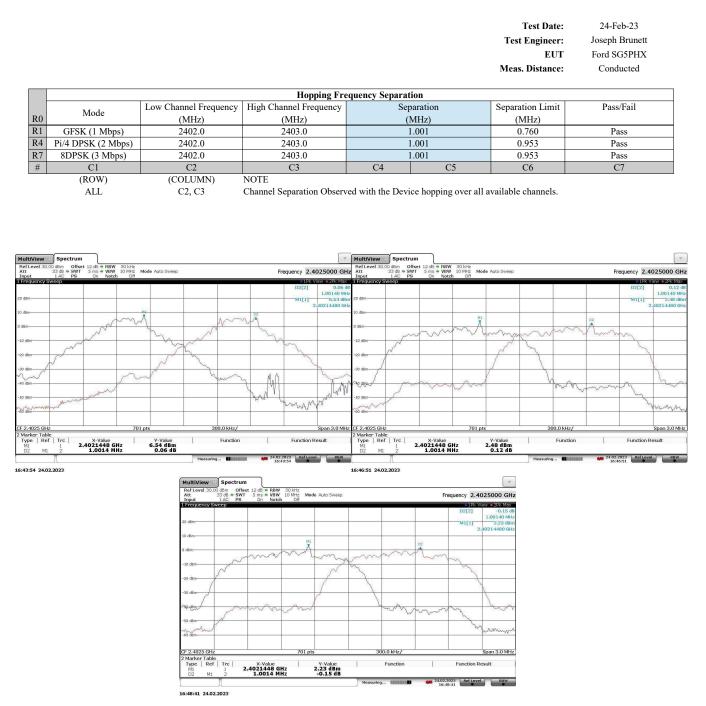


Figure 10: Example Measured Channel Separation.

4.2.7 Effective Isotropic Radiated Power

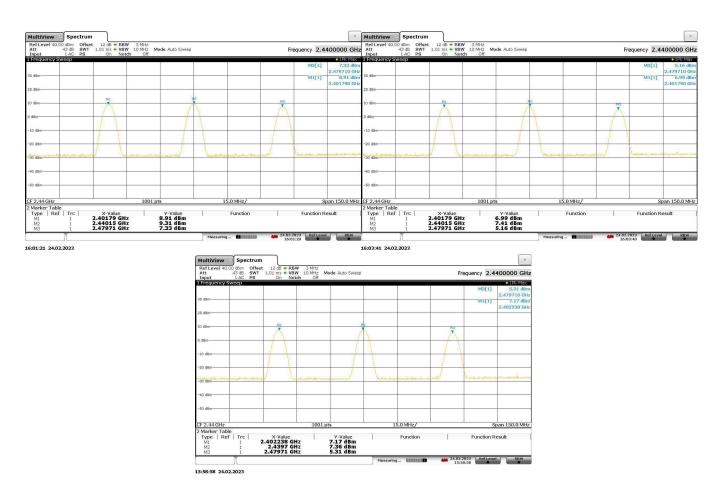
The EUT's radiated power is computed from antenna port conducted power measurements and the gain of the EUT antenna(s). Where the EUT is not sold with an antenna connector, a modified product has been provided including such. The results of this testing are summarized in Table 9. Peak conducted output power was measured

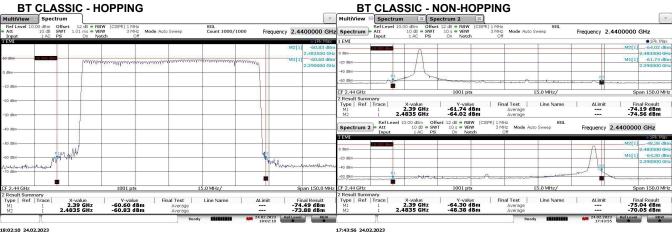
Table 9: Radiated Power Results.

