

Phone: +1 (949) 393-1123 Web: <u>www.vista-compliance.com</u> Email: <u>info@vista-compliance.com</u>

FCC RF Test Report		
Test Report Number	WAP-22021511-LC-FCC IC-WLAN2.4G	
FCC ID IC	KMH-14H317-NA1 1422A-14H317NA1	
Applicant Applicant Address Product Name Model Name Model Number Date of Receipt Date of Test Report Issue Date Test Standards	Building 5, 20300 Rotunda Dr., Dearborn, Michigan, United States 48124 Vehicle Telematics Control Unit FNV3-B6-NA U5T-14H317-D 04/05/2022	
Vista Labs TEST - CERTIFY - COMPLY TEST - CERTIFY - COMPLY SA Date Date Date Date Date Date Date Date	Issued by: Vista Compliance Laboratories 1261 Puerta Del Sol, San Clemente, CA 92673 USA <u>www.vista-compliance.com</u>	
Devin Tai (Test	Engineer)	
our prior written permission. Note that the results results that were obtained in the period between t test samples identified herein. The results set forth similar or identical product unless specifically and d	Engineer) David Zhang (Technical Manager) Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with contained in this report pertain only to the test samples identified herein, and the results relate only to the items tested and the he date of initial receipt of samples and the date of issue of the report. This report sets forth our findings solely with respect to the in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any expressly noted. Our report includes all of the tests requested and the results thereof based upon the information provided to us. The report to notify us of any material error or omission. Failure to raise such issue within the prescribed time shall constitute your	

unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies. This report is not to be reproduced by any means except in full and in any case not without the written approval of Vista Laboratories.

REVISION HISTORY

Report Number	Version	Description	Issued Date
WAP-22021511-LC-FCC IC-WLAN2.4G	01	Initial report	06/03/2022

TABLE OF CONTENTS

1 TES	ST SUMMARY	4
2 GE	NERAL INFORMATION	5
2.1	Applicant	5
2.2	Product information	5
2.3	Test standard and method	7
3 TE	ST SITE INFORMATION	8
4 MC	DDIFICATION OF EUT / DEVIATIONS FROM STANDARDS	8
5 TE	ST CONFIGURATION AND OPERATION	8
5.1	EUT Test Configuration	8
5.2	Supporting Equipment	8
6 UN	ICERTAINTY OF MEASUREMENT	9
7 TES	ST RESULTS	10
7.1	Antenna Requirement	10
7.2	DTS (6 dB) Bandwidth	11
7.3	Occupied Bandwidth (99%)	15
7.4	Maximum Output Power	19
7.5	Power Spectral Density	25
7.6	Conducted Band-Edge & Unwanted Emissions	31
7.7	Radiated Band-Edge & Spurious Emissions into Restricted Frequency Bands	34
8 EU	T AND TEST SETUP PHOTOS	52
9 TE	ST INSTRUMENT LIST	53

1 Test Summary

Test Item	Test Requirement	Test Method	Result
Antenna Requirement	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017	ANSI C63.10 (2013) P.	
DTS (6 dB) Channel Bandwidth	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017	ANSI C63.10 (2013) Pas	
Occupied Bandwidth	RSS-Gen Issue 5, Mar 2019	RSS-Gen Issue 5, Feb 2021	Pass
Conducted Maximum Output Power	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017	ANSI C63.10 (2013)	Pass
Power Spectral Density	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017	ANSI C63.10 (2013)	Pass
Conducted Band-Edge & Unwanted Emissions	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017	ANSI C63.10 (2013)	Pass
Radiated Emissions & Unwanted Emissions into Restricted Frequency Bands	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017	ANSI C63.10 (2013)	Pass
AC Power Line Conducted Emissions	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017	ANSI C63.10 (2013)	N/A

Note: EUT is powered by Vehicle mains. It does not connect to public AC mains. This item is not applicable.

2 General Information

2.1 Applicant

Applicant	Ford Motor Company
Applicant address	Building 5, 20300 Rotunda Dr., Dearborn, Michigan, United States 48124
Manufacturer	Ford Motor Company
Manufacturer Address	Building 5, 20300 Rotunda Dr., Dearborn, Michigan, United States 48124

2.2 Product information

Product Name	Vehicle Telematics Control Unit	
Mode Name	FNV3-B6-NA	
Model Number	U5T-14H317-D	
Family Model Number	N/A	
Carriel Normalian	ANHGG22022104741, ANHGG22027104975 (Conducted),	
Serial Number	ANHGG22022104737, ANHGG21328102795 (Radiated)	
	BT BDR/EDR: 2402-2480MHz	
	BLE: 2402-2480MHz	
	802.11b/g/n-20MHz: 2412-2462MHz	
	802.11n-40MHz: 2422-2452MHz	
	802.11a/n-20MHz: 5500-5580MHz, 5660-5720, 5725-5825MHz	
	802.11n-40MHz: 5510-5550MHz, 5630-5710, 5755-5795MHz	
	802.11ac: 5530, 5690MHz, 5775MHz	
	WCDMA Band 2: UL: 1850- 1910MHz; DL: 1930-1990MHz	
	WCDMA Band 4: UL: 1710- 1755MHz. DL: 2110-2155MHz	
	WCDMA Band 5: UL: 824- 849MHz; DL: 869-894MHz	
	LTE Band 2: UL: 1850-1910MHz; DL: 1930-1990MHz	
	LTE Band 4: UL:1710-1755MHz; DL: 2110-2155MHz	
	LTE Band 5: UL:824-849MHz; DL: 869-894MHz	
	LTE Band 7: UL:2500-2570MHz; DL: 2620-2690MHz	
Frequency Band	LTE Band 12: UL:699-716MHz; DL: 729-746MHz	
	LTE Band 13: UL:777-787MHz; DL:746-756MHz	
	LTE Band 17: UL: 704-716MHz; DL: 734-746MHz	
	LTE Band 29: DL: 717-728MHz (UE Receive Only)	
	LTE Band 38: UL: 2570-2620MHz; DL: 2570-2620MHz	
	LTE Band 66: UL:1710-1780MHz; DL: 2110-2200MHz	
	LTE Band 71: UL: 663-698MHz; DL: 617-652MHz	
	5G NR n2: UL: 1850-1910MHz; DL: 1930-1990MHz	
	5G NR n5: UL:824-849MHz; DL: 869-894MHz	
	5G NR n7: UL:2500-2570MHz; DL: 2620-2690MHz	
	5G NR n41: UL:2496-2690MHz; DL: 2496-2690MHz	
	5G NR n66: UL:1710-1780MHz; DL: 2110-2200MHz	
	5G NR n71: UL:663-698MHz; DL: 617-652MHz	
	5G NR n77-L: UL:3450-3550MHz; DL: 3450-3550MHz	
	5G NR n77-H: UL:3700-3980MHz; DL: 3700-3980MHz	
	5G NR n78-L: UL:3450-3550MHz; DL: 3450-3550MHz	

	<u> </u>					1
	5G NR n78-H:		-		300MHz	
	BT BDR/EDR: GFSK, π/4DQPSK, 8DPSK					
	BLE: GFSK					
	802.11b: DSS	S (CCK, DQ	PSK, DBPSł	<)		
	802.11g: OFD	M-CCK (BP	SK, QPSK, 1	6QAM, 640	QAM)	
Type of modulation	802.11a/n/ac	: OFDM (BF	SK, QPSK,	16QAM, 64	QAM, 256QAN	1)
	WCDMA: QPS					
	LTE: QPSK, 16		AM, 256OA	М		
	5G NR: Pi/2-B		-		OAM	
Equipment Class/ Category	DSS, DTS, UN			<u> </u>	X	
Maximum output power	See test resul					
	2 x Internal B		CB trace ar	itenna		
	Peak					
			@2.4GHz V	viFi/Bluetoc	oth, 6.4 dBi @50	GHz WiFi
			-		, –	
	Cellular Exte	rnal anteni	nas:			
	Peak	Gain: 6 dBi (@ 617 - 960	MHz		
		8 dBi	@ 1710-220	0MHz		
		8.5 dE	3i @ 2300-2	700MHz		
		9.5 dE	3i @ 3300-4	200MHz		
		11.0 c	Bi @ 4400-	5000MHz		
	Antenna conne	ector type: qu	uad mini-Fai	kra connecto	or	
	Modom 6 TCL	l will support	rt 4 vohiclo	collular ant	onna norte Th	antonna
	Modem 6 TCU will support 4 vehicle cellular antenna ports. The anter port mapping is at below table,					
	Antenna	LB	MB	HB	N77/78/79	N41
	Antenna1	DRX	TX+PRX	TX+PRX	TX+PRX	TX+PRX
	Antenna2	TX+PRX	DRX	DRX	DRX	DRX
Antenna Information	Antenna3	-	MIMO	MIMO	MIMO	MIMO
Antenna mormation	Antenna4	-	MIMO	MIMO	MIMO	MIMO
	Note:					
			-		top external an	
					go to the right	
		•			nas). The cable	-
			-	nt-side roo	ftop external a	ntenna are
		than 20 cm				T V
					versity only, no	
		-		-	nufacturer. Not	
				•	k gain may have	
			-	-	cellular antenn rod in caso wh	
					red in case whe	
		icted power		an cu antei	ina gain anu m	CUSUIEU
		•	-	is an ontion	i to use an exte	rnal
				-	z and 11 dBi ga	
					-	
	This antenna has not been evaluated in current report. However, the conservative 10 dBi gain (2.4GHz) and 11 dBi gain (5GH) are					
	used for power related evaluation in current report.					
Clock Frequencies	N/A				I	
	1					

Port/Connectors	CAN bus	
Input Power	Vehicle Battery powered: 12VDC	
Power Adapter	N/A	
Manu/Model	N/A	
Power Adapter SN	N/A	
Hardware version	N/A	
Software version	N/A	
Simultaneous	DT/DLE WI AN and callular radio can transmit simultaneously	
Transmission	BT/BLE, WLAN and cellular radio can transmit simultaneously	
Additional Info	N/A	

2.3 Test standard and method

Test standard	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017
Test method	ANSI C63.10-2013 558074 D01 15.247 Meas Guidance v05r02

3 Test Site Information

Lab performing tests	Vista Laboratories, Inc.	
Lab Address	1261 Puerta Del Sol, San Clemente, CA 92673 USA	
Phone Number	+1 (949) 393-1123	
Website	www.vista-compliance.com	

Report#

Test Condition	Temperature	Humidity	Atmospheric Pressure
RF Testing	23.5°C	61.3%	1002 mbar
Radiated Emission Testing	23.5°C	61.3%	1002 mbar

4 Modification of EUT / Deviations from Standards

The EUT is an engineering test sample loaded with RF testing firmware specifically designed to support the RF TX/RX measurement in different aspects.

