

Test Report S/N:	100603-432KLU
Test Date(s):	October 8 & 10, 2003
Test Type:	FCC/IC SAR Evaluation

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION

Test Lab

CELLTECH LABS INC.
Testing and Engineering Services
1955 Moss Court
Kelowna, B.C.
Canada V1Y 9L3
Phone: 250-448-7047
Fax: 250-448-7046
e-mail: info@celltechlabs.com
web site: www.celltechlabs.com

Applicant Information

MOBILTEX DATA LTD.
3640 - 26th Street N.E.
Calgary, Alberta T1Y 4T7
Canada

Rule Part(s): FCC 47 CFR §2.1093; IC RSS-102 Issue 1 (Provisional)
Test Procedure(s): FCC OET Bulletin 65, Supplement C (Edition 01-01)
FCC Device Classification: PCS Licensed Transmitter Worn on Body (PCT)
IC Device Classification: 2 GHz Personal Communication Services (RSS-133)
FCC ID: 800 MHz Cellular Telephones Employing New Technologies (RSS-132)
IC Certification No.: KLU03579
Model(s): 3079A-03579
Device Type: OVPC2G
Modulation: Body-Worn Data Transmitter with RIM 1902G Dual-Band GPRS Modem
Tx Frequency Range(s): GMSK
1850.2 - 1909.8 MHz (PCS GPRS)
824.2 - 848.8 MHz (Cellular GPRS)
Max. RF Output Power Tested: 30.0 dBm Conducted (PCS GPRS)
29.0 dBm Conducted (Cellular GPRS)
Antenna Type: Custom Internal PCB
Battery Type: 7.4V Lithium-ion, 740 mAh
Body-Worn Accessories Tested: Belt-worn Holster (P/N: MOB-H7500SW-FX6)
Maximum SAR Measured: PCS Band: 0.398 W/kg (Body)
Cellular Band: 0.471 W/kg (Body)

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), and Industry Canada RSS-102 Issue 1 (Provisional) for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Russell W. Pipe
Senior Compliance Technologist
Celltech Labs Inc.

TABLE OF CONTENTS		
1.0	INTRODUCTION.....	3
2.0	DESCRIPTION OF DUT.....	3
3.0	SAR MEASUREMENT SYSTEM	4
4.0	MEASUREMENT SUMMARY.....	5-6
5.0	DETAILS OF SAR EVALUATION.....	7
6.0	EVALUATION PROCEDURES.....	7
7.0	SYSTEM PERFORMANCE CHECK.....	8
8.0	EQUIVALENT TISSUES.....	9
9.0	SAR SAFETY LIMITS.....	9
10.0	ROBOT SYSTEM SPECIFICATIONS.....	10
11.0	PROBE SPECIFICATION.....	11
12.0	SAM PHANTOM V4.0C.....	11
13.0	PLANAR PHANTOM.....	11
14.0	DEVICE HOLDER.....	11
15.0	TEST EQUIPMENT LIST.....	12
16.0	MEASUREMENT UNCERTAINTIES.....	13-14
17.0	REFERENCES.....	15
APPENDIX A - SAR MEASUREMENT DATA.....		16
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA.....		17
APPENDIX C - SYSTEM VALIDATION.....		18
APPENDIX D - PROBE CALIBRATION.....		19
APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS.....		20
APPENDIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY.....		21
APPENDIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY.....		22
APPENDIX H - SAR TEST SETUP PHOTOGRAPHS.....		23

1.0 INTRODUCTION

This measurement report demonstrates that the MOBILTEX DATA LTD. Model: OVPC2G Body-worn Data Transmitter with RIM 1902G Dual-Band PCS/Cellular GPRS Modem FCC ID: KLU03579 complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]), and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]), and IC RSS-102 Issue 1 (Provisional) (see reference [4]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION of DEVICE UNDER TEST (DUT)

FCC Rule Part(s)	47 CFR §2.1093
IC Rule Part(s)	RSS-102 Issue 1 (Provisional)
Test Procedure(s)	FCC OET Bulletin 65, Supplement C (Edition 01-01)
FCC Device Classification	PCS Licensed Transmitter Worn on Body (PCT)
IC Device Classification	2 GHz Personal Communication Services (RSS-133 Issue 2) 800 MHz Cellular Telephones Employing New Technologies (RSS-132 Issue 1)
Device Type	Body-worn Data Transmitter with RIM 1902G Dual-Band GPRS Modem
FCC ID	KLU03579
Model(s)	OVPC2G
Serial No.	30000005
Modulation	GMSK
Tx Frequency Range(s)	1850.2 - 1909.8 MHz (PCS GPRS) 824.2 - 848.8 MHz (Cellular GPRS)
Max. RF Output Power Tested	30.0 dBm Conducted (PCS GPRS) 29.0 dBm Conducted (Cellular GPRS)
Battery Type(s)	7.4 V Lithium-ion 740 mAh
Antenna Type	Custom Internal PCB
Body-Worn Accessories Tested	Belt-worn Holster (P/N: MOB-H7500SW-FX6)

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 SAR Measurement System with planar phantom

DASY4 SAR Measurement System with SAM phantom

4.0 MEASUREMENT SUMMARY

BODY-WORN SAR MEASUREMENT RESULTS - PCS GPRS

Freq. (MHz)	Chan.	Test Mode	Battery Type	Conducted Power			Antenna Position to Planar Phantom	Holster Position to Planar Phantom	Separation Distance to Planar Phantom (cm)	Measured SAR 1g (W/kg)	Max. Cond. Power Drift (dB)	Scaled SAR 1g (W/kg)
				Before (dBm)	After (dBm)	Drift (dB)						
1880.0	661	PCS GPRS	Li-ion	30.00	29.72	-0.28	Parallel	Front Side (w/out PC)	1.0	0.373	-0.28	0.398
1880.0	661	PCS GPRS	Li-ion	30.01	29.76	-0.25	Parallel	Front Side (with PC)	1.0	0.362	-0.28	0.386
1880.0	661	PCS GPRS	Li-ion	29.98	29.71	-0.27	Parallel	Back Side (w/out PC)	0.0	0.00927	-0.28	0.00989
1880.0	661	PCS GPRS	Li-ion	30.00	29.74	-0.26	Parallel	Back Side (with PC)	0.0	0.00999	-0.28	0.01066
				2 nd Maximum Peak SAR						0.00909	-0.28	0.00970

ANSI / IEEE C95.1 1992 - SAFETY LIMIT
BODY: 1.6 W/kg (averaged over 1 gram)
Spatial Peak - Uncontrolled Exposure / General Population

Test Date(s)	10/10/03		Relative Humidity	42 %
Measured Fluid Type	1900MHz Body		Atmospheric Pressure	101.7 kPa
Dielectric Constant ϵ_r	IEEE Target	Measured	Ambient Temperature	
	53.3 ± 5%	52.2	Fluid Temperature	
Conductivity σ (mho/m)	IEEE Target	Measured	Fluid Depth	
	1.52 ± 5%	1.57	ρ (Kg/m ³)	

Note(s):

1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
2. If the SAR measurements performed at the middle channel were \geq 3dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]).
3. The conducted power drifts measured after the SAR evaluations were $>$ 5% from the start power. The maximum power drift measured was added to the measured SAR levels to show scaled SAR results as listed in the above table.
4. Secondary peak SAR locations within 2dB of the maximum were evaluated and reported as shown in the table above table and Appendix A (SAR Test Plots).
5. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures listed in the table above were consistent for all measurement periods.
6. The dielectric properties of the simulated tissue fluid were measured prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).

MEASUREMENT SUMMARY (Cont.)

BODY-WORN SAR MEASUREMENT RESULTS - CELLULAR GPRS

Freq. (MHz)	Chan.	Test Mode	Battery Type	Conducted Power			Holster Position to Planar Phantom	Separation Distance to Planar Phantom (cm)	Separation Distance to Planar Phantom (cm)	Measured SAR 1g (W/kg)
				Before (dBm)	After (dBm)	Drift (dB)				
836.6	190	Cellular GPRS	Li-ion	29.02	28.99	-0.03	Parallel	Front Side (w/out PC)	1.0	0.471
836.6	190	Cellular GPRS	Li-ion	29.01	29.00	-0.01	Parallel	Front Side (with PC)	1.0	0.240
836.6	190	Cellular GPRS	Li-ion	29.01	29.00	-0.01	Parallel	Back Side (w/out PC)	0.0	0.0531
836.6	190	Cellular GPRS	Li-ion	29.02	29.00	-0.01	Parallel	Back Side (with PC)	0.0	0.0747

ANSI / IEEE C95.1 1992 - SAFETY LIMIT
BODY: 1.6 W/kg (averaged over 1 gram)
Spatial Peak - Uncontrolled Exposure / General Population

Test Date(s)	10/08/03		Relative Humidity		67 %
Measured Fluid Type	835MHz Body		Atmospheric Pressure		100.3 kPa
Dielectric Constant ϵ_r	IEEE Target	Measured	Ambient Temperature		21.1 °C
	55.2 ± 5%	55.2	Fluid Temperature		20.9 °C
Conductivity σ (mho/m)	IEEE Target	Measured	Fluid Depth		≥ 15 cm
	0.97 ± 5%	1.00	ρ (Kg/m³)		1000

Note(s):

1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
2. If the SAR measurements performed at the middle channel were \geq 3dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]).
3. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures listed in the table above were consistent for all measurement periods.
4. The dielectric properties of the simulated tissue fluid were measured prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).

5.0 DETAILS OF SAR EVALUATION

The MOBILTEX DATA LTD. Model: OVPC2G Body-Worn Data Transmitter with RIM 1902G Dual-Band PCS/Cellular GPRS Modem FCC ID: KLU03579 was found to be compliant for localized Specific Absorption Rate (Uncontrolled Exposure) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix H.

Body-worn Configuration

1. The DUT was tested for body-worn SAR placed inside the holster with the front side of the holster (antenna side) facing parallel to the outer surface of the planar phantom (bystander configuration). A 1.0 cm separation distance was established and maintained between the front side of the holster and the outer surface of the planar phantom. The front side of the holster was tested with and without the Symbol PC (Model: PDT7500-ROX73M01) installed.
2. The DUT was tested for body-worn SAR placed inside the holster with the backside of the holster facing parallel to the outer surface of the planar phantom (user configuration). A 0.0 cm separation distance was maintained between the backside of the holster and the outer surface of the planar phantom. The backside of the holster was tested with and without the Symbol PC (Model: PDT7500-ROX73M01) installed.
3. Due to the dimensions of the DUT, a planar phantom was used in place of the SAM phantom.
4. Due to the dimensions of the DUT, a stack of low-density, low-loss dielectric foamed polystyrene was used in place of the device holder.
5. The DUT was tested with a fully charged battery.

Power Settings & Test Modes

6. The conducted power levels were measured before and after each test using a Gigatronics 8652A Universal Power Meter according to the procedures described in FCC 47 CFR §2.1046.
7. The conducted power drift of the DUT measured before and after the SAR evaluations was > 5% in the PCS GPRS band. The maximum measured power drift was added to the measured SAR levels in the PCS GPRS band to show scaled SAR results, as listed in the test data table (page 5).
8. The radio transmitter was controlled in test mode and an RF signal generated using a Wavetek 4202S communication test set. SAR measurements were performed with the DUT transmitting continuously at maximum power with 4 time slots (Crest factor: 2).

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

1. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix D). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
2. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation a system check was performed at the planar section of the SAM phantom with an 1800MHz dipole and a 900MHz dipole (see Appendix C for system validation procedures). The fluid dielectric parameters were measured prior to the system performance check using an 85070C Dielectric Probe Kit and an 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters). A forward power of 250mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$.

SYSTEM PERFORMANCE CHECK

Test Date	Equiv. Tissue	SAR 1g (W/kg)		Dielectric Constant ϵ_r		Conductivity σ (mho/m)		ρ (Kg/m ³)	Amb. Temp. (°C)	Fluid Temp. (°C)	Fluid Depth (cm)	Atmos. Press. (kPa)	Humid. (%)
		IEEE Target	Measured	IEEE Target	Measured	IEEE Target	Measured						
10/08/03	900MHz Brain	2.70 $\pm 10\%$	2.67	41.5 $\pm 5\%$	40.6	0.97 $\pm 5\%$	0.97	1000	21.0	20.6	≥ 15	100.3	65
10/10/03	1800MHz Brain	9.53 $\pm 10\%$	10.2	40.0 $\pm 5\%$	39.2	1.40 $\pm 5\%$	1.38	1000	22.2	21.5	≥ 15	101.6	44

Note(s):

1. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods.