Test Date:	24-Feb-23
Test Engineer:	J. Brunett
EUT:	Ford SG5PHX
Meas. Distance:	Conducted

						Fundament	al Power				
			Freq.	Pout (Pk)	Po Duty	Pout + Duty (Pk)	Ant Gain (meas)	EIRP (Pk)	EIRP (Avg) Limit	Pass	Comments
R0	Mode	Channel	MHz	dBm	dB	dBm	dBi	dBm	dBm	dB	
R1			2402.0	8.9		8.9	4.3	13.2	36.0	22.8	
R2	GFSK (1 Mbps)	38	2440.0	9.3		9.3	4.3	13.6	36.0	22.4	
R3		79	2480.0	7.3		7.3	4.3	11.6	36.0	24.4	
R4			2402.0	7.0		7.0	4.3	11.3	36.0	24.7	
R5	Pi/4 DPSK (2 Mbps)	38	2440.0	7.4		7.4	4.3	11.7	36.0	24.3	
R6		79	2480.0	5.2		5.2	4.3	9.5	36.0	26.5	
R7			2402.0	7.2		7.2	4.3	11.5	36.0	24.5	
R8	8DPSK (3 Mbps)	38	2440.0	7.4		7.4	4.3	11.7	36.0	24.3	
R9		79	2480.0	5.3		5.3	4.3	9.6	36.0	26.4	
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11
	(ROW)	(COLU	UMN)	NOTE							
	R0	С	4	Maximum peak	conducted o	utput power measu	red following DTS G	uidance 558074 E	01 v5 r02 Section 8.	3.1.1	
	R0	С	4	Peak measured	field strength	at 3 meters on OA	TS				
	R13	С	5	No duty applied	. Pk data me	asured and reported	I				
	R13	С	6	EIRP (Pk) comp	outed from m	easured output pow	/er.				

directly from the EUT at the port where the antenna attaches. The test receiver bandwidth was set to be greater than the measured emission bandwidth of the EUT to capture the true peak. Antenna gain is either provided directly by the manufacturer or measured by comparison between calculated EIRP and conducted output power. Plots showing conducted measurements made are depicted in Figure 11.




Figure 11: Conducted RF Power Plots

4.3 **Unintentional Emissions**

4.3.1**Restricted Band Transmit Chain Spurious Emissions**

The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 10. Measurements are performed to 10 times the highest fundamental operating frequency.

Table 10(a): Transmit Chain Spurious Emissions.