5 Test Configuration and Operation

5.1 EUT Test Configuration

EUT is powered by external DC power supply for testing purpose. EUT's RF antenna port is connected to spectrum analyzer through RF test cable for measurement. The test software is used to set EUT to different transmission mode in terms of radio mode (WLAN, BLE), test channel, data rate, etc. For Cellular radio, it's controlled by communication tester to change to different mode.

The following software was used for testing and to monitor EUT performance

Software	Description
EMISoft Vasona	EMC/RF Spurious emission test software used during testing
QRCT	Set the module work at different mode, channel, bandwidth, etc.

5.2 Supporting Equipment

Description	Manufacturer	Model #	Serial #
AC/DC Adapter	MEAN WELL	GST60A12-P1J	EB74Q81066

6 Uncertainty of Measurement

Test item	Measurement Uncertainty (dB)
RF Output Power (Conducted)	±1.2 dB
Power Spectral Density	±0.9 dB
Unwanted Emission (conducted)	±2.6 dB
Occupied Channel Bandwidth	±5 %
Radiated Emission (9KHz-30MHz)	±3.5 dB
Radiated Emission (30MHz-1GHz)	±4.6 dB
Radiated Emission (1-18GHz)	±4.9 dB
Radiated Emission (18-40GHz)	±3.5 dB

7 Test Results

7.1 Antenna Requirement

7.1.1 Requirement

Per § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.1.2 Result

Analysis:

EUT has internal and optional external antennas.

- For Internal antennas, they're PCB trace antennas. No standard RF connector or coupling is used.
- For External antennas, they're connected using non-standard coupling port. No standard RF connector or coupling is used.

Conclusion:

- EUT complies with antenna requirement in § 15.203.

7.2 DTS (6 dB) Bandwidth

7.2.1 Requirement

§ 15.247 (a)(2), RSS-247 §5.2

Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 KHz.

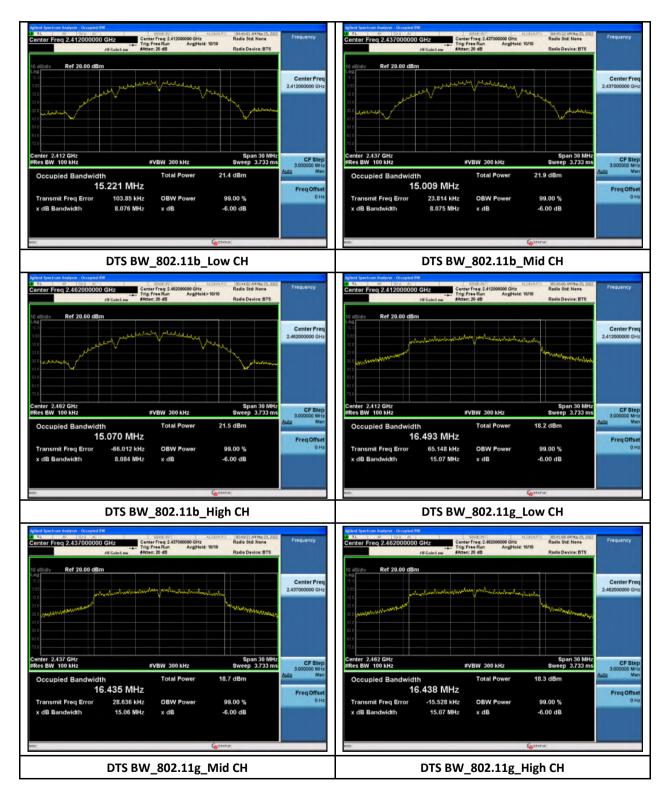
7.2.2 Test Setup

7.2.3 Test Procedure

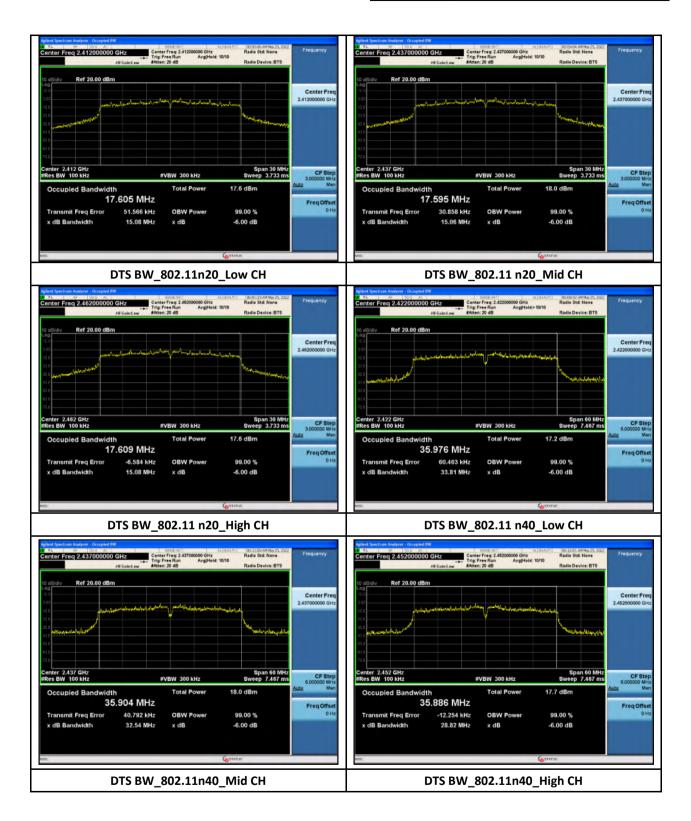
According to section 8.2, option 2, in KDB 558074 D01 DTS Meas Guidance v05r02 and subclause 11.8 of ANSI C63.10-2013:

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3 × RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Use automatic bandwidth measurement capability on instrument to obtain BW result.


7.2.4 Test Result

Mode	Data rate	Frequency (MHz)	Measured Bandwidth (MHz)	Minimum Bandwidth (MHz)	Result
		2412	8.076	0.5	Pass
802.11b	1Mbps	2437	8.075	0.5	Pass
		2462	8.084	0.5	Pass
		2412	15.068	0.5	Pass
802.11g	6Mbps	2437	15.065	0.5	Pass
	2462	15.069	0.5	Pass	
		2412	15.079	0.5	Pass
802.11n20	MCS0	2437	15.063	0.5	Pass
		2462	15.076	0.5	Pass
802.11n40		2422	33.813	0.5	Pass
	MCS0	2437	32.545	0.5	Pass
		2452	28.822	0.5	Pass