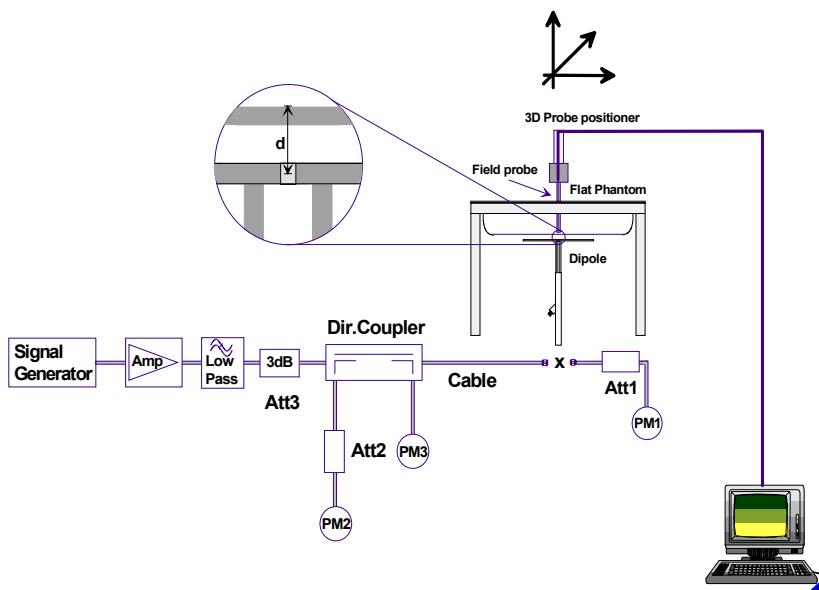


Figure 1. System Performance Check Setup Diagram

1800MHz Dipole Setup

900MHz Dipole Setup

8.0 SIMULATED TISSUE MIXTURES

The 1800MHz and 1900MHz simulated tissue mixtures consist of Glycol-monobutyl, water, and salt. The 835MHz and 900MHz simulated tissue mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide was added and visual inspection was made to ensure air bubbles were not trapped during the mixing process. The fluids were prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

1800MHz & 1900MHz SIMULATED TISSUE MIXTURES		
INGREDIENT	1800MHz Brain (System Check)	1900MHz Body (DUT Evaluation)
Water	548.0 g	716.60 g
Glycol Monobutyl	448.5 g	300.70 g
Salt	3.20 g	3.10 g

835MHz & 900MHz SIMULATED TISSUE MIXTURES		
INGREDIENT	900MHz Brain (System Check)	835MHz Body (DUT Evaluation)
Water	40.71 %	53.70 %
Sugar	56.63 %	45.10 %
Salt	1.48 %	0.97 %
HEC	1.00 %	0.13%
Bactericide	0.18 %	0.10 %

9.0 SAR SAFETY LIMITS

EXPOSURE LIMITS	SAR (W/kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

Notes:

1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

POSITIONER: Stäubli Unimation Corp. Robot Model: RX60L
Repeatability: 0.02 mm
No. of axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: AMD Athlon XP 2400+
Clock Speed: 2.0 GHz
Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic
Software: DASY4 software
Connecting Lines: Optical downlink for data and status info.
 Optical uplink for commands and clock

DASY4 Measurement Server

Function: Real-time data evaluation for field measurements and surface detection
Hardware: PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections: COM1, COM2, DAE, Robot, Ethernet, Service Interface

E-Field Probe

Model: ET3DV6
Serial No.: 1387
Construction: Triangular core fiber optic detection system
Frequency: 10 MHz to 6 GHz
Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Phantom(s)

Evaluation Phantom

Type: Planar Phantom
Shell Material: Fiberglass
Bottom Thickness: 2.0 ± 0.1 mm
Volume: Approx. 72 liters

Validation Phantom

Type: SAM V4.0C
Shell Material: Fiberglass
Bottom Thickness: 2.0 ± 0.1 mm
Volume: Approx. 20 liters

11.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core
 Built-in shielding against static charges
 PEEK enclosure material (resistant to organic solvents, e.g. glycol)
Calibration: In air from 10 MHz to 2.5 GHz
 In brain simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy \pm 8%)
Frequency: 10 MHz to >6 GHz; Linearity: ± 0.2 dB
 (30 MHz to 3 GHz)
Directivity: ± 0.2 dB in brain tissue (rotation around probe axis)
 ± 0.4 dB in brain tissue (rotation normal to probe axis)
Dynamic Range: 5 μ W/g to >100 mW/g; Linearity: ± 0.2 dB
Surface Detect.: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Dimensions: Overall length: 330 mm
 Tip length: 16 mm
 Body diameter: 12 mm
 Tip diameter: 6.8 mm
 Distance from probe tip to dipole centers: 2.7 mm
Application: General dosimetry up to 3 GHz
 Compliance tests of portable phone

ET3DV6 E-Field Probe

12.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix F for specifications of the SAM phantom V4.0C).

SAM Phantom

13.0 PLANAR PHANTOM

The planar phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table (see Appendix G for dimensions and specifications of the planar phantom).

Planar Phantom

14.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

15.0 TEST EQUIPMENT LIST

TEST EQUIPMENT	SERIAL NO.	CALIBRATION DATE
Schmid & Partner DASY4 System	-	-
DASY4 Measurement Server	1078	N/A
-Robot	599396-01	N/A
-ET3DV6 E-Field Probe	1387	Feb 2003
-300MHz Validation Dipole	135	Oct 2003
-450MHz Validation Dipole	136	Oct 2003
-900MHz Validation Dipole	054	June 2003
-1800MHz Validation Dipole	247	June 2003
-2450MHz Validation Dipole	150	Sept 2003
-SAM Phantom V4.0C	1033	N/A
-Barski Planar Phantom	03-01	N/A
HP 85070C Dielectric Probe Kit	N/A	N/A
Gigatronics 8651A Power Meter	8650137	April 2003
Gigatronics 8652A Power Meter	1835267	April 2003
Power Sensor 80701A	1833542	Feb 2003
Power Sensor 80701A	1833699	April 2003
Wavetek 4202S Communication Test Set	0313573	Dec 2002
HP E4408B Spectrum Analyzer	US39240170	Dec 2002
HP 8594E Spectrum Analyzer	3543A02721	April 2003
HP 8753E Network Analyzer	US38433013	May 2003
HP 8648D Signal Generator	3847A00611	May 2003
Amplifier Research 5S1G4 Power Amplifier	26235	N/A

16.0 MEASUREMENT UNCERTAINTIES

UNCERTAINTY BUDGET FOR DEVICE EVALUATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c_i 1g	Standard Uncertainty ±% (1g)	v_i or v_{eff}
Measurement System						
Probe calibration	± 4.8	Normal	1	1	± 4.8	∞
Axial isotropy of the probe	± 4.7	Rectangular	$\sqrt{3}$	$(1-c_p)$	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	$\sqrt{3}$	(c_p)	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞
Boundary effects	± 5.5	Rectangular	$\sqrt{3}$	1	± 3.2	∞
Probe linearity	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Readout electronics	± 1.0	Normal	1	1	± 1.0	∞
Response time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5	∞
Integration time	± 1.4	Rectangular	$\sqrt{3}$	1	± 0.8	∞
RF ambient conditions	± 3.0	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	$\sqrt{3}$	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Extrapolation & integration	± 3.9	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Test Sample Related						
Device positioning	± 6.0	Normal	$\sqrt{3}$	1	± 6.7	12
Device holder uncertainty	± 5.0	Normal	$\sqrt{3}$	1	± 5.9	8
Power drift	± 5.0	Rectangular	$\sqrt{3}$		± 2.9	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid conductivity (measured)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Combined Standard Uncertainty						
Expanded Uncertainty (k=2)						
± 13.3						
± 26.6						

Measurement Uncertainty Table in accordance with IEEE Standard 1528-200X (Draft - see reference [5])

MEASUREMENT UNCERTAINTIES (Cont.)

UNCERTAINTY BUDGET FOR SYSTEM VALIDATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c_i 1g	Standard Uncertainty ±% (1g)	v_i or v_{eff}
Measurement System						
Probe calibration	± 4.8	Normal	1	1	± 4.8	∞
Axial isotropy of the probe	± 4.7	Rectangular	$\sqrt{3}$	$(1-c_p)$	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	$\sqrt{3}$	(c_p)	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞
Boundary effects	± 5.5	Rectangular	$\sqrt{3}$	1	± 3.2	∞
Probe linearity	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Readout electronics	± 1.0	Normal	1	1	± 1.0	∞
Response time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5	∞
Integration time	± 1.4	Rectangular	$\sqrt{3}$	1	± 0.8	∞
RF ambient conditions	± 3.0	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	$\sqrt{3}$	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Extrapolation & integration	± 3.9	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Dipole						
Dipole Axis to Liquid Distance	± 2.0	Rectangular	$\sqrt{3}$	1	± 1.2	∞
Input Power	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid conductivity (measured)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Combined Standard Uncertainty						
Expanded Uncertainty (k=2)						

Measurement Uncertainty Table in accordance with IEEE Standard 1528-200X (Draft - see reference [5])

17.0 REFERENCES

- [1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6.
- [3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada, "Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields", Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.
- [5] IEEE Standards Coordinating Committee 34, Std 1528-200X, "DRAFT Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques".

Test Report S/N:	100603-432KLU
Test Date(s):	October 8 & 10, 2003
Test Type:	FCC/IC SAR Evaluation

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Date Tested: 10/10/03

DUT: Dipole 1800 MHz; Model: D1800V2; Type: System Performance Check; Serial: 247

Ambient Temp: 22.2°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.6 kPa; Humidity: 44%