	Frequency Range 30 >= f > 1000 MHz f < 1000 MHz			DetIF BandwidthPk/QPk100 kHzPk/Avg1 MHz			Hz	Video Bandwidth 300 kHz 3 MHz					Test Date: Test Engineer: EUT: Meas. Distance:		1-Mar-23 J. Brunett Ford SG5PHX Conducted
							smitter	Spurious in Restric	ted Bands						FCC/IC
			Frequ	uency	· · ·	t Power	Ant	GR Factor	Avg Duty		Electi	ic Field @ 3m		Pass	
	Mode	Path	Start	Stop	Pk	Avg	Gain		Factor	Calc. Pk	Limit Pk	Calc. Avg	Limit Qpk/Avg		
#		A/B	MHz	MHz	dBm	dBm	dBi	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	Comments
	Fundamental Rest	tricted Band	l Edge (Low	r í											
R2	GFSK (1 Mbps)	А	2390.0	2390.0	-61.7	-74.2	4.3	0.0	0.9	37.8	74.0	26.2	54.0	27.8	max all - L,M,H channels
R3	GFSK (1 Mbps)	А	2390.0	2390.0	-60.6	-74.5	4.3	0.0	0.9	38.9	74.0	25.9	54.0	28.1	Hopping
R4	Fundamental Rest	tricted Band	l Edge (Hig	h Side)											
R5	GFSK (1 Mbps)	А	2483.5	2483.5	-48.4	-70.1	4.3	0.0	0.9	51.1	74.0	30.3	54.0	22.9	max all - L,M,H channels
R6	GFSK (1 Mbps)	А	2483.5	2483.5	-60.8	-73.9	4.3	0.0	0.9	38.7	74.0	26.5	54.0	27.5	Hopping
R7															
R8	GFSK (1 Mbps)	А	30	88	-84.3		4.3	4.7	0.9	19.9			40.0	20.1	max all - L,M,H channels
R9	GFSK (1 Mbps)	А	88	216	-81.8		4.3	4.7	0.9	22.4			43.0	20.6	max all - L,M,H channels
R10	GFSK (1 Mbps)	А	216	1000	-80.6		4.3	4.7	0.9	23.6			46.0	22.4	max all - L,M,H channels
R14	GFSK (1 Mbps)	А	1000.0	4000.0	-59.3	-69.3	4.3	0.0	0.9	40.2	74.0	31.1	54.0	22.9	max all - L,M,H channels
R15	GFSK (1 Mbps)	А	4804.0	4804.0	-71.9	-75.9	4.3	0.0	0.9	27.6	74.0	24.5	54.0	29.5	
R16	GFSK (1 Mbps)	А	4874.0	4874.0	-64.8	-76.1	4.3	0.0	0.9	25.4	74.0	24.3	54.0	29.7	
R17	GFSK (1 Mbps)	А	4960.0	4960.0	-64.3	-76.7	4.3	0.0	0.9	35.2	74.0	23.7	54.0	30.3	
R18	GFSK (1 Mbps)	А	4000.0	6000.0	-64.3	-75.9	4.3	0.0	0.9	35.2	74.0	24.5	54.0	29.5	max all - L,M,H channels
R19	GFSK (1 Mbps)	А	6000.0	8400.0	-60.0	-70.3	4.3	0.0	0.9	39.5	74.0	30.1	54.0	23.9	max all - L,M,H channels
R20	GFSK (1 Mbps)	А	8400.0	12500.0	-58.0	-68.1	4.3	0.0	0.9	41.5	74.0	32.3	54.0	21.7	max all - L,M,H channels
R21	GFSK (1 Mbps)	А	12500.0	26000.0	-56.6	-66.5	4.3	0.0	0.9	42.9	74.0	33.9	54.0	20.1	max all - L,M,H channels
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15

Table 10(b): Transmit Chain Spurious Emissions.

ROW COLUMN All

C5/C6 Conducted measurements were made in line with DTS guidance 558074 D01 v5 r02 sections 8.5, 8.6, 8.7 / ANSI C63.10 11.10, 11.11, 11.12

Ground Reflection Factor as described in ANSI C63.10-2013 section 11.12.2.2 (c) All C8

All C10/C12 Computed according to ANSI C63.10-2013 section 11.12.2.2 (e)

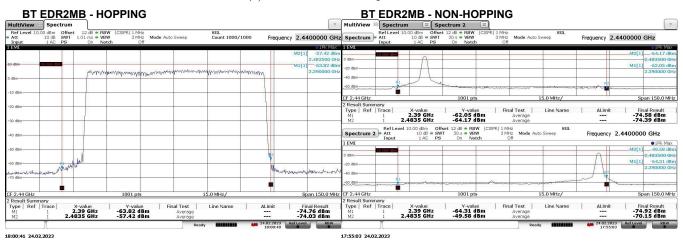


Table 10(c): Transmit Chain Spurious Emissions.

Table 10(d): Transmit Chain Spurious Emissions.