7.2.5 Test Plots

7.3 Occupied Bandwidth (99%)

7.3.1 Requirement

RSS-Gen §6.7

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

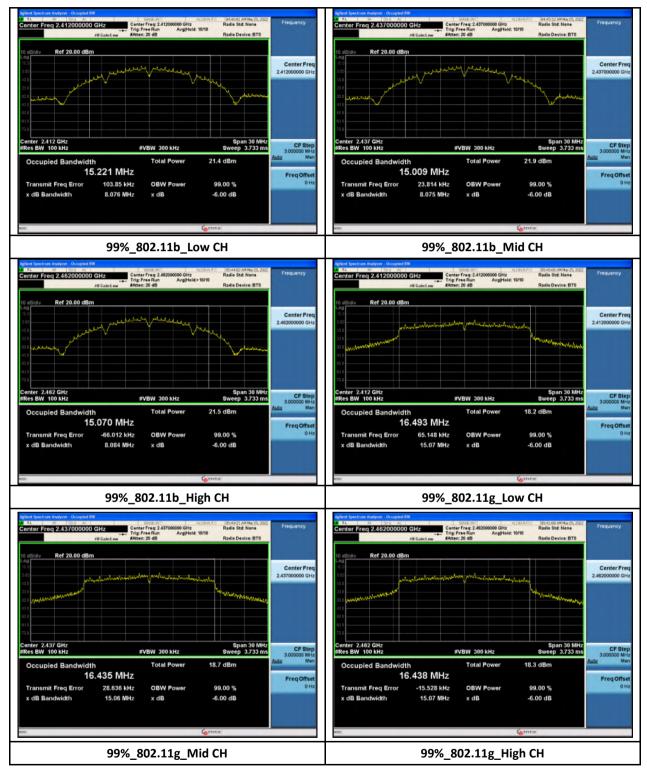
7.3.2 Test Setup

7.3.3 Test Procedure

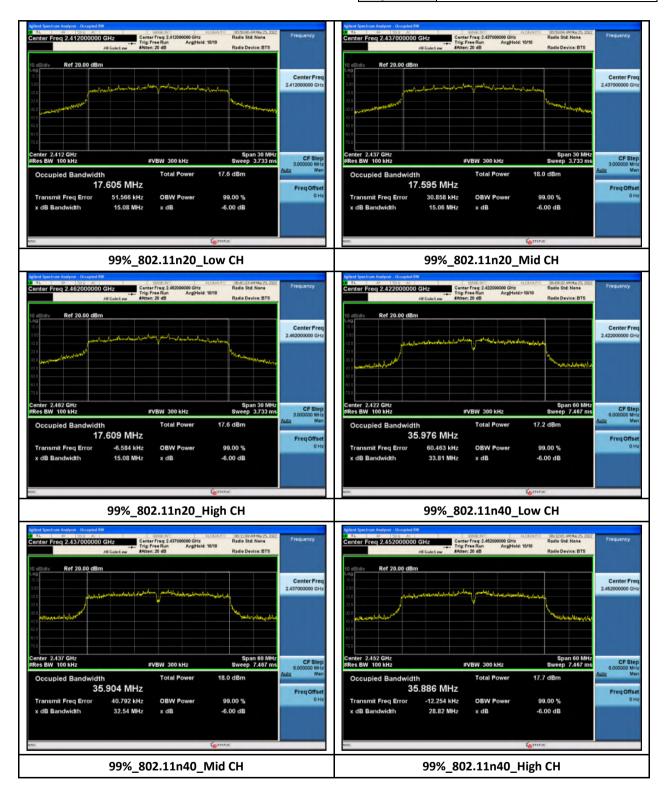
According to section RSS-Gen §6.7

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3 × RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

- 1. Set RBW = 1% to 5% of the actual occupied BW.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Span = large enough to capture all products of the modulation process
- 7. Allow the trace to stabilize.
- 8. Use automatic bandwidth measurement capability on instrument to obtain BW result.


7.3.4 Test Result

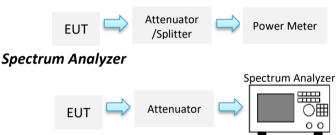
Mode	Data rate	Frequency (MHz)	Measured 99% OBW (MHz)	Limit (MHz)	Result
		2412	15.221	N/A	N/A
802.11b	1Mbps	2437	15.009	N/A	N/A
		2462	15.070	N/A	N/A
802.11g 6Mbps		2412	16.493	N/A	N/A
	6Mbps	2437	16.435	N/A	N/A
	2462	16.438	N/A	N/A	
		2412	17.605	N/A	N/A
802.11n20 MCS0	MCS0	2437	17.595	N/A	N/A
		2462	17.609	N/A	N/A
		2422	35.976	N/A	N/A
802.11n40	MCS0	2437	35.904	N/A	N/A
		2452	35.886	N/A	N/A



7.3.5 Test Plots

7.4 Maximum Output Power

7.4.1 Requirement


§ 15.247 (b)(3), RSS-247 §5.4

or systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: the maximum output power is 1 Watt.

If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.4.2 Test Setup

Power Meter

7.4.3 Test Procedure

Method 1: Power Meter

Power measurement is according to clause 11.9.1.3 of ANSI C63.10-2013 PKPM1 Peak power meter method or clause 11.9.2.3 AVGPM method.

Method 2: Spectrum Analyzer

- 1. Set span to at least 1.5 times the OBW.
- 2. Set RBW = 1-5% of the OBW, not to exceed 1 MHz
- 3. Set VBW \geq 3 x RBW.
- 4. Number of points in sweep $\ge 2 \times$ span / RBW
- 5. Sweep time = auto.
- 6. Detector = RMS (i.e., power averaging), or sample detector mode.
- 7. If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- 8. Trace average at least 100 traces in power averaging (i.e., RMS) mode.

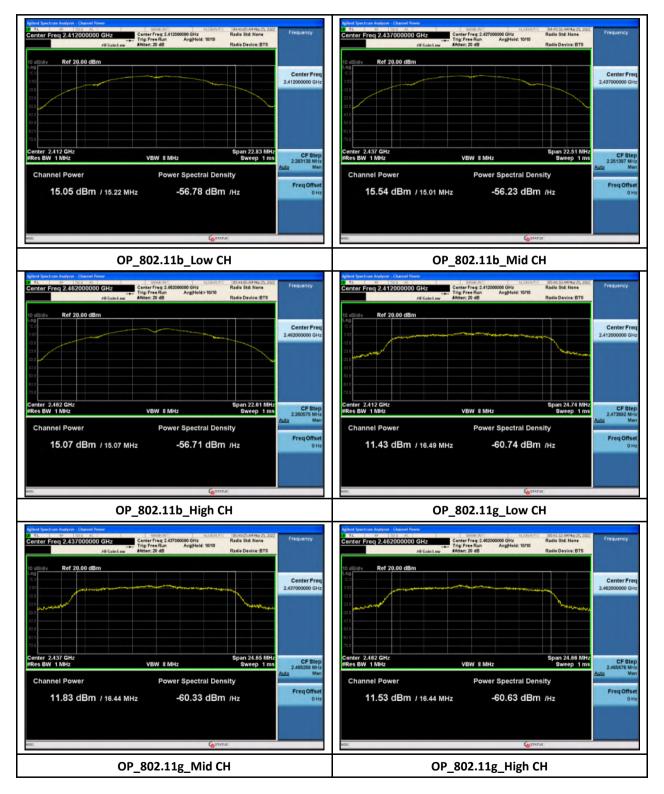
7.4.4 Test Result

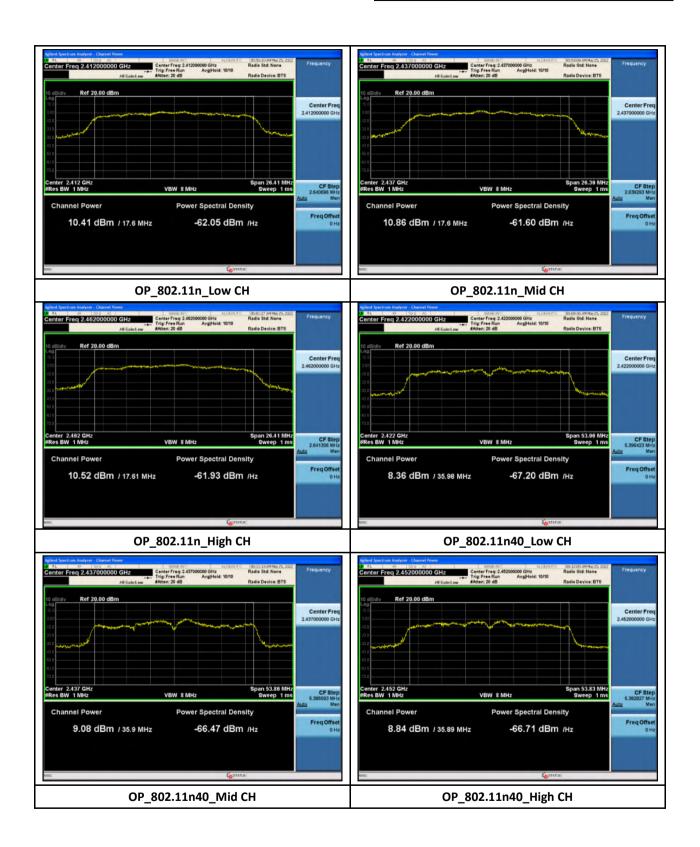
Mode Data rate		Frequency (MHz)	Measured Output Power (dBm)		Highest / Total power (dBm)	Max Output Power (dBm)	Result
		(11112)	Chain 1	Chain 2	power (ubiii)	FOWER (dBill)	
		2412	15.047	13.670	15.047	26	Pass
802.11b	1Mbps	2437	15.535	12.609	15.535	26	Pass
		2462	15.073	13.819	15.073	26	Pass
		2412	11.431	10.693	11.431	26	Pass
802.11g	6Mbps	2437	11.828	10.200	11.828	26	Pass
	2462	11.526	10.203	11.526	26	Pass	
		2412	10.408	9.772	13.112	26	Pass
802.11n20	MCS0	2437	10.856	9.305	13.159	26	Pass
		2462	10.525	9.182	12.916	26	Pass
		2422	8.359	7.434	10.931	26	Pass
802.11n40	MCS0	2437	9.082	8.447	11.786	26	Pass
		2452	8.835	8.038	11.465	26	Pass

Note:

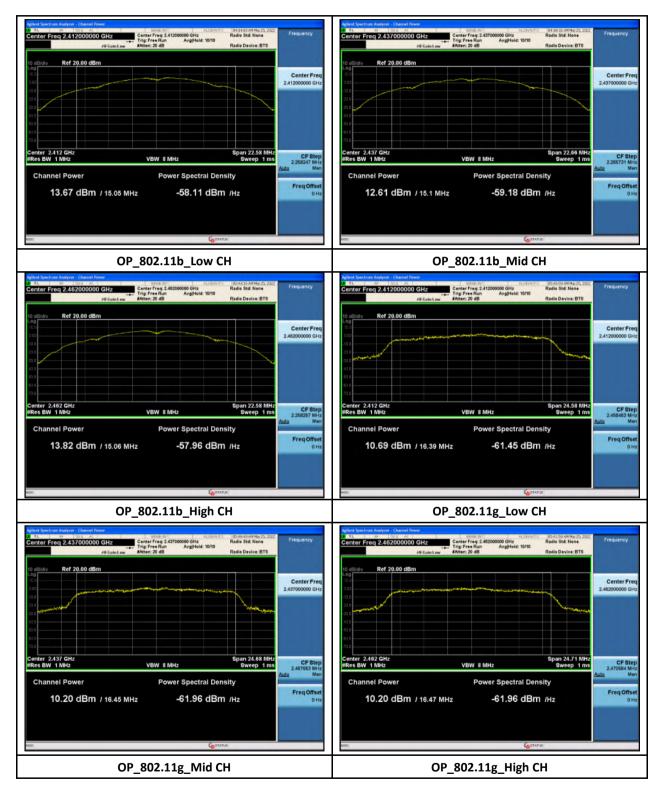
1) For 802.11b/g, the highest output power is recorded.