Communication System: CW

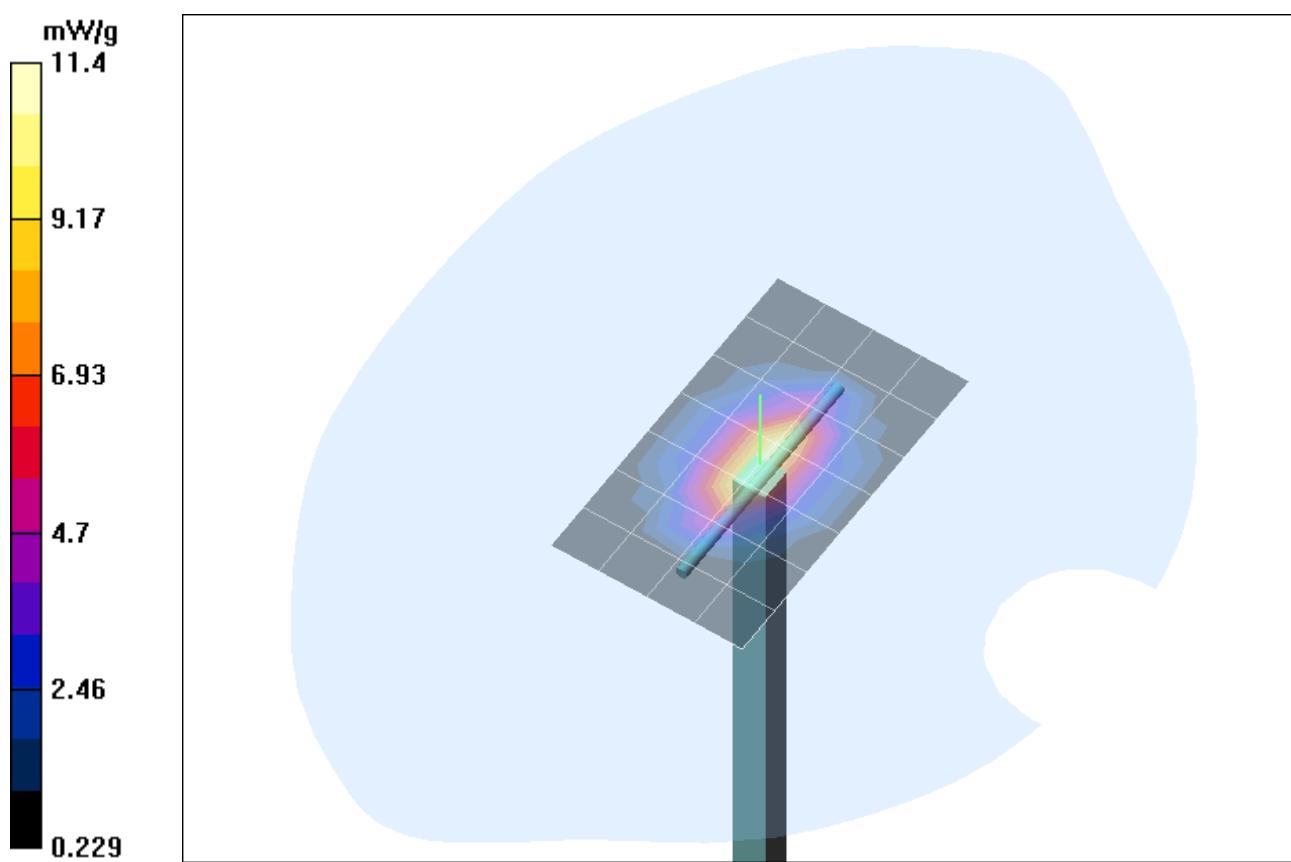
Forward Conducted Power: 250 mW

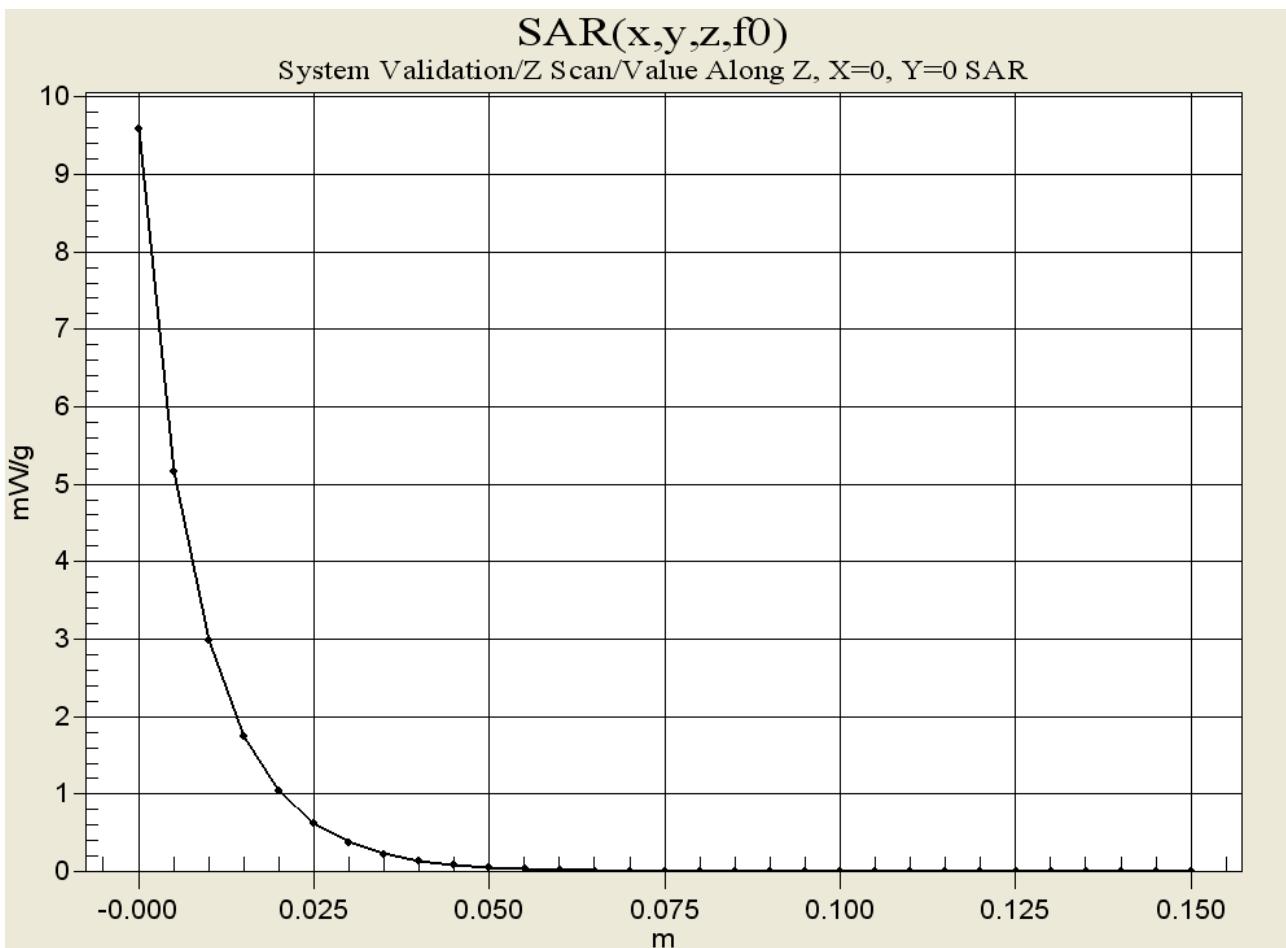
Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL1800 ($\sigma = 1.38 \text{ mho/m}$, $\epsilon_r = 39.2$, $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1387; ConvF(5.2, 5.2, 5.2); Calibrated: 26/02/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 19/05/2003
- Phantom: SAM; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

System Validation at 1800 MHz/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm


System Validation at 1800 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.3 mW/g

Reference Value = 96.3 V/m

Power Drift = -0.04 dB

Date Tested: 10/08/03

DUT: Dipole 900 MHz; Model: D900V2; Type: System Performance Check; Serial: 054

Ambient Temp: 21.0°C; Fluid Temp: 20.6°C Barometric Pressure: 100.3 kPa; Humidity: 65%

Communication System: CW

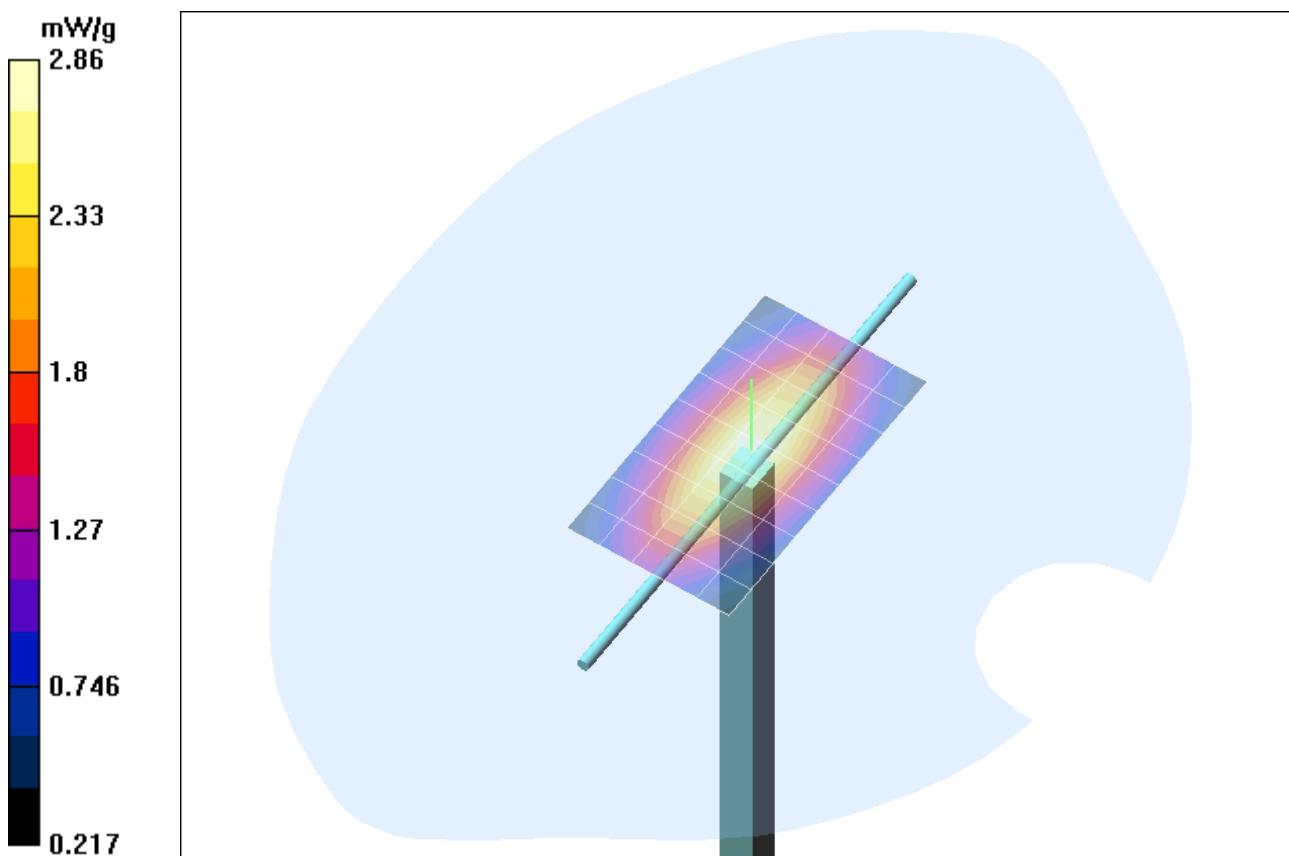
Forward Conducted Power: 250 mW

Frequency: 900 MHz; Duty Cycle: 1:1

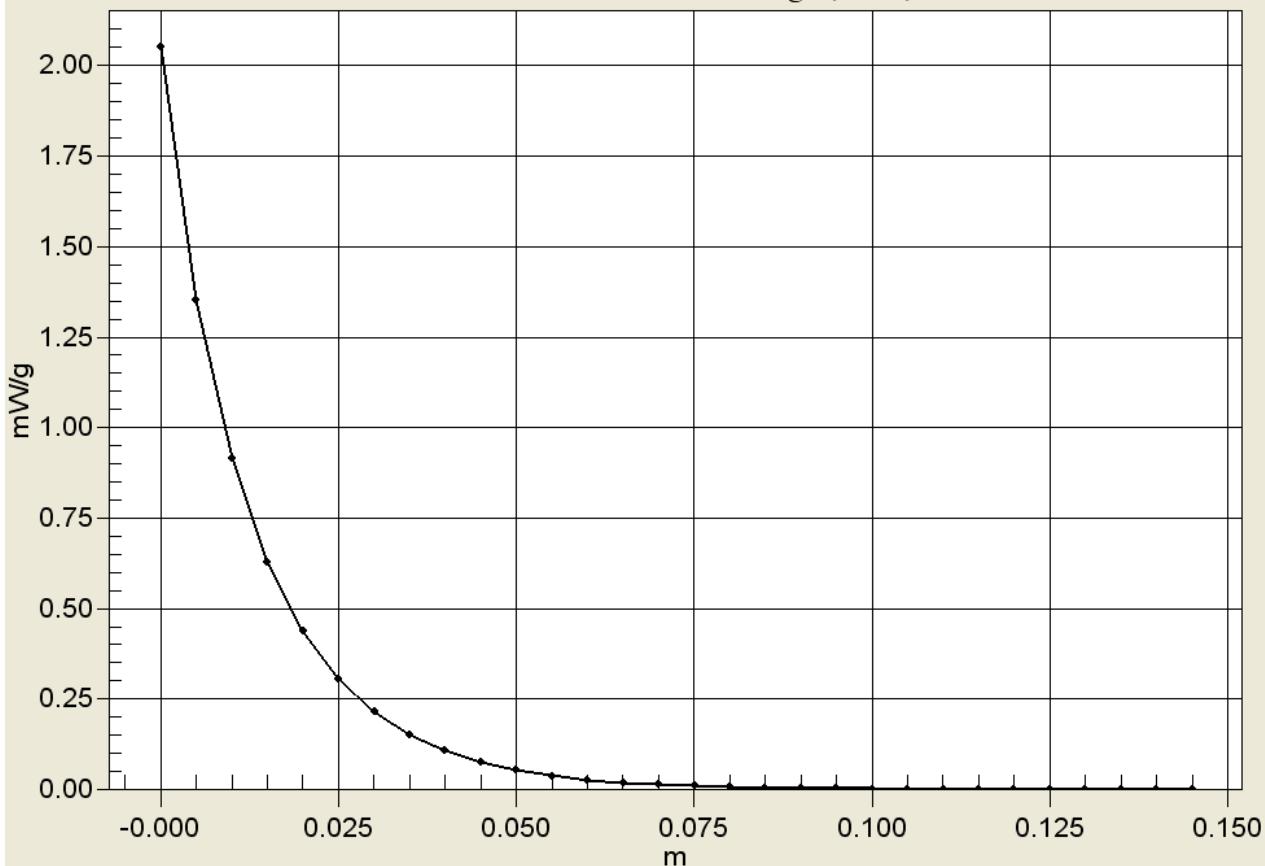
Medium: HSL900 ($\sigma = 0.97 \text{ mho/m}$, $\epsilon_r = 40.6$, $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1387; ConvF(6.6, 6.6, 6.6); Calibrated: 26/02/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 19/05/2003
- Phantom: SAM; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