	Frequency 30 >= f > 10 f < 1000	00 MHz		Det Pk/QPk Pk/Avg		IF Band 100 k 1 M	dΗz	Video Bandwidth 300 kHz 3 MHz					Test Date: Test Engineer: EUT: Meas. Distance:	1-Mar-23 J. Brunett Ford SG5PHX Conducted	
						Transr	nitter S _I	ourious in Restricted	d Bands						FCC/IC
			Frequ	lency	Output	Power	Ant	GR Factor	Avg Duty		Electi	ric Field @ 3m		Pass	
	Mode	Path	Start	Stop	Pk	Avg	Gain		Factor	Calc. Pk	Limit Pk	Calc. Avg	Limit Qpk/Avg		
#		A / B	MHz	MHz	dBm	dBm	dBi	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	Comments
R1	Fundamental Restricte	d Band Edg	e (Low Side	;)											
R2	Pi/4 DPSK (2 Mbps)	А	2390.0	2390.0	-62.1	-74.6	4.3	0.0	0.8	37.4	74.0	25.7	54.0	28.3	max all - L,M,H channels
R3	Pi/4 DPSK (2 Mbps)	А	2390.0	2390.0	-63.8	-74.8	4.3	0.0	0.8	35.7	74.0	25.5	54.0	28.5	Hopping
R4	Fundamental Restricte	d Band Edg	e (High Side	e)											
R5	Pi/4 DPSK (2 Mbps)	А	2483.5	2483.5	-49.6	-70.2	4.3	0.0	0.8	49.9	74.0	30.1	54.0	23.9	max all - L,M,H channels
R6	Pi/4 DPSK (2 Mbps)	А	2483.5	2483.5	-57.4	-74.0	4.3	0.0	0.8	42.1	74.0	26.3	54.0	27.7	Hopping
R7															
R 8	Pi/4 DPSK (2 Mbps)	А	30	88	-84.8		4.3	4.7	0.8	19.4	40.0		40	20.6	max all - L,M,H channels
R9	Pi/4 DPSK (2 Mbps)	А	88	216	-79.3		4.3	4.7	0.8	24.9	43.0		43	18.1	max all - L,M,H channels
R10	Pi/4 DPSK (2 Mbps)	А	216	1000	-81.0		4.3	4.7	0.8	23.2	46.0		46	22.8	max all - L,M,H channels
R14	Pi/4 DPSK (2 Mbps)	А	1000.0	4000.0	-59.3	-69.2	4.3	0.0	0.8	40.2	54.0	31.1	54.0	22.9	max all - L,M,H channels
R15	Pi/4 DPSK (2 Mbps)	А	4804.0	4804.0	-72.8	-75.9	4.3	0.0	0.8	26.7	54.0	24.5	54.0	29.5	
R16	Pi/4 DPSK (2 Mbps)	А	4874.0	4874.0	-64.8	-76.0	4.3	0.0	0.8	25.4	54.0	24.3	54.0	29.7	
R17	Pi/4 DPSK (2 Mbps)	А	4960.0	4960.0	-74.7	-77.2	4.3	0.0	0.8	24.8	54.0	23.1	54.0	30.9	
R18	Pi/4 DPSK (2 Mbps)	А	4000.0	6000.0	-72.8	-75.9	4.3	0.0	0.8	26.7	54.0	24.5	54.0	29.5	max all - L,M,H channels
R19	Pi/4 DPSK (2 Mbps)	А	6000.0	8400.0	-59.7	-70.2	4.3	0.0	0.8	39.8	54.0	30.1	54.0	23.9	max all - L,M,H channels
R20	Pi/4 DPSK (2 Mbps)	А	8400.0	12500.0	-57.9	-68.0	4.3	0.0	0.8	41.6	54.0	32.3	54.0	21.7	max all - L,M,H channels
R21	Pi/4 DPSK (2 Mbps)	А	12500.0	26000.0	-56.2	-66.4	4.3	0.0	0.8	43.3	54.0	33.9	55.0	21.1	max all - L,M,H channels
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15

ROW COLUMN

CS/C6 Conducted measurements were made in line with DTS guidance 558074 D01 v5 r02 sections 8.5, 8.6, 8.7 / ANSI C63.10 11.10, 11.11, 11.12 C8 Ground Reflection Factor as described in ANSI C63.10-2013 section 11.12.2.2 (c)