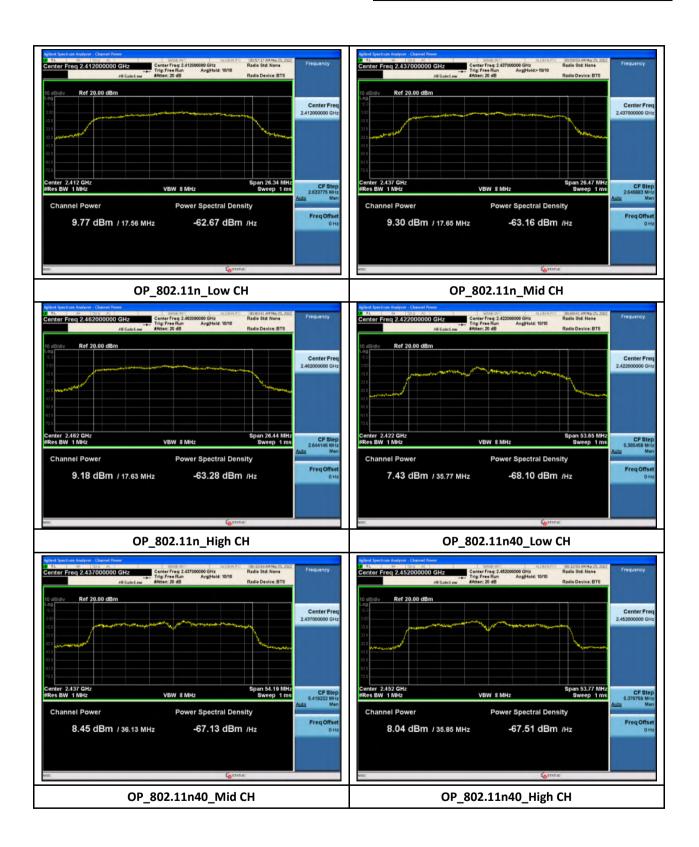
2) For 2.4GHz 802.11n mode, with internal antennas, it's under 2x2 MIMO mode, the output power is combined together to compare to limit. Directional gain is calculated per KDB 662911 D01. For 2.4GHz WiFi, directional gain = 6.7 dBi. The output power limit is reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


3) The actual power and PSD limit will be reduced by the amount that it exceeds 6 dBi based on a conservative 10 dBi peak gain (optional external antenna that is to be evaluated)


7.4.5 Test Plots

Chain 1





Chain 2

7.5 Power Spectral Density

7.5.1 Requirement

§ 15.247 (e), RSS-247 §5.2

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power is used to determine the power spectral density.

7.5.2 Test Setup

7.5.3 Test Procedure

According to section 8.4 in KDB 558074 D01 DTS Meas Guidance v05r02 and subclause 11.10.2 PKPSD of ANSI C63.10-2013:

- 1. Set analyser centre frequency to DTS channel centre frequency.
- 2. Set the span to 1.5 X DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

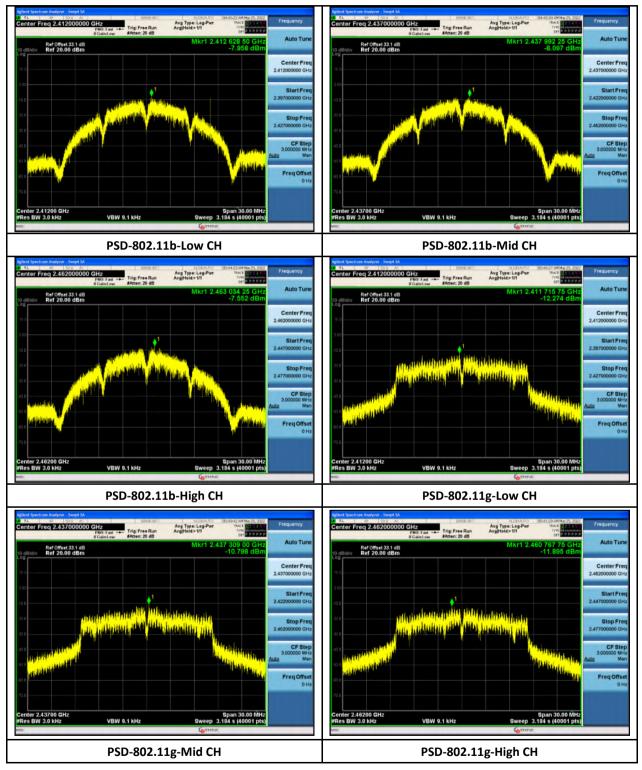
7.5.4 Test Result

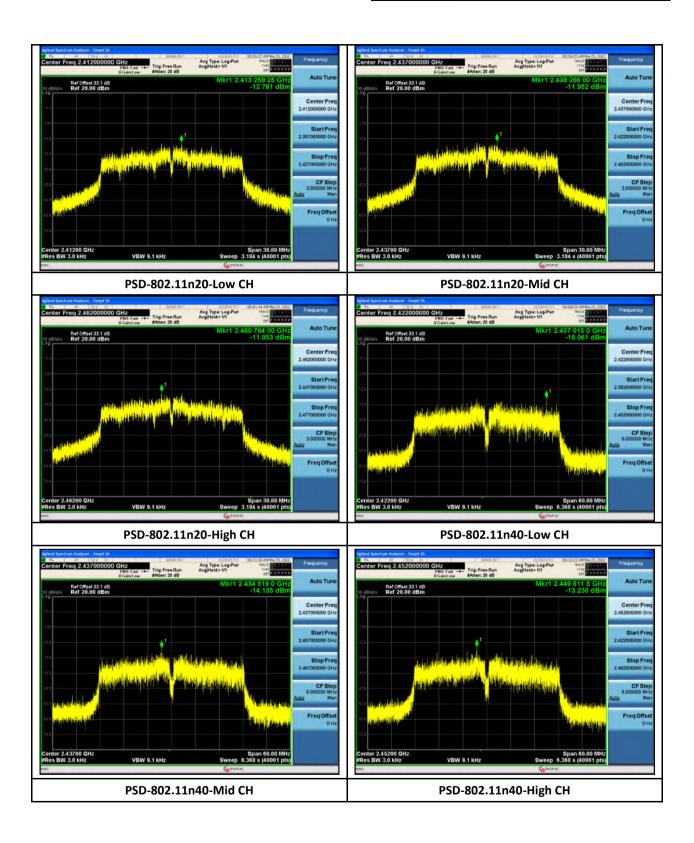
Mode	Mode Data rate Fi		Measured PSD (dBm/3KHz)		Highest / Total PSD (dBm)	Max PSD Limit (dBm/3KHz)	Result
		(MHz)	Chain 1	Chain 2			
		2412	-7.958	-8.130	-7.958	4	Pass
802.11b	1Mbps	2437	-8.097	-6.317	-6.317	4	Pass
		2462	-7.552	-9.464	-7.552	4	Pass
		2412	-12.274	-13.219	-12.274	4	Pass
802.11g	802.11g 6Mbps	2437	-10.798	-12.135	-10.798	4	Pass
	2462	-11.895	-13.488	-11.895	4	Pass	
		2412	-12.761	-12.656	-9.698	4	Pass
802.11n20	MCS0	2437	-11.952	-14.015	-9.852	4	Pass
		2462	-11.953	-14.882	-10.165	4	Pass
		2422	-16.061	-14.407	-12.145	4	Pass
802.11n40	802.11n40 MCS0	2437	-14.135	-14.814	-11.451	4	Pass
		2452	-13.230	-12.661	-9.926	4	Pass

Note:

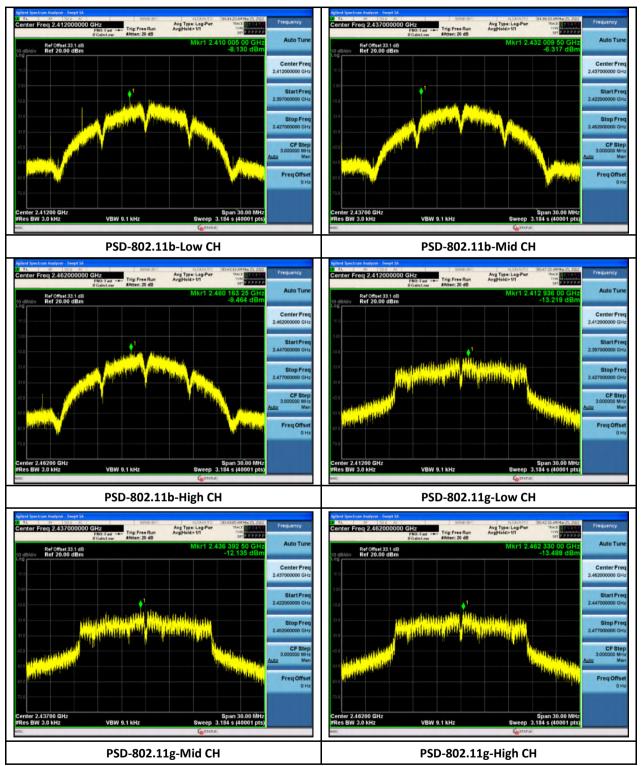
1) For 802.11b/g, the highest output power is recorded.