System Validation at 900 MHz/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm


System Validation at 900 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 3.95 W/kg


SAR(1 g) = 2.67 mW/g; SAR(10 g) = 1.7 mW/g

Reference Value = 56.4 V/m

Power Drift = 0.04 dB

SAR(x,y,z,f0)
1387 Val at 900 MHz/Z Scan/Value Along Z, X=0, Y=0 SAR

Test Report S/N:	100603-432KLU
Test Date(s):	October 8 & 10, 2003
Test Type:	FCC/IC SAR Evaluation

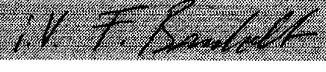
APPENDIX C - SYSTEM VALIDATION

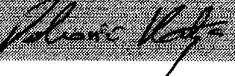
Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Celltech Labs

CALIBRATION CERTIFICATE


Object(s)	D1800V2 - SN:247
Calibration procedure(s)	QA CAL-05 v2 Calibration procedure for dipole validation kits
Calibration date:	June 4, 2003
Condition of the calibrated item	In Tolerance (according to the specific calibration document)


This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
RF generator R&S SML-03	100698	27-Mar-2002 (R&S, No. 20-92389)	In house check: Mar-05
Power sensor HP 8481A	MY41092317	18-Oct-02 (Agilent, No. 20021018)	Oct-04
Power sensor HP 8481A	US37292783	30-Oct-02 (METAS, No. 252-0236)	Oct-03
Power meter EPM E442	GB37480704	30-Oct-02 (METAS, No. 252-0236)	Oct-03
Network Analyzer HP 8753E	US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Oct 03

Calibrated by: **Judith Mueller** **Technician**

Approved by: **Katja Pekevic** **Laboratory Director**

Date issued: June 4, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

DASY

Dipole Validation Kit

Type: D1800V2

Serial: 247

Manufactured: August 25, 1999
Calibrated: June 4, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with **head simulating solution** of the following electrical parameters at 1800 MHz:

Relative Dielectricity	39.2	$\pm 5\%$
Conductivity	1.36 mho/m	$\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 5.3 at 1800 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250\text{mW} \pm 3\%$. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm^3 (1 g) of tissue: **39.6 mW/g** $\pm 16.8\%$ ($k=2$)¹

averaged over 10 cm^3 (10 g) of tissue: **20.9 mW/g** $\pm 16.2\%$ ($k=2$)¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: **1.190 ns** (one direction)
Transmission factor: **0.998** (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1800 MHz: $\text{Re}\{Z\} = \textbf{48.5 } \Omega$

$\text{Im }\{Z\} = \textbf{-6.5 } \Omega$

Return Loss at 1800 MHz **-23.3 dB**

4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

5. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

6. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Date/Time: 06/04/03 14:55:26

Test Laboratory: SPEAG, Zurich, Switzerland
File Name: SN247_SN1507_HSL1800_040603.da4

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN247
Program: Dipole Calibration

Communication System: CW-1800; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL 1800 MHz ($\sigma = 1.36 \text{ mho/m}$, $\epsilon_r = 39.22$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(5.3, 5.3, 5.3); Calibrated: 1/18/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 - SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

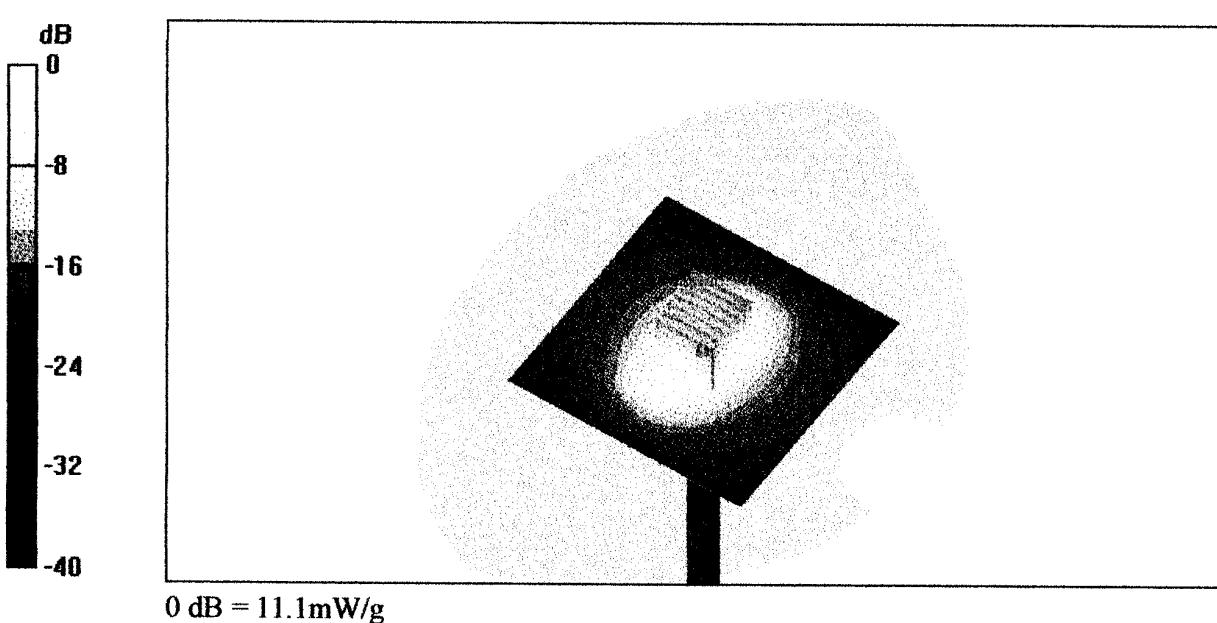
Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

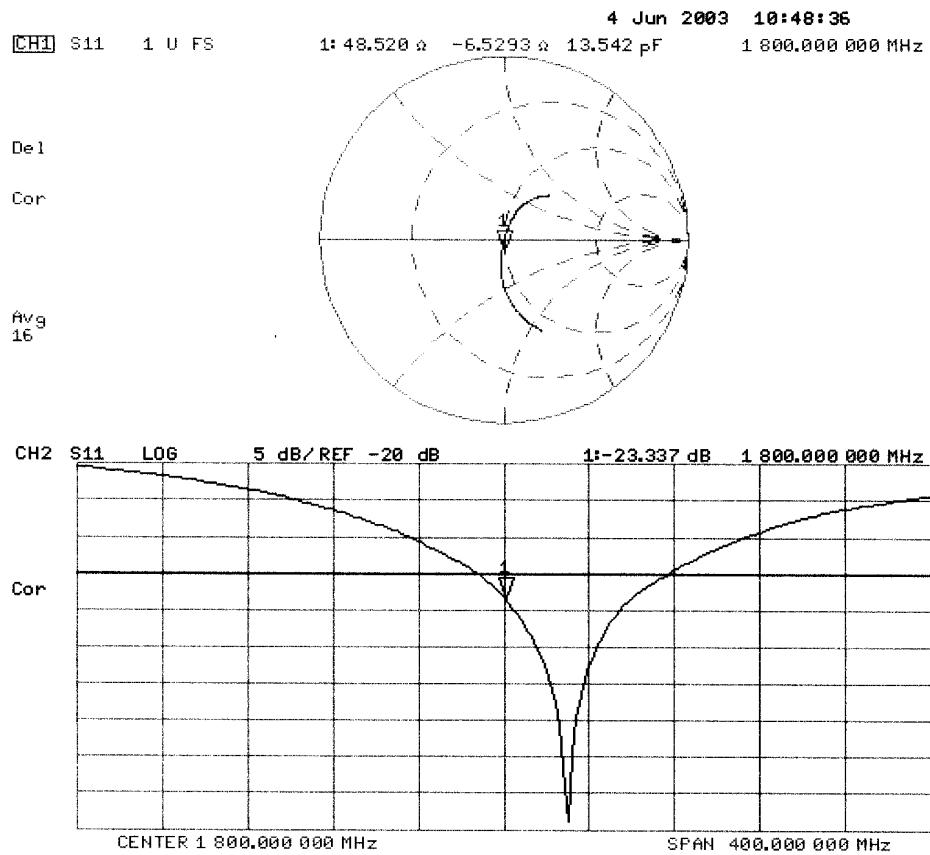
Reference Value = 96 V/m

Power Drift = -0.004 dB

Maximum value of SAR = 11 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 16.9 W/kg


SAR(1 g) = 9.9 mW/g; SAR(10 g) = 5.22 mW/g

Reference Value = 96 V/m

Power Drift = -0.004 dB

Maximum value of SAR = 11.1 mW/g

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Celltech Labs

CALIBRATION CERTIFICATE

Object(s)	D900V2 - SN:054
Calibration procedure(s)	QA CAL-05 v2 Calibration procedure for dipole validation kits
Calibration date:	June 3, 2003
Condition of the calibrated item	In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
RF generator R&S SML-03	100698	27-Mar-2002 (R&S, No. 20-92389)	In house check: Mar-05
Power sensor HP 8481A	MY41092317	18-Oct-02 (Agilent, No. 20021018)	Oct-04
Power sensor HP 8481A	US37292783	30-Oct-02 (METAS, No. 252-0236)	Oct-03
Power meter EPM E442	GB37480704	30-Oct-02 (METAS, No. 252-0236)	Oct-03
Network Analyzer HP 8753E	US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Oct 03

Calibrated by:	Name	Function	Signature
	Judith Mueller	Technician	
Approved by:	Katja Pokovic	Laboratory Director	

Date issued: June 3, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

DASY

Dipole Validation Kit

Type: D900V2

Serial: 054

Manufactured: August 25, 1999
Calibrated: June 3, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 900 MHz:

Relative Dielectricity	42.1	$\pm 5\%$
Conductivity	0.95 mho/m	$\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.6 at 900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{ mW} \pm 3\%$. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm^3 (1 g) of tissue: **$10.6 \text{ mW/g} \pm 16.8\% \text{ (k=2)}$** ¹

averaged over 10 cm^3 (10 g) of tissue: **$6.84 \text{ mW/g} \pm 16.2\% \text{ (k=2)}$** ¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: **1.397 ns** (one direction)
Transmission factor: **0.991** (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 900 MHz: **Re{Z} = 49.9 Ω**

Im {Z} = -2.0 Ω

Return Loss at 900 MHz **-33.9 dB**

4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

5. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

6. Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Date/Time: 06/03/03 12:00:32

Test Laboratory: SPEAG, Zurich, Switzerland
File Name: SN054_SN1507_HSL900_030603.da4

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN054
Program: Dipole Calibration

Communication System: CW-900; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz ($\sigma = 0.95 \text{ mho/m}$, $\epsilon_r = 42.07$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(6.6, 6.6, 6.6); Calibrated: 1/18/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 - SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