All All

All C10/C12 Computed according to ANSI C63.10-2013 section 11.12.2.2 (e)

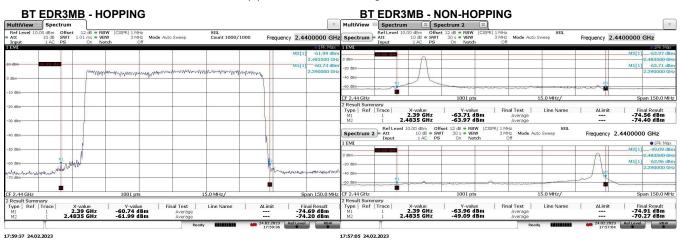
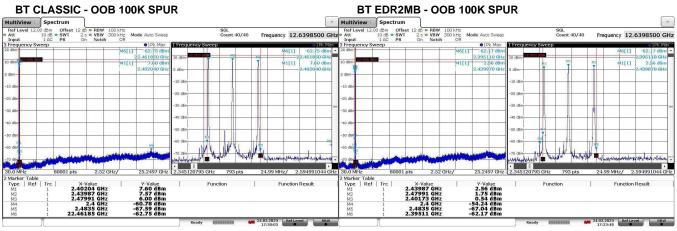


Table 10(e): Transmit Chain Spurious Emissions.

Table 10(f): Transmit Chain Spurious Emissions.

	Frequency 30 >= f > 100 f < 1000 M	00 MHz		Det Pk/QPk Pk/Avg		IF Band 100 k 1 Mi	Hz	Video Bandwidth 300 kHz 3 MHz					Test Date: Test Engineer: EUT: Meas. Distance:	J. Brunett Ford SG5PHX Conducted	
			Transmitter Spurious in Restricted Bands									FCC/IC			
			Freq	uency	Outpu	t Power	Ant	GR Factor	Avg Duty		Electr	ic Field @ 3m		Pass	
	Mode	Path	Start	Stop	Pk	Avg	Gain		Factor	Calc. Pk	Limit Pk	Calc. Avg	Limit Qpk/Avg		
#		A/B	MHz	MHz	dBm	dBm	dBi	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	Comments
R1 H	undamental Restricted I	Band Edge (Low Side)												
R2	8DPSK (3 Mbps)	A	2390.0	2390.0	-63.7	-74.6	4.3	0.0	0.9	35.8	74.0	25.8	54.0	28.2	max all - L,M,H channels
R3	8DPSK (3 Mbps)	A	2390.0	2390.0	-63.8	-74.8	4.3	0.0	0.9	35.7	74.0	25.6	54.0	28.4	Hopping
R4 F	undamental Restricted I	Band Edge (1	High Side)												
R5	8DPSK (3 Mbps)	A	2483.5	2483.5	-49.1	-70.3	4.3	0.0	0.9	50.4	74.0	30.1	54.0	23.6	max all - L,M,H channels
R6	8DPSK (3 Mbps)	A	2483.5	2483.5	-62.0	-74.2	4.3	0.0	0.9	37.5	74.0	26.2	54.0	27.8	Hopping
R7															
R8	8DPSK (3 Mbps)	A	30	88	-85.2		4.3	4.7	0.9	19.0			40.0	21.0	max all - L,M,H channels
R9	8DPSK (3 Mbps)	A	88	216	-79.5		4.3	4.7	0.9	24.7			43.0	18.3	max all - L,M,H channels
R10	8DPSK (3 Mbps)	A	216	1000	-78.4		4.3	4.7	0.9	25.8			46.0	20.2	max all - L,M,H channels
R14	8DPSK (3 Mbps)	A	1000.0	4000.0	-59.3	-69.3	4.3	0.0	0.9	40.2	74.0	31.1	54.0	22.9	max all - L,M,H channels
R15	8DPSK (3 Mbps)	A	4804.0	4804.0	-72.8	-75.9	4.3	0.0	0.9	26.7	74.0	24.5	54.0	29.5	
R16	8DPSK (3 Mbps)	A	4874.0	4874.0	-64.8	-76.1	4.3	0.0	0.9	25.4	74.0	24.3	54.0	29.7	
R17	8DPSK (3 Mbps)	A	4960.0	4960.0	-61.4	-80.4	4.3	0.0	0.9	38.1	74.0	20.0	54.0	34.0	
R18	8DPSK (3 Mbps)	A	4000.0	6000.0	-61.4	-75.9	4.3	0.0	0.9	38.1	74.0	24.5	54.0	29.5	max all - L,M,H channels
R19	8DPSK (3 Mbps)	A	6000.0	8400.0	-59.5	-70.3	4.3	0.0	0.9	40.0	74.0	30.1	54.0	23.9	max all - L,M,H channels
R20	8DPSK (3 Mbps)	A	8400.0	12500.0	-58.1	-68.1	4.3	0.0	0.9	41.4	74.0	32.3	54.0	21.7	max all - L,M,H channels
R21	8DPSK (3 Mbps)	A	12500.0	26000.0	-56.0	-66.5	4.3	0.0	0.9	43.5	74.0	33.9	54.0	20.1	max all - L,M,H channels
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15
	ROW	COLUMN													