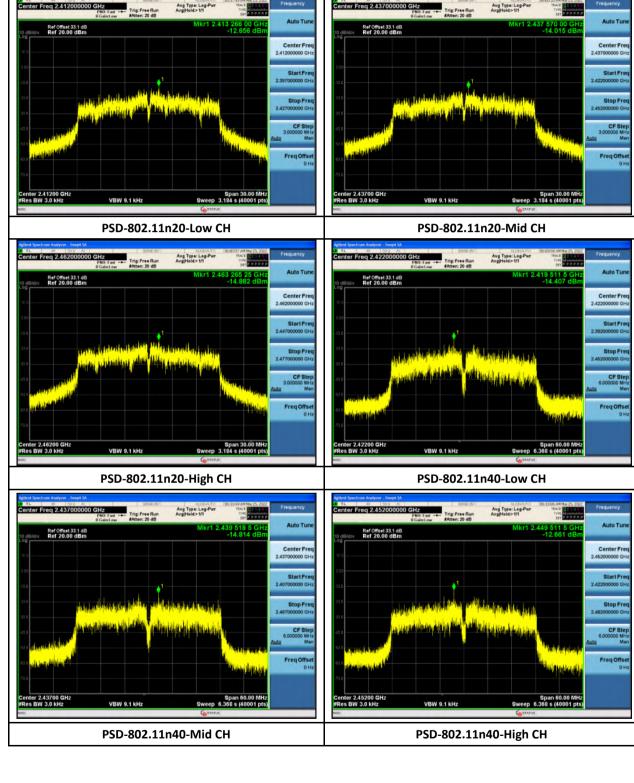
2) For 2.4GHz 802.11n mode, with internal antennas, it's under 2x2 MIMO mode, the output power is combined together to compare to limit. Directional gain is calculated per KDB 662911 D01. For 2.4GHz WiFi, directional gain = 6.7 dBi. The output power limit is reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


3) The actual power and PSD limit will be reduced by the amount that it exceeds 6 dBi based on a conservative 10 dBi peak gain (optional external antenna that is to be evaluated)


7.5.5 Test Plots

Chain 1





q 2.4120

aq 2.437

Report# WAP-22021511-LC-FCC IC-WLAN2.4G

7.6 Conducted Band-Edge & Unwanted Emissions

7.6.1 Requirement

§ 15.247 (d), RSS-247 §5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Report#

7.6.2 Test Setup

7.6.3 Test Procedure

According to ANSI C63.10-2013 clause 11.13

- 1. The RF output of EUT was connected to the spectrum analyser by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW=100 KHZ, VBW=300 KHZ, Peak Detector. Unwanted Emissions measured in any 100 khz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 db relative to the maximum in-band peak PSD level in 100 KHZ when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 db instead of 20 db per 15.247(d).
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete and record the results in the test report.

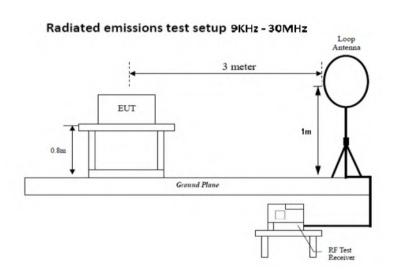
7.6.4 Test Result

Conducted Band edge

Report#	WAP-22021511-LC-FCC IC-WLAN2.4G

7.7 Radiated Band-Edge & Spurious Emissions into Restricted Frequency Bands

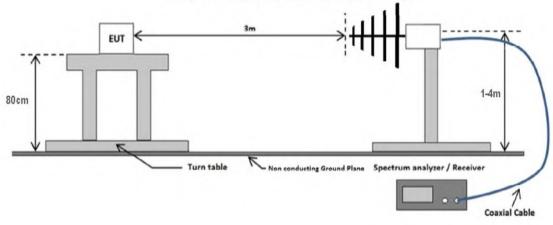
7.7.1 Requirement

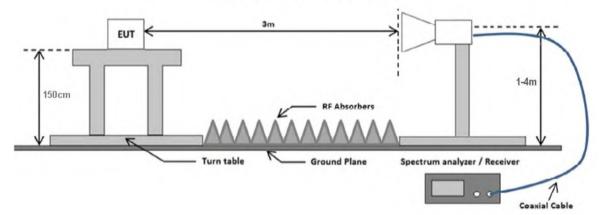

§ 15.247 (d), RSS-247 §5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in §15.209(a) and RSS-Gen is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency Range (MHZ)	Field Strength (µV/m)
0.009~0.490	2400/F(KHz)
0.490~1.705	24000/F(KHz)
1.705~30.0	30
30 - 88	100
88 – 216	150
216 960	200
Above 960	500


7.7.2 Test Setup



Radiated emissions test setup 30 MHz - 1 GHz

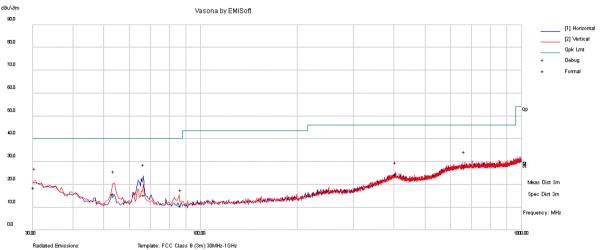
Radiated emissions test setup above 1 GHz

7.7.3 Test Procedure

According to section 8.6 in KDB 558074 D01 DTS Meas Guidance v05r02 and subclause 11.12.2.7 Radiated spurious emission measurements in ANSI C63.10-2013 as well as the procedures for maximizing and measuring radiated emissions that are described in ANSI C63.10 was followed. Boresight antenna mast was used during the scanning to point to EUT to maximize the emission. The process will be repeated in 3 EUT orientations.

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:
 - a. Vertical or horizontal polarization (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - b. The EUT was then rotated to the direction that gave the maximum emission.
 - c. Finally, the antenna height was adjusted to the height that gave the maximum emission.
- 3. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz for frequency below 150KHz.
- 4. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 10 kHz for frequency between 150KHz 30MHz.
- 5. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-Peak detection at frequency between 30MHz 1GHz.
- 6. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz with Peak detection for Peak and average measurement at frequency above 1GHz.

7. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency points were measured.


7.7.4 Test Result

Radiated Emission between 9KHz – 30MHz test result

Note: no substantial emission is found other than the noise floor. Different modes have been verified.

RADIATED EMISSIONS BELOW 1 GHZ

Test Standard:	FCC15.247, 15.209, RSS 247	Mode:	802.11b Mode
Frequency Range:	30 MHz - 1 GHz	Test Date:	05/19/2022
Antenna Type/Polarity:	Bi-Log/Hor & Ver	Test Personnel:	Devin Tai
Remark:	Mid channel	Test Result:	Pass

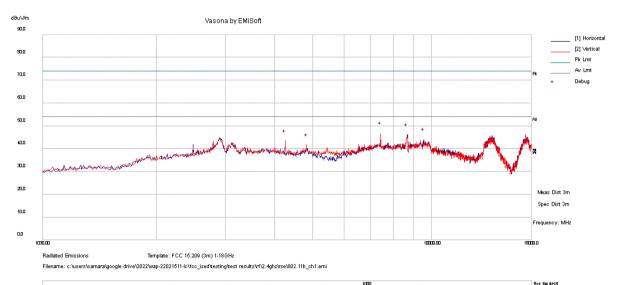
ilename: o:\users\camara\google	drive\2022\wap-22021511-lo\fcc_	_ised'testing'test results'rf'ble'rse\802.11b_M.emi	

[120				Res Bw j	Hzj	
No.	Frequency MHz	Raw dBuV	Cable Loss	AF dB/m	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass/Fail
1	66.625	32.8	3.1	-20.3	15.6	Quasi Max	Н	101	134	40	-24.4	Pass
2	665.577	26.4	7.3	-5.2	28.4	Quasi Max	V	328	332	46	-17.6	Pass
3	30.328	28.2	2.2	-11.7	18.7	Quasi Max	V	127	131	40	-21.3	Pass
4	53.555	34.1	2.9	-20.9	16	Quasi Max	V	112	59	40	-24	Pass
5	405.037	26.2	6.4	-8	24.5	Quasi Max	V	305	290	46	-21.5	Pass
6	86.598	27.6	3.4	-20.2	10.8	Quasi Max	V	400	309	40	-29.2	Pass

Remarks:

Fi

1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).