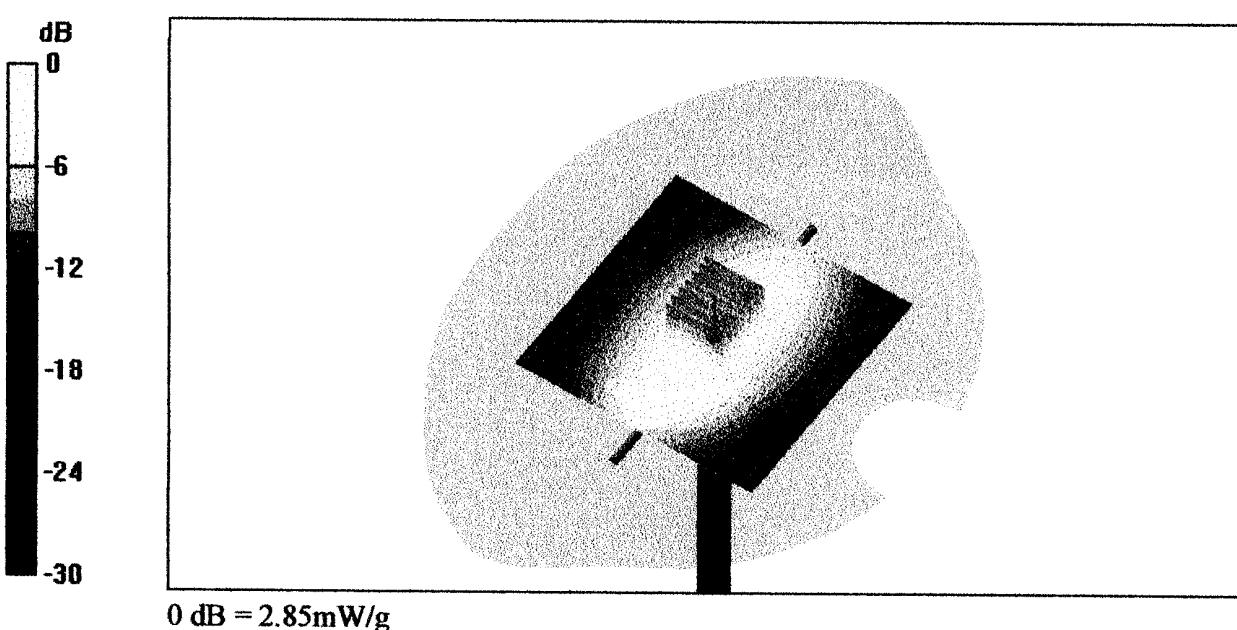
Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 56.9 V/m

Power Drift = 0.0004 dB

Maximum value of SAR = 2.84 mW/g

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

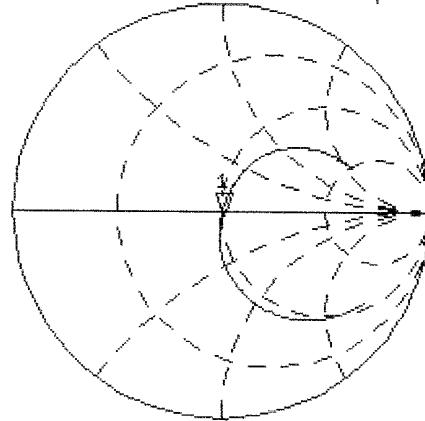

Peak SAR (extrapolated) = 3.92 W/kg

SAR(1 g) = 2.66 mW/g; SAR(10 g) = 1.71 mW/g

Reference Value = 56.9 V/m

Power Drift = 0.0004 dB

Maximum value of SAR = 2.85 mW/g

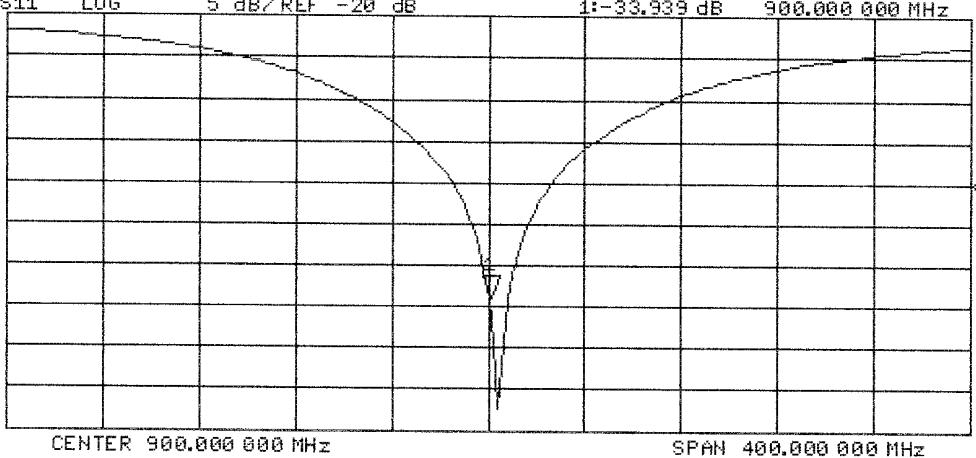

CH1 S11 1 U FS

1: 49.906 Ω -2.0137 Α 87.819 pF 900.000 000 MHz

↑

De1

PRM


Cor
Avg
16

CH2 S11 LOG 5 dB/REF -20 dB

1:-33.939 dB 900.000 000 MHz

PRM
Cor

↑

CENTER 900.000 000 MHz

SPAN 400,000 000 MHz

APPENDIX D - PROBE CALIBRATION

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Celltech Labs

CALIBRATION CERTIFICATE

Object(s) **ET3DV6 - SN: 1387**

Calibration procedure(s) **QA CAL-01.v2**
Calibration procedure for dosimetric E-field probes

Calibration date: **February 26, 2003**

Condition of the calibrated item **In Tolerance (according to the specific calibration document)**

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID #	Cal Date	Scheduled Calibration
RF generator HP 8684C	US3642U01700	4-Aug-99 (in house check Aug-02)	In house check: Aug-05
Power sensor E4412A	MY41495277	8-Mar-02	Mar-03
Power sensor HP 8481A	MY41092180	18-Sep-02	Sep-03
Power meter EPM E4419B	GB41293874	13-Sep-02	Sep-03
Network Analyzer HP 8753E	US38432426	3-May-00	In house check: May 03
Fluke Process Calibrator Type 702	SN: 6295803	3-Sep-01	Sep-03

Calibrated by: **Name** **Nico Vetterli** **Function** **Technician** **Signature** **N. Vetterli**

Approved by: **Katja Pokovic** **Laboratory Director** **Signature** **K. Pokovic**

Date issued: February 26, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Probe ET3DV6

SN:1387

Manufactured:	September 21, 1999
Last calibration:	February 22, 2002
Recalibrated:	February 26, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1387

Sensitivity in Free Space

NormX	1.55 $\mu\text{V}/(\text{V}/\text{m})^2$
NormY	1.65 $\mu\text{V}/(\text{V}/\text{m})^2$
NormZ	1.64 $\mu\text{V}/(\text{V}/\text{m})^2$

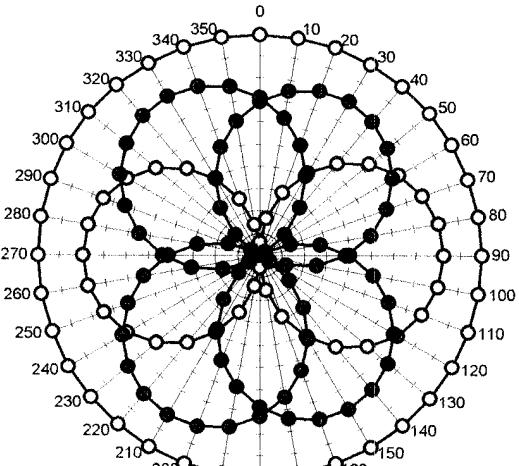
Diode Compression

DCP X	92	mV
DCP Y	92	mV
DCP Z	92	mV

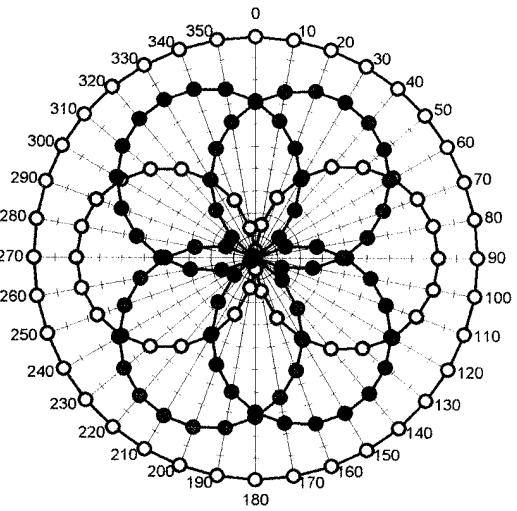
Sensitivity in Tissue Simulating Liquid

Head	900 MHz	$\epsilon_r = 41.5 \pm 5\%$	$\sigma = 0.97 \pm 5\%$ mho/m
Head	835 MHz	$\epsilon_r = 41.5 \pm 5\%$	$\sigma = 0.90 \pm 5\%$ mho/m
	ConvF X	6.6 $\pm 9.5\%$ (k=2)	Boundary effect:
	ConvF Y	6.6 $\pm 9.5\%$ (k=2)	Alpha 0.37
	ConvF Z	6.6 $\pm 9.5\%$ (k=2)	Depth 2.61
Head	1800 MHz	$\epsilon_r = 40.0 \pm 5\%$	$\sigma = 1.40 \pm 5\%$ mho/m
Head	1900 MHz	$\epsilon_r = 40.0 \pm 5\%$	$\sigma = 1.40 \pm 5\%$ mho/m
	ConvF X	5.2 $\pm 9.5\%$ (k=2)	Boundary effect:
	ConvF Y	5.2 $\pm 9.5\%$ (k=2)	Alpha 0.50
	ConvF Z	5.2 $\pm 9.5\%$ (k=2)	Depth 2.73

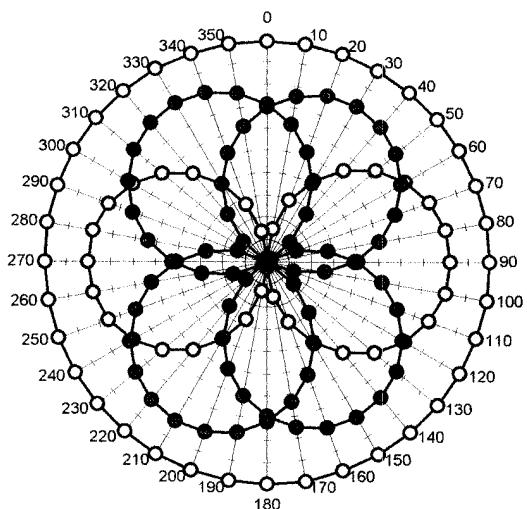
Boundary Effect

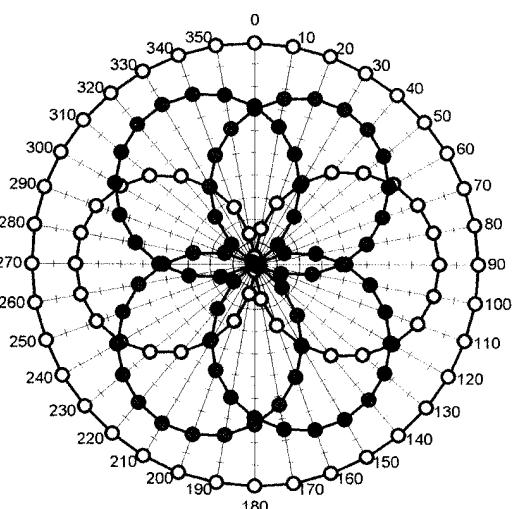

Head	900 MHz	Typical SAR gradient: 5 % per mm		
	Probe Tip to Boundary	1 mm	2 mm	
	SAR _{be} [%] Without Correction Algorithm	10.2	5.9	
	SAR _{be} [%] With Correction Algorithm	0.4	0.6	
Head	1800 MHz	Typical SAR gradient: 10 % per mm		
	Probe Tip to Boundary	1 mm	2 mm	
	SAR _{be} [%] Without Correction Algorithm	14.6	9.8	
	SAR _{be} [%] With Correction Algorithm	0.2	0.0	