ROW


CS/C6 Conducted measurements were made in line with DTS guidance 558074 D01 v5 r02 sections 8.5, 8.6, 8.7 / ANSI C63.10 11.10, 11.11, 11.12 C8 Ground Reflection Factor as described in ANSI C63.10-2013 section 11.12.2.2 (c)

All All

All C10/C12 Computed according to ANSI C63.10-2013 section 11.12.2.2 (e)

4.3.2 OOB Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions relative to the fundamental in a 100 kHz receiver bandwidth (at the nominal voltage and temperature) in the worst cases are provided in Figure 12 below.

17:30:04 24.02.2023

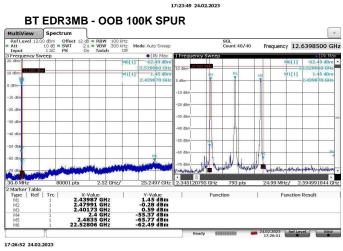


Figure 12: Worst Case Transmitter OOB Emissions Measured.

5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of k = 2.

Table 11: Measurement Uncertainty.

Measured Parameter	${\bf Measurement} ~ {\bf Uncertainty}^{\dagger}$
Radio Frequency	$\pm (f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \text{ Hz})$
Conducted Emm. Amplitude	$\pm 1.9\mathrm{dB}$
Radiated Emm. Amplitude $(f < 30 \text{ MHz})$	$\pm 3.1\mathrm{dB}$
Radiated Emm. Amplitude $(30 - 200 \text{ MHz})$	$\pm 4.0\mathrm{dB}$
Radiated Emm. Amplitude $(200 - 1000 \text{ MHz})$	$\pm 5.2\mathrm{dB}$
Radiated Emm. Amplitude $(f > 1000 \text{ MHz})$	$\pm 3.7\mathrm{dB}$
- , , , , , , , , , , , , , , , , , , ,	

[†]Ref: CISPR 16-4-2:2011+A1:2014

United States Department of Commerce National Institute of Standards and Technology	Gordon Helm EMC-002401-NE RATIFED ENGINER
NVLAP LAB CODE: 200129-0	· · · · · · · · · · · · · · · · · · ·
AHD (Amber Helm Development, L.C.) Sister Lakes, MI	and the second second
is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:	Joseph Brunett EMC-002790-NE
Electromagnetic Compatibility & Telecommunications	EMIC-002130-INE
This laboratory is accredited in accordance with the recognized international Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).	
2022-06-28 through 2023-06-30 Effective Dates	RATIFIED ENGINEER

Figure 13: Accreditation Documents