2. AF(dB/m) = Antenna Factor (dB) – Preamplifier Gain (dB)

3. Margin = Level (dBuV/m) - Limit value(dBuV/m)

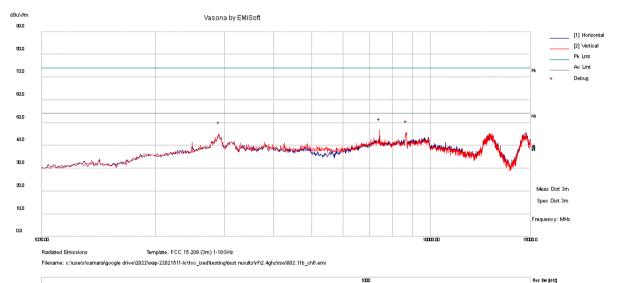
Test Standard:	FCC15.247, 15.209, RSS 247	Mode:	802.11b Mode
Frequency Range:	1 GHz – 18 GHz	Test Date:	05/19/2022-05/25/2022
Antenna Type/Polarity:	Horn/Hor & Ver	Test Personnel:	Devin Tai
Remark:	Low Channel	Test Result:	Pass

										Res 0	wijing	
No.	Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass/Fail
NO.	MHz	dBuV	Loss	dB/m	dBuV/m	Туре	PUI	cm	Deg	dBuV/m	V/m dB Pass/	Pass/Fall
1	7436.175	40.1	11.9	-5.6	46.5	Peak Max	V	100	0	54	-7.5	Pass
2	9578.638	34.9	14	-5.2	43.7	Peak Max	Н	200	0	54	-10.3	Pass
3	4254.994	32.6	8.3	2.4	43.2	Peak Max	V	101	0	54	-10.8	Pass
4	8689.422	34.1	17.5	-5.7	45.8	Peak Max	V	101	0	54	-8.2	Pass
5	4828.412	37.1	9.1	-4.8	41.5	Peak Max	V	101	0	54	-12.5	Pass

Remarks:

1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).

2. AF(dB/m) = Antenna Factor (dB) – Preamplifier Gain (dB)


3. Margin = Level (dBuV/m) - Limit value(dBuV/m)

Report#

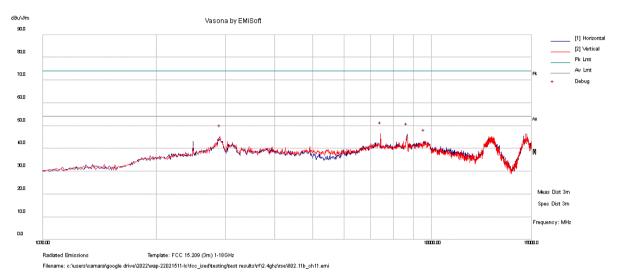
Test Standard:	FCC15.247, 15.209, RSS 247	Mode:	802.11b Mode
Frequency Range:	1 GHz – 18 GHz	Test Date:	05/19/2022-05/25/2022
Antenna Type/Polarity:	Horn/Hor & Ver	Test Personnel:	Devin Tai
Remark:	Mid Channel	Test Result:	Pass

No.	Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass/Fail
INO.	MHz	dBuV	Loss	dB/m	dBuV/m	Туре	PUI	cm	Deg	dBuV/m	dB	Pass/Pall
1	7436.175	40.4	11.9	-5.6	46.8	Peak Max	V	100	0	54	-7.2	Pass
2	8708.925	33.9	17.6	-5.7	45.7	Peak Max	V	200	0	54	-8.3	Pass
3	2907.306	20.7	20.8	3.9	45.3	Peak Max	V	200	0	54	-8.7	Pass

Remarks:

1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).

2. AF(dB/m) = Antenna Factor (dB) – Preamplifier Gain (dB)


3. Margin = Level (dBuV/m) - Limit value(dBuV/m)

Report#

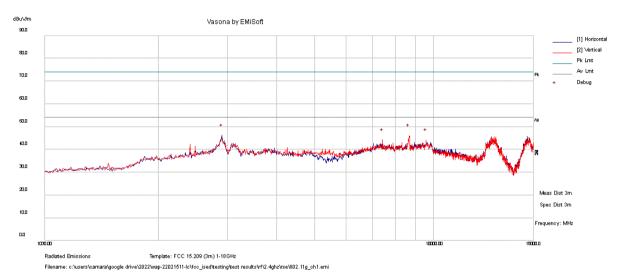
Test Standard:	FCC15.247, 15.209, RSS 247	Mode:	802.11b Mode
Frequency Range:	1 GHz – 18 GHz	Test Date:	05/19/2022-05/25/2022
Antenna Type/Polarity:	Horn/Hor & Ver	Test Personnel:	Devin Tai
Remark:	High Channel	Test Result:	Pass

						1000				Res B	w įkHzj	
No.	Frequency MHz	Raw dBuV	Cable Loss	AF dB/m	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass/Fail
1	7436.175	40.2	11.9	-5.6	46.6	Peak Max	V	200	0	54	-7.4	Pass
2	8687.713	34.5	17.4	-5.7	46.2	Peak Max	Н	200	0	54	-7.8	Pass
3	2907.306	20.7	20.8	3.9	45.4	Peak Max	V	100	0	54	-8.6	Pass
4	9599.85	34.4	14.1	-5.2	43.3	Peak Max	Н	100	0	54	-10.7	Pass

Remarks:

1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).

2. AF(dB/m) = Antenna Factor (dB) – Preamplifier Gain (dB)


3. Margin = Level (dBuV/m) - Limit value(dBuV/m)

Report#

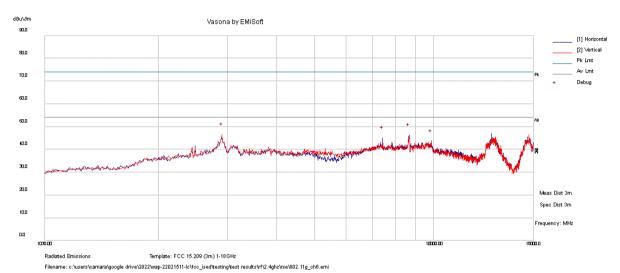
Test Standard:	FCC15.247, 15.209, RSS 247	Mode:	802.11g Mode
Frequency Range:	1 GHz – 18 GHz	Test Date:	05/19/2022-05/25/2022
Antenna Type/Polarity:	Horn/Hor & Ver	Test Personnel:	Devin Tai
Remark:	Low Channel	Test Result:	Pass

						1000				Res B	w (kHz)	
No.	Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass/Fail
110.	MHz	dBuV	Loss	dB/m	dBuV/m	Туре	1.01	cm	Deg	dBuV/m	dB	1 033/1 011
1	2907.306	21.5	20.8	3.9	46.1	Peak Max	Н	200	0	54	-7.9	Pass
2	8687.713	34.4	17.4	-5.7	46.1	Peak Max	V	200	0	54	-7.9	Pass
3	9599.85	35.1	14.1	-5.2	44	Peak Max	V	100	0	54	-10	Pass
4	7436.43	37.9	11.9	-5.6	44.2	Peak Max	V	101	360	54	-9.8	Pass

Remarks:

1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).

2. AF(dB/m) = Antenna Factor (dB) – Preamplifier Gain (dB)


3. Margin = Level (dBuV/m) - Limit value(dBuV/m)

Report#

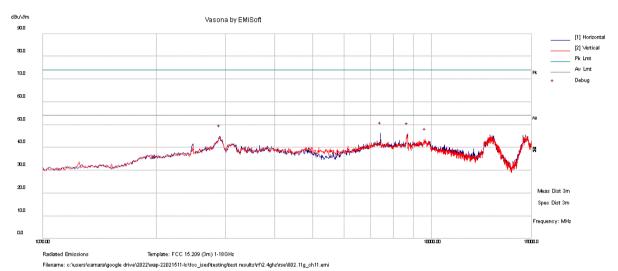
Test Standard:	FCC15.247, 15.209, RSS 247	Mode:	802.11g Mode
Frequency Range:	1 GHz – 18 GHz	Test Date:	05/19/2022-05/25/2022
Antenna Type/Polarity:	Horn/Hor & Ver	Test Personnel:	Devin Tai
Remark:	Mid Channel	Test Result:	Pass

						1000				Res B	w (kHz)	
No.	Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass/Fail
110.	MHz	dBuV	Loss	dB/m	dBuV/m	Туре	101	cm	Deg	dBuV/m	dB	1 033/1 011
1	2907.306	21.9	20.8	3.9	46.5	Peak Max	V	200	0	54	-7.5	Pass
2	8687.713	34.6	17.4	-5.7	46.3	Peak Max	Н	100	0	54	-7.7	Pass
3	9896.825	34.3	14.6	-5.2	43.7	Peak Max	V	200	0	54	-10.4	Pass
4	7436.208	38.7	11.9	-5.6	45	Peak Max	Н	101	360	54	-9	Pass

Remarks:

1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).