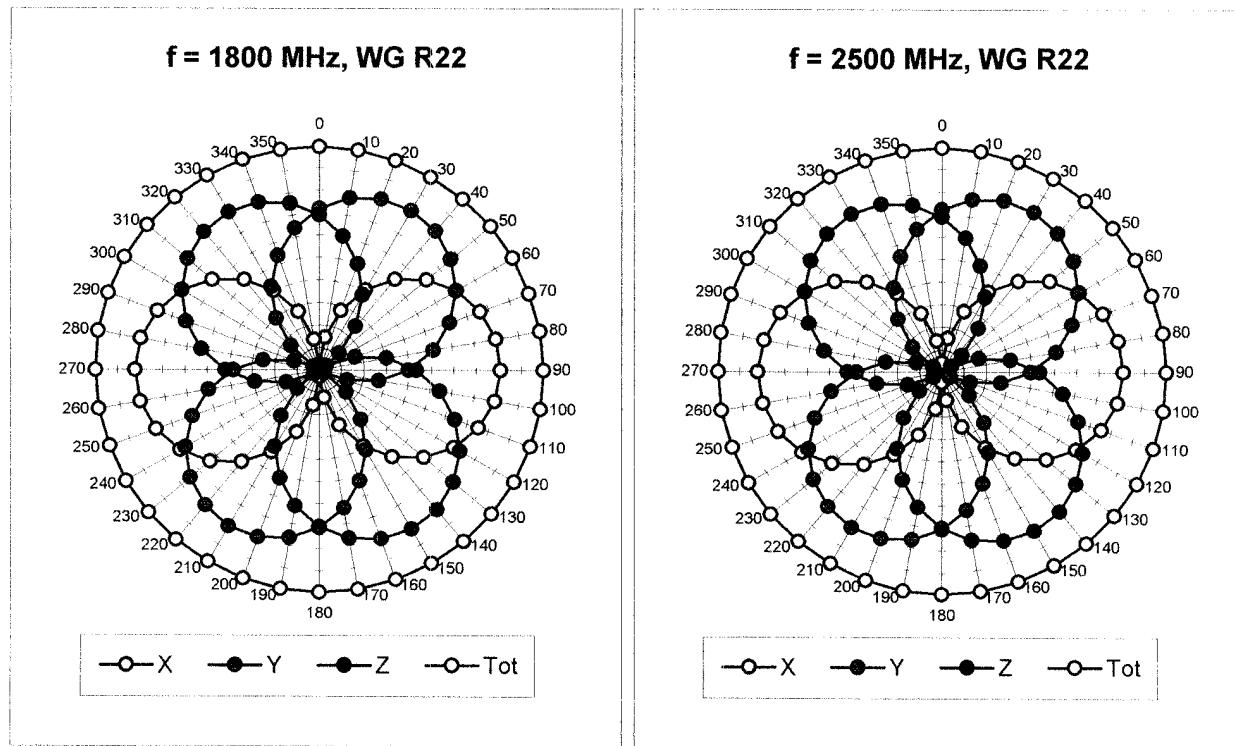
Sensor Offset


Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.4 \pm 0.2	mm

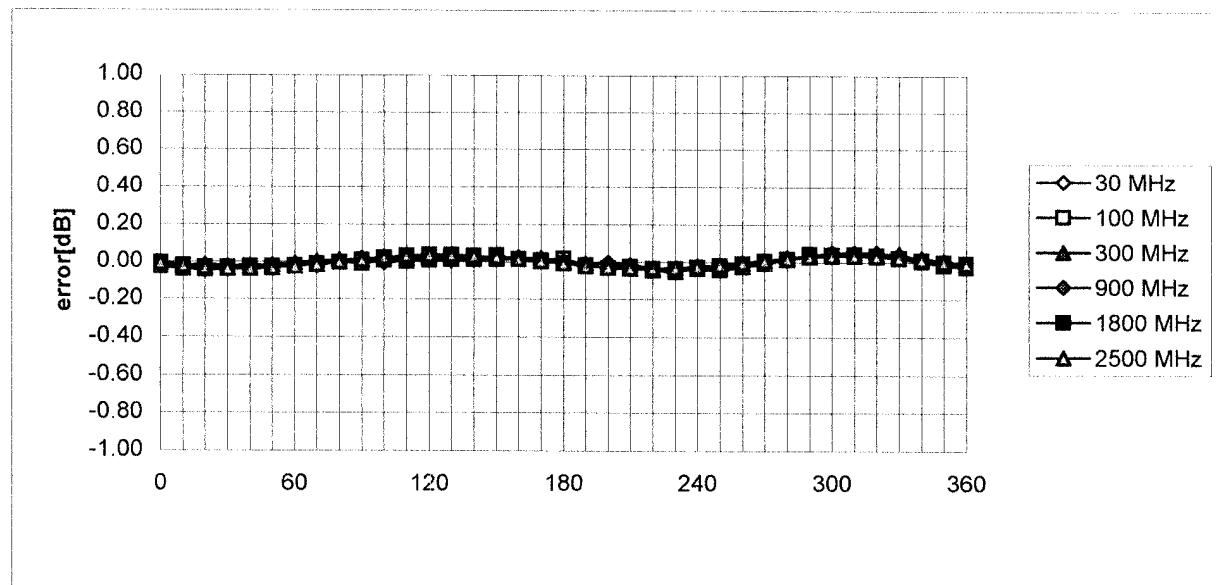
Receiving Pattern (ϕ), $\theta = 0^\circ$


$f = 30$ MHz, TEM cell ifi110

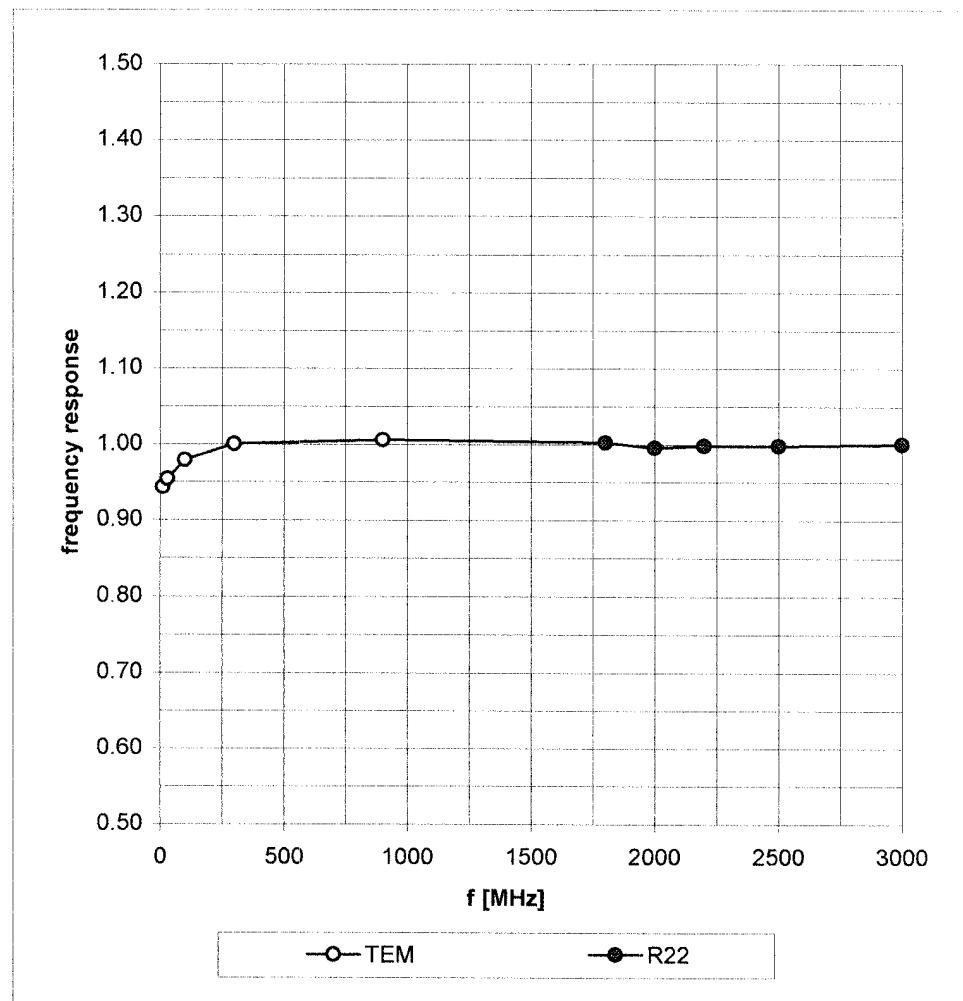

$f = 100$ MHz, TEM cell ifi110



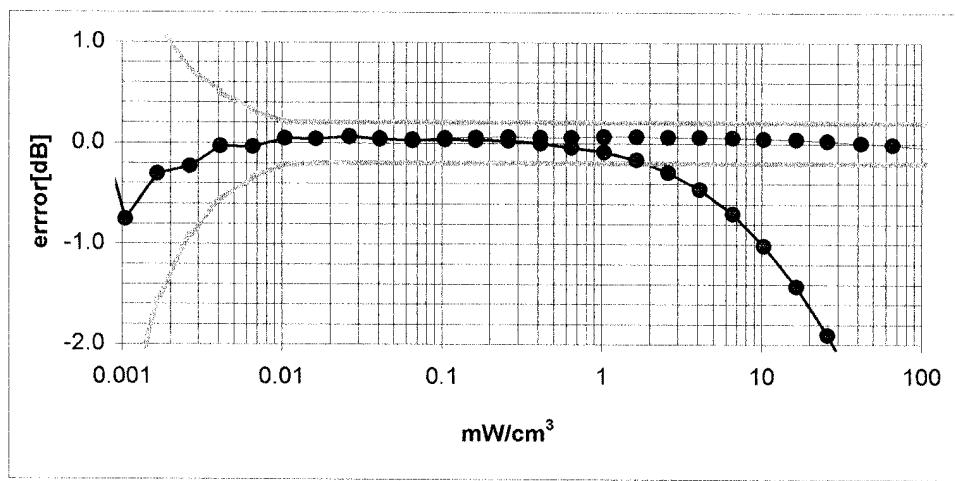
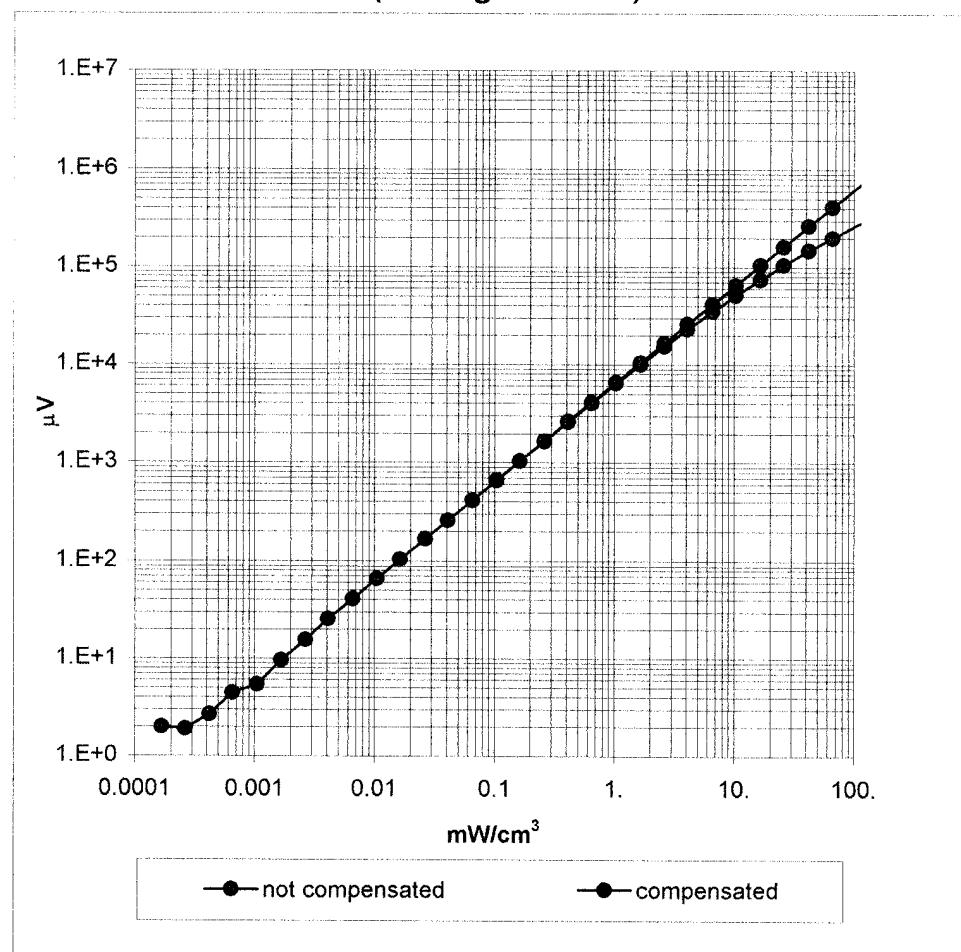
$f = 300$ MHz, TEM cell ifi110



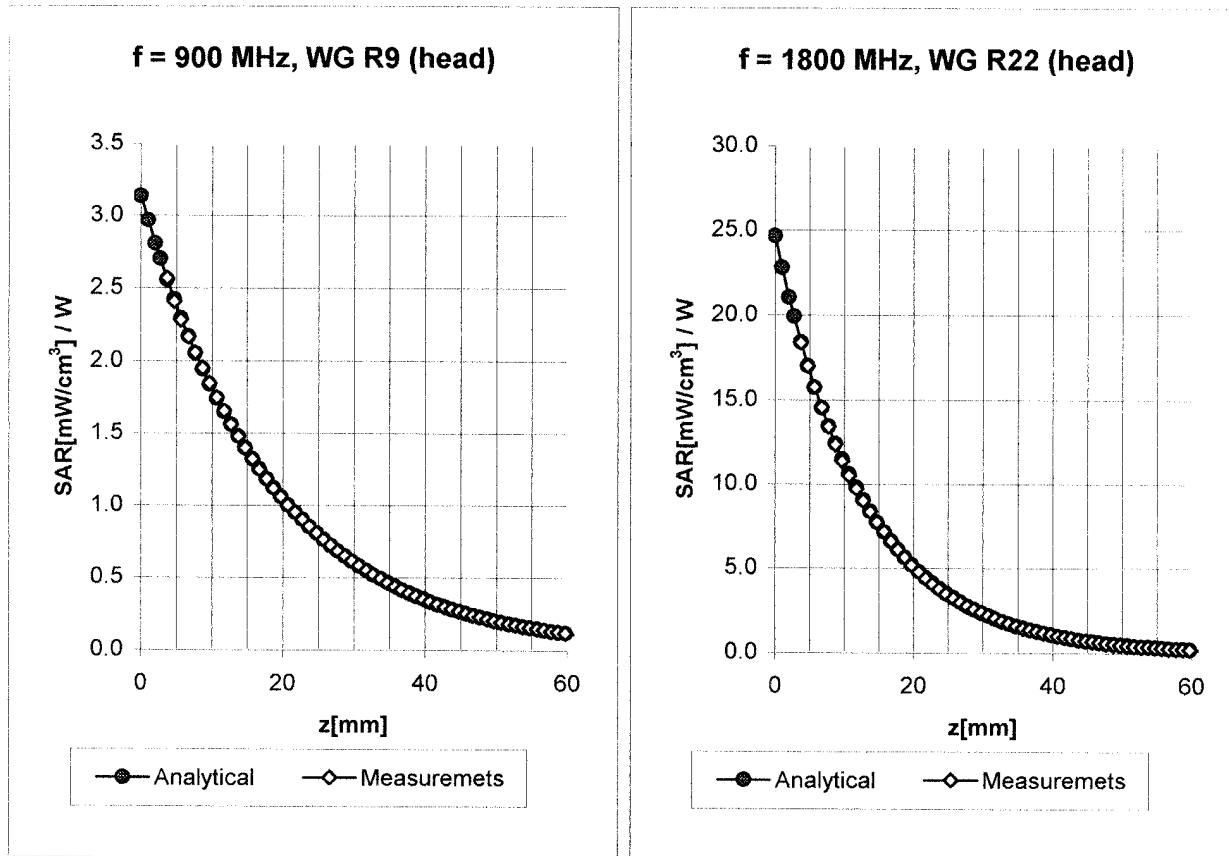
$f = 900$ MHz, TEM cell ifi110



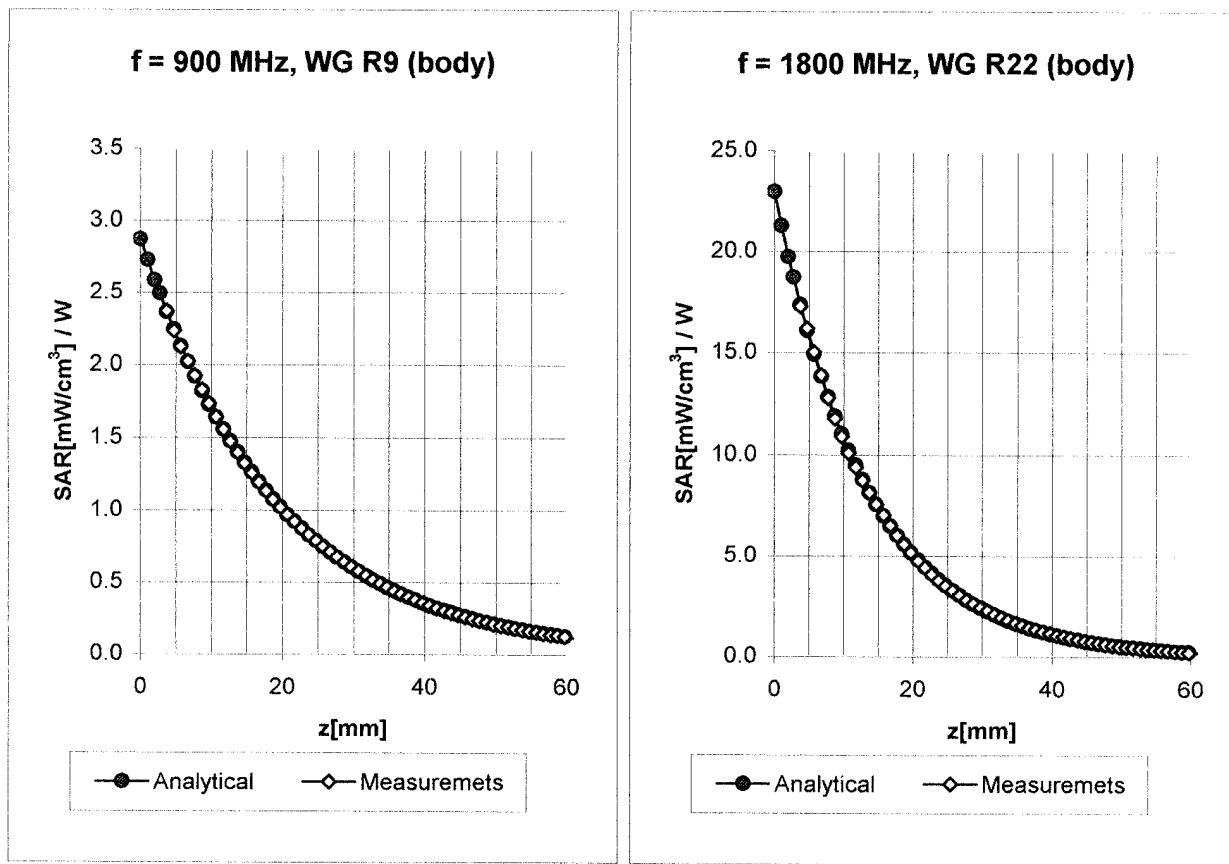
Isotropy Error (ϕ), $\theta = 0^\circ$

Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

Dynamic Range f(SAR_{brain}) (Waveguide R22)



Conversion Factor Assessment

Head	900 MHz	$\epsilon_r = 41.5 \pm 5\%$	$\sigma = 0.97 \pm 5\% \text{ mho/m}$
Head	835 MHz	$\epsilon_r = 41.5 \pm 5\%$	$\sigma = 0.90 \pm 5\% \text{ mho/m}$
	ConvF X	6.6 $\pm 9.5\%$ (k=2)	Boundary effect:
	ConvF Y	6.6 $\pm 9.5\%$ (k=2)	Alpha 0.37
	ConvF Z	6.6 $\pm 9.5\%$ (k=2)	Depth 2.61
Head	1800 MHz	$\epsilon_r = 40.0 \pm 5\%$	$\sigma = 1.40 \pm 5\% \text{ mho/m}$
Head	1900 MHz	$\epsilon_r = 40.0 \pm 5\%$	$\sigma = 1.40 \pm 5\% \text{ mho/m}$
	ConvF X	5.2 $\pm 9.5\%$ (k=2)	Boundary effect:
	ConvF Y	5.2 $\pm 9.5\%$ (k=2)	Alpha 0.50
	ConvF Z	5.2 $\pm 9.5\%$ (k=2)	Depth 2.73

Conversion Factor Assessment

Body **900 MHz** $\epsilon_r = 55.0 \pm 5\%$ $\sigma = 1.05 \pm 5\% \text{ mho/m}$

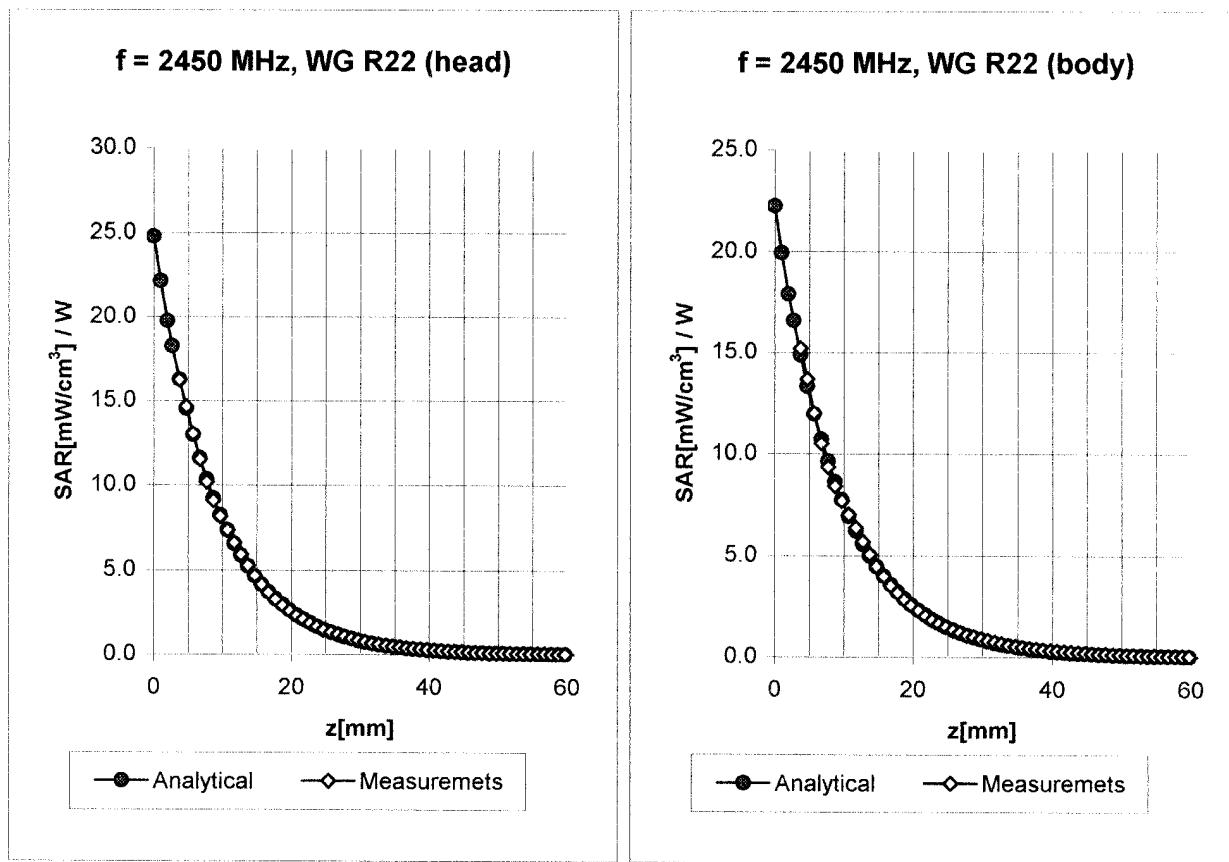
Body **835 MHz** $\epsilon_r = 55.2 \pm 5\%$ $\sigma = 0.97 \pm 5\% \text{ mho/m}$

ConvF X **6.4** $\pm 9.5\%$ (k=2) Boundary effect:

ConvF Y **6.4** $\pm 9.5\%$ (k=2) Alpha **0.45**

ConvF Z **6.4** $\pm 9.5\%$ (k=2) Depth **2.35**

Body **1800 MHz** $\epsilon_r = 53.3 \pm 5\%$ $\sigma = 1.52 \pm 5\% \text{ mho/m}$


Body **1900 MHz** $\epsilon_r = 53.3 \pm 5\%$ $\sigma = 1.52 \pm 5\% \text{ mho/m}$

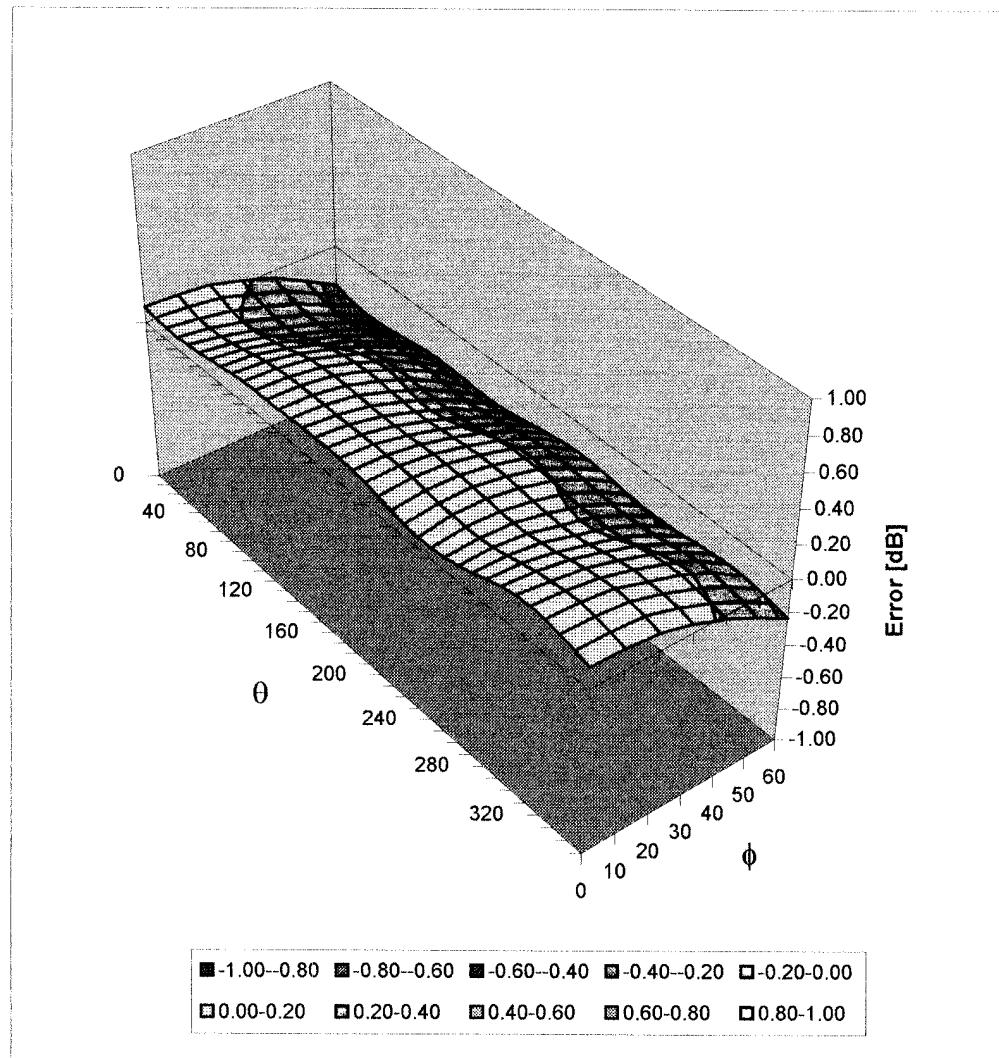
ConvF X **4.9** $\pm 9.5\%$ (k=2) Boundary effect:

ConvF Y **4.9** $\pm 9.5\%$ (k=2) Alpha **0.60**

ConvF Z **4.9** $\pm 9.5\%$ (k=2) Depth **2.59**

Conversion Factor Assessment

Head 2450 MHz $\epsilon_r = 39.2 \pm 5\%$ $\sigma = 1.80 \pm 5\% \text{ mho/m}$


ConvF X	5.0 $\pm 8.9\%$ (k=2)	Boundary effect:	
ConvF Y	5.0 $\pm 8.9\%$ (k=2)	Alpha	1.04
ConvF Z	5.0 $\pm 8.9\%$ (k=2)	Depth	1.85

Body 2450 MHz $\epsilon_r = 52.7 \pm 5\%$ $\sigma = 1.95 \pm 5\% \text{ mho/m}$

ConvF X	4.6 $\pm 8.9\%$ (k=2)	Boundary effect:	
ConvF Y	4.6 $\pm 8.9\%$ (k=2)	Alpha	1.20
ConvF Z	4.6 $\pm 8.9\%$ (k=2)	Depth	1.60

Deviation from Isotropy in HSL

Error (θ, ϕ), $f = 900$ MHz

**Schmid & Partner
Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

**Additional Conversion Factors
for Dosimetric E-Field Probe**

Type:

ET3DV6

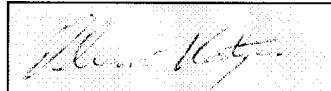
Serial Number:

1387

Place of Assessment:

Zurich

Date of Assessment:


February 28, 2003

Probe Calibration Date:

February 26, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ET3DV6 SN:1387

Conversion factor (\pm standard deviation)

150 MHz	ConvF	9.1 ± 8%	$\epsilon_r = 52.3$ $\sigma = 0.76 \text{ mho/m}$ (head tissue)
300 MHz	ConvF	7.9 ± 8%	$\epsilon_r = 45.3$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
450 MHz	ConvF	7.5 ± 8%	$\epsilon_r = 43.5$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
150 MHz	ConvF	8.8 ± 8%	$\epsilon_r = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue)
300 MHz	ConvF	8.0 ± 8%	$\epsilon_r = 58.2$ $\sigma = 0.92 \text{ mho/m}$ (body tissue)
450 MHz	ConvF	7.7 ± 8%	$\epsilon_r = 56.7$ $\sigma = 0.94 \text{ mho/m}$ (body tissue)

APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS

1800MHz System Performance Check

Measured Fluid Dielectric Parameters (Brain)

October 10, 2003

Frequency	e'	e"
1.700000000 GHz	39.6746	13.5007
1.710000000 GHz	39.6325	13.5161
1.720000000 GHz	39.5827	13.5268
1.730000000 GHz	39.5319	13.5444
1.740000000 GHz	39.4745	13.5907
1.750000000 GHz	39.4372	13.6162
1.760000000 GHz	39.3990	13.6483
1.770000000 GHz	39.3581	13.6944
1.780000000 GHz	39.3130	13.7153
1.790000000 GHz	39.2748	13.7354
1.800000000 GHz	39.2155	13.7742
1.810000000 GHz	39.1717	13.7858
1.820000000 GHz	39.0910	13.8045
1.830000000 GHz	39.0590	13.8215
1.840000000 GHz	39.0093	13.8373
1.850000000 GHz	38.9716	13.8610
1.860000000 GHz	38.9374	13.8737
1.870000000 GHz	38.8892	13.8862
1.880000000 GHz	38.8532	13.8973
1.890000000 GHz	38.8171	13.9353
1.900000000 GHz	38.7858	13.9409

1900MHz DUT Evaluation (Body)

Measured Fluid Dielectirc Parameters (Muscle)

October 10, 2003

Frequency	e'	e"
1.800000000 GHz	52.5412	14.5864
1.810000000 GHz	52.5059	14.5979
1.820000000 GHz	52.4605	14.6291
1.830000000 GHz	52.4190	14.6501
1.840000000 GHz	52.3859	14.6786
1.850000000 GHz	52.3474	14.6904
1.860000000 GHz	52.3227	14.7158
1.870000000 GHz	52.2825	14.7297
1.880000000 GHz	52.2607	14.7746
1.890000000 GHz	52.2459	14.7846
1.900000000 GHz	52.2167	14.8329
1.910000000 GHz	52.1842	14.8592
1.920000000 GHz	52.1825	14.8975
1.930000000 GHz	52.1511	14.9486
1.940000000 GHz	52.1349	14.9787
1.950000000 GHz	52.0936	15.0107
1.960000000 GHz	52.0683	15.0462
1.970000000 GHz	52.0238	15.0747
1.980000000 GHz	51.9832	15.1397
1.990000000 GHz	51.9354	15.1759
2.000000000 GHz	51.8866	15.2280

900MHz System Performance Check

Measured Fluid Dielectric Parameters (Brain)

October 08, 2003

Frequency	e'	e"
800.000000 MHz	41.7553	19.7415
810.000000 MHz	41.6591	19.7335
820.000000 MHz	41.5202	19.6736
830.000000 MHz	41.3870	19.6194
840.000000 MHz	41.2784	19.6021
850.000000 MHz	41.1119	19.5500
860.000000 MHz	41.0098	19.4921
870.000000 MHz	40.8908	19.4711
880.000000 MHz	40.7821	19.4382
890.000000 MHz	40.6584	19.4107
900.000000 MHz	40.6011	19.3105
910.000000 MHz	40.4942	19.2858
920.000000 MHz	40.3946	19.2259
930.000000 MHz	40.3077	19.1829
940.000000 MHz	40.1763	19.1738
950.000000 MHz	40.0798	19.1739
960.000000 MHz	39.9553	19.1644
970.000000 MHz	39.8348	19.1266
980.000000 MHz	39.7280	19.1229
990.000000 MHz	39.6466	19.1027
1.000000000 GHz	39.5485	19.0931

835MHz DUT Evaluation (Body)

Measured Fluid Dielectric Parameters (Muscle)

October 08, 2003

Frequency	e'	e"
735.000000 MHz	56.1846	22.2285
745.000000 MHz	56.0602	22.1514
755.000000 MHz	55.9481	22.0601
765.000000 MHz	55.8373	21.9940
775.000000 MHz	55.7312	21.9279
785.000000 MHz	55.6576	21.8751
795.000000 MHz	55.6090	21.8486
805.000000 MHz	55.5253	21.7777
815.000000 MHz	55.4396	21.7371
825.000000 MHz	55.3260	21.6852
835.000000 MHz	55.2307	21.6556
845.000000 MHz	55.0876	21.5897
855.000000 MHz	55.0019	21.5476
865.000000 MHz	54.8677	21.4818
875.000000 MHz	54.7784	21.4648
885.000000 MHz	54.7150	21.4489
895.000000 MHz	54.6460	21.3296
905.000000 MHz	54.5716	21.2825
915.000000 MHz	54.4737	21.2458
925.000000 MHz	54.4563	21.1823
935.000000 MHz	54.3257	21.1864

Test Report S/N:	100603-432KLU
Test Date(s):	October 8 & 10, 2003
Test Type:	FCC/IC SAR Evaluation

APPENDIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9

(*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date 18.11.2001

Signature / Stamp

Schmid & Partner
Engineering AG

Zeughausstrasse 43, CH-8004 Zurich
Tel. +41 1 245 97 00, Fax +41 1 245 97 79

Test Report S/N:	100603-432KLU
Test Date(s):	October 8 & 10, 2003
Test Type:	FCC/IC SAR Evaluation

APPENDIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY

2378 Westlake Road
Kelowna, B.C. Canada
V1Z-2V2

Ph. # 250-769-6848
Fax # 250-769-6334
E-mail: barskiind@shaw.ca
Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item : Flat Planar Phantom Unit # 03-01
Date: June 16, 2003
Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details
Shape	Compliance to geometry according to drawing	Supplied CAD drawing
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity < 5 Loss Tangent < 0.05

Conformity