2. AF(dB/m) = Antenna Factor (dB) – Preamplifier Gain (dB)


3. Margin = Level (dBuV/m) - Limit value(dBuV/m)

Report#

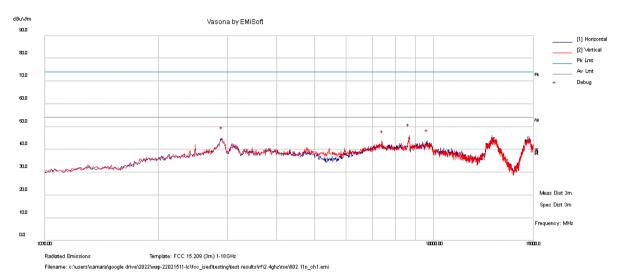
Test Standard:	FCC15.247, 15.209, RSS 247	Mode:	802.11g Mode
Frequency Range:	1 GHz – 18 GHz	Test Date:	05/19/2022-05/25/2022
Antenna Type/Polarity:	Horn/Hor & Ver	Test Personnel:	Devin Tai
Remark:	High Channel	Test Result:	Pass

						1000			Res Bw (Hz)				
No.	Frequency MHz	Raw dBuV	Cable Loss	AF dB/m	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass/Fail	
1	7436.175	39.8	11.9	-5.6	46.1	Peak Max	Н	100	0	54	-7.9	Pass	
2	8708.925	34.1	17.6	-5.7	45.9	Peak Max	Н	100	0	54	-8.1	Pass	
3	2896.7	19.1	21.9	3.8	44.8	Peak Max	Н	100	0	54	-9.2	Pass	
4	9663.488	34.2	14.5	-5.2	43.5	Peak Max	V	100	0	54	-10.5	Pass	

Remarks:

1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).

2. AF(dB/m) = Antenna Factor (dB) – Preamplifier Gain (dB)


3. Margin = Level (dBuV/m) - Limit value(dBuV/m)

Report#

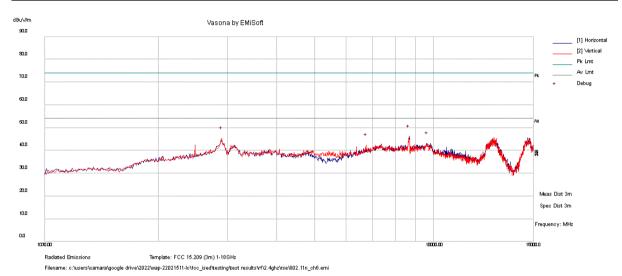
Test Standard:	FCC15.247, 15.209, RSS 247	Mode:	802.11n20 Mode
Frequency Range:	1 GHz – 18 GHz	Test Date:	05/19/2022-05/25/2022
Antenna Type/Polarity:	Horn/Hor & Ver	Test Personnel:	Devin Tai
Remark:	Low Channel	Test Result:	Pass

						1000				Res B	w (kHz)	
No.	Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass/Fail
140.	MHz	dBuV	Loss	dB/m	dBuV/m	Туре	101	cm	Deg	dBuV/m	dB	1 033/1 011
1	8687.713	34.4	17.4	-5.7	46.1	Peak Max	Н	200	0	54	-7.9	Pass
2	2907.306	20.3	20.8	3.9	44.9	Peak Max	Н	100	0	54	-9.1	Pass
3	9663.488	34.4	14.5	-5.2	43.7	Peak Max	Н	200	0	54	-10.3	Pass
4	7436.449	36.8	11.9	-5.6	43.1	Peak Max	V	101	360	54	-10.9	Pass

Remarks:

1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).

2. AF(dB/m) = Antenna Factor (dB) – Preamplifier Gain (dB)


3. Margin = Level (dBuV/m) - Limit value(dBuV/m)

Report#

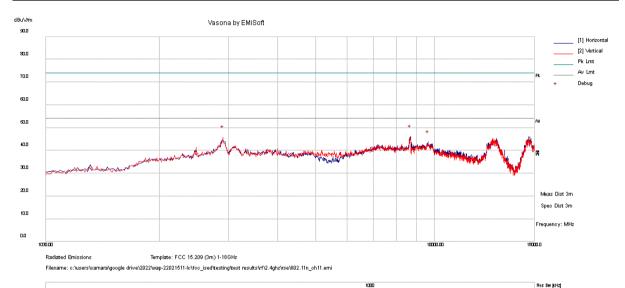
Test Standard:	FCC15.247, 15.209, RSS 247	Mode:	802.11n20 Mode
Frequency Range:	1 GHz – 18 GHz	Test Date:	05/19/2022-05/25/2022
Antenna Type/Polarity:	Horn/Hor & Ver	Test Personnel:	Devin Tai
Remark:	Mid Channel	Test Result:	Pass

		1000								Res Bw (Hz)				
No.	Frequency MHz	Raw dBuV	Cable Loss	AF dB/m	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass/Fail		
1	8687.713	34.5	17.4	-5.7	46.2	Peak Max	Н	100	0	54	-7.8	Pass		
2	2896.7	19.5	21.9	3.8	45.2	Peak Max	V	200	0	54	-8.8	Pass		
3	9663.488	33.8	14.5	-5.2	43.1	Peak Max	Н	100	0	54	-10.9	Pass		
4	6757.292	38.1	11.2	-7	42.3	Peak Max	V	101	360	54	-11.7	Pass		

Remarks:

1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).

2. AF(dB/m) = Antenna Factor (dB) – Preamplifier Gain (dB)


3. Margin = Level (dBuV/m) - Limit value(dBuV/m)

Report#

Test Standard:	FCC15.247, 15.209, RSS 247	Mode:	802.11n20 Mode
Frequency Range:	1 GHz – 18 GHz	Test Date:	05/19/2022-05/25/2022
Antenna Type/Polarity:	Horn/Hor & Ver	Test Personnel:	Devin Tai
Remark:	High Channel	Test Result:	Pass

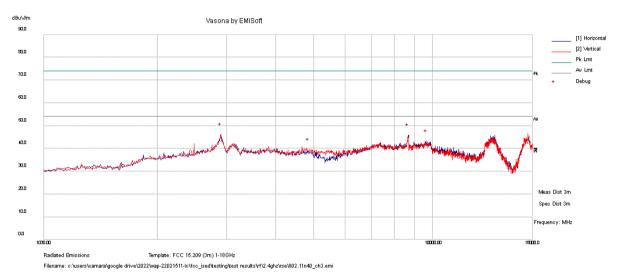
No.	Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass/Fail
NO.	MHz	dBuV	Loss	dB/m	dBuV/m	Туре	FUI	cm	Deg	dBuV/m	dB	r ass/raii
1	8708.925	34.2	17.6	-5.7	46	Peak Max	V	200	0	54	-8	Pass
2	2907.306	21.1	20.8	3.9	45.7	Peak Max	V	200	0	54	-8.3	Pass
3	9652.881	34.5	14.4	-5.2	43.7	Peak Max	Н	200	0	54	-10.3	Pass

Remarks:

1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).

2. AF(dB/m) = Antenna Factor (dB) – Preamplifier Gain (dB)

3. Margin = Level (dBuV/m) - Limit value(dBuV/m)



Res Bw (kHz)

RADIATED EMISSIONS 1 - 18 GHZ

Report#

Test Standard:	FCC15.247, 15.209, RSS 247	Mode:	802.11n40 Mode
Frequency Range:	1 GHz – 18 GHz	Test Date:	05/19/2022-05/25/2022
Antenna Type/Polarity:	Horn/Hor & Ver	Test Personnel:	Devin Tai
Remark:	Low Channel	Test Result:	Pass

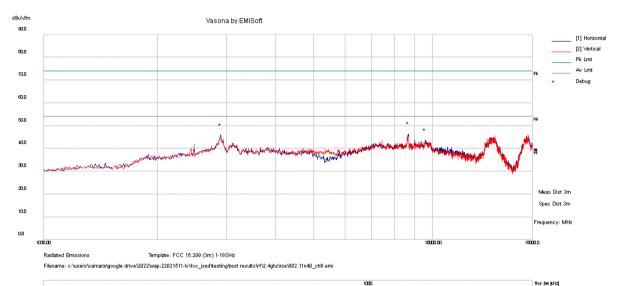
No.	Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass/Fail
NO.	MHz	dBuV	Loss	dB/m	dBuV/m	Туре	FUI	cm	Deg	dBuV/m	dB	F ass/Fall
1	2896.7	20.3	21.9	3.8	46	Peak Max	Н	100	0	54	-8	Pass
2	8687.713	34	17.4	-5.7	45.7	Peak Max	Н	200	0	54	-8.3	Pass
3	9652.881	33.9	14.4	-5.2	43.1	Peak Max	Н	200	0	54	-10.9	Pass
4	4844.561	35.2	9.1	-5	39.3	Peak Max	V	101	360	54	-14.7	Pass

1000

Remarks:

1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).

2. AF(dB/m) = Antenna Factor (dB) – Preamplifier Gain (dB)


3. Margin = Level (dBuV/m) - Limit value(dBuV/m)

Report#

Test Standard:	FCC15.247, 15.209, RSS 247	Mode:	802.11n40 Mode
Frequency Range:	1 GHz – 18 GHz	Test Date:	05/19/2022-05/25/2022
Antenna Type/Polarity:	Horn/Hor & Ver	Test Personnel:	Devin Tai
Remark:	Mid Channel	Test Result:	Pass

No.	Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin dB	Pass/Fail
INO.	MHz	dBuV	Loss	dB/m	dBuV/m	Туре	PUI	cm	Deg	dBuV/m		r ass/ Fall
1	8698.319	34.3	17.9	-5.7	46.5	Peak Max	Н	100	0	54	-7.5	Pass
2	2896.7	20.2	21.9	3.8	45.9	Peak Max	Н	200	0	54	-8.1	Pass
3	9610.456	34.7	14.1	-5.2	43.7	Peak Max	Н	200	0	54	-10.3	Pass

Remarks:

1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).

2. AF(dB/m) = Antenna Factor (dB) – Preamplifier Gain (dB)

3. Margin = Level (dBuV/m) - Limit value(dBuV/m)

Report#

	Test Standard:		FCC15.247	M	lode:		802.11n40 Mode						
Frequency Range:		e:	1 GHz – 18 GHz			Test Date:			05/19/2022-05/25/2022				
Ante	enna Type/Pola	arity:	Horn	/Hor & \	Ver	Test P	ersonne	el:	Devin Tai				
	Remark:		Higl	h Chann	el	Test	Result:		Pass		Pass		
lu\∕/m 90.0				Vasona by El	MiSoft								
80.0												[1] Horiz [2] Verti Pk Lmt	ical
ם סי											PK	Av Lmt + Debug	
60.0													
50.0				+			+	+	+				
40.0		A.	- and and the	M	Wards and William and sectors of	and the second second second	North Contraction	manalipped	were shared and	a second and a second	N . / N .		
0.0	Samona	and a star of the start of the								an a	N.		
00												eas Dist 3m	
00												oeo Dist 3m juency: MHz	
100 100	30.00								10000.00		18000.0		
	Radiated Emissions Filename: c:\users\camara\go		femplate: FCC 15.209 (wap-22021511-lo\fcc_is		sults\rf\2.4ghz\rse\802.	11n40_ch9.emi							
							1000				Res	Bw (kHz)	
No	Frequency	Raw	Cable	AF	Level	Measure	ement	Pol	Hgt	Azt	Limit	Margin	Р

No.	Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass/Fail
	MHz	dBuV	Loss	dB/m	dBuV/m	Туре	FUI	cm	Deg	dBuV/m	dB	1 833/1 811
1	8687.713	34.4	17.4	-5.7	46.1	Peak Max	Н	100	0	54	-7.9	Pass
2	2907.306	20.4	20.8	3.9	45.1	Peak Max	Н	100	0	54	-8.9	Pass
3	9387.725	34.2	14.6	-5.2	43.6	Peak Max	Н	200	0	54	-10.4	Pass
4	7362.266	35	11.9	-5.5	41.5	Peak Max	V	101	360	54	-12.5	Pass

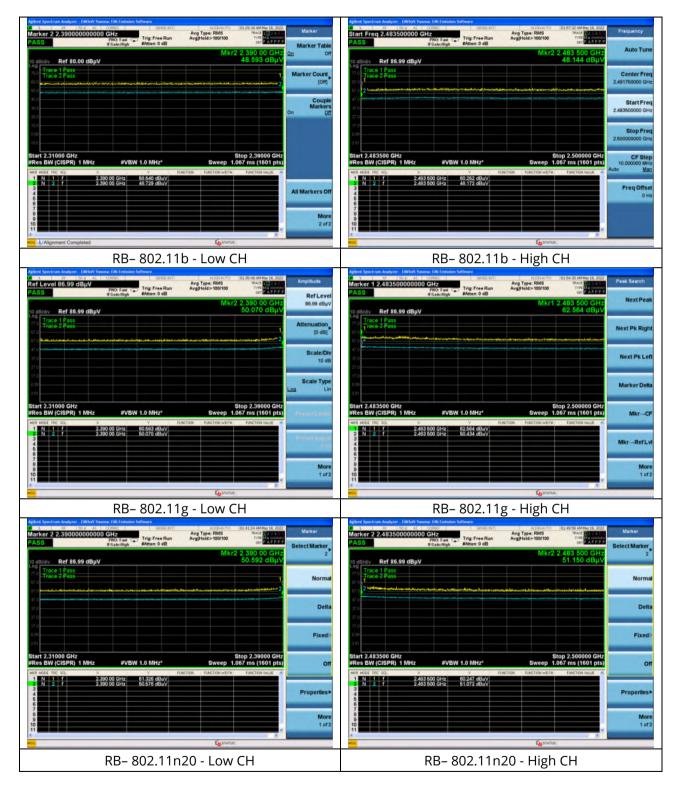
Remarks:

1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).

2. AF(dB/m) = Antenna Factor (dB) – Preamplifier Gain (dB)

3. Margin = Level (dBuV/m) - Limit value(dBuV/m)

4. Final average measurement is not necessary since peak level is below average limit


Radiated Emission between 18GHz – 40GHz test result

Note: no substantial emission is found other than the noise floor. Different modes have been verified.

Restricted Band Measurement Result

Report#

Report# WAP-22021511-LC-FCC IC-WLAN2.4G

Agled Synchron Andyzer Lill Act Viewer Lill Latitude Kallwer Start Frog 2.310000000 CPU	Trace/Detector	PASS IFGainstigh SAtter: 0 dB	Frequency Auto Tune
10 dB/div Ref 86.99 dBµV 52.020 dBµV	1	10 dB/div Ref 86.99 dBµV 61.916 dBµV	AutoTune
100 Trace 1 Pass Trace 2 Pass So 5 So 4 So 4 So 5 So 5	Clear Write	77.0 Trace 1 Pass	Center Freq 491750000 GHz
00	Trace Average	C2 8 0 2 0	Start Freq 483500000 GHz
173 189 369	Max Hold	17) 189 101	Stop Freq
Start 2.31000 GHz Stop 2.39000 GHz #Res BW (CISPR) 1 MHz #VBW 1.0 MHz' Sweep 1.047 ms (1601 pt) ms #ctop tres to x y pactors Data Automotion (action buck)	Min Hold	Start 2,433500 GHz Stop 2,500000 GHz #Res BW (GISPR) 1 MHz #VBW 1.0 MHz* Sweep 1.067 ms (1601 pts) was weter to 2	CF Step 10.000000 MHz Man
1 N 1 f 229000 GHz 60.734 dBuV 2 N 2 f 239000 GHz 51.993 dBuV 3 4	View Blank	1 N 1 f 2.483 500 GHz 61.916 dB/W 2 N 2 f 2.483 500 GHz 52.247 dB/W 4	Freq Offset 0 Hz
	More 1 of 3		
		en Lostatus	
RB- 802.11n40 - Low CH	RB- 802.11n40 - High CH		

8 EUT and Test Setup Photos

See FCC exhibits

Report# WAP-22021511-LC-FCC IC-WLAN2.4G

9 Test Instrument List

Equipment	Manufacturer	Model	Instrument Number	Cal. Date	Cal. Due	
Semi-Anechoic Chamber	ETS-Lindgren	10M	VL001	10/18/2021	10/18/2022	
Shielding Control Room	ETS-Lindgren	Series 81	VL006	N/A	N/A	
Spectrum Analyzer	Keysight	N9020A	MY50110074	06/17/2021	06/17/2022	
EMC Test Receiver	R&S	ESL6	100230	06/14/2021	06/14/2022	
Bi-Log Antenna	ETS-Lindgren	3142E	217921	11/15/2021	11/15/2022	
Horn Antenna (1-18GHz)	Electro-Metrics	EM-6961	6292	05/14/2022	05/14/2023	
Horn Antenna (18-40GHz)	Com-Power	AH-840	101109	06/24/2021	06/24/2022	
Preamplifier	RF Bay, Inc.	LPA-10-20	11180621	07/16/2021	07/16/2022	
True RMS Multi-meter	UNI-T	UT181A	C173014829	05/05/2022	05/05/2023	
Temp / Humidity / Pressure Meter	PCE Instruments	PCE-THB 40	R062028	05/05/2022	05/05/2023	
RF Attenuator	Pasternack	PE7005-3	VL061	07/16/2021	07/16/2022	
Preamplifier 100KHz - 40GHz	Aeroflex	33711-392- 77150-11	064	07/16/2021	07/16/2022	
EM Center Control	ETS-Lindgren	7006-001	160136	N/A	N/A	
Turn Table	ETS-Lindgren	2181-3.03	VL002	N/A	N/A	
Boresight Antenna Tower	ETS-Lindgren	2171B	VL003	N/A	N/A	
Loop Antenna (9k-30MHz)	Com-Power	AL-130	121012	05/16/2022	05/16/2023	
RE test cable (below 6GHz)	Vista	RE-6GHz-01	RE-6GHz-01	07/16/2021	07/16/2022	
RE test cable (1-18GHz)	PhaseTrack	II-240	RE-18GHz-01	07/16/2021	07/16/2022	
RE test cable (>18GHz)	Sucoflex	104	344903/4	07/16/2021	07/16/2022	
Pulse limiter	Com-Power	LIT-930A	531727	07/16/2021	07/16/2022	
CE test cable #1	FIRST RF	FRF-C-1002- 001	CE-6GHz-01	07/16/2021	07/16/2022	
CE test cable#2	FIRST RF	FRF-C-1002- 001	CE-6GHz-02	07/16/2021	07/16/2022	
Vector Signal Generator	Keysight	N5182A	US47080548	06/17/2021	06/17/2022	
USB RF Power Sensor	ETS-Lindgren	7002-006	SN 00151268	05/15/2022	05/15/2023	
RF Power Amplifier (80- 1000MHz)	Ophir	5226FE	1013/1815	N/A	N/A	
RF Power Amplifier (700- 6000MHz)	Ophir	5293FE	1063/1815	N/A	N/A	
Horn Antenna (1-18GHz)	FT-RF	HA-07M18G- NF	180010HA	N/A	N/A	
Wideband Communication	R&S	CMW500	147508	05/10/2022	05/10/2023	
Radio Communication Tester	Anritsu	MT8000a	6262261939	02/23/2022	02/23/2023	
Temperature/Humidity Chamber	Thermotron	SM-8-8200	40991	09/08/2021	09/08/2022	

----END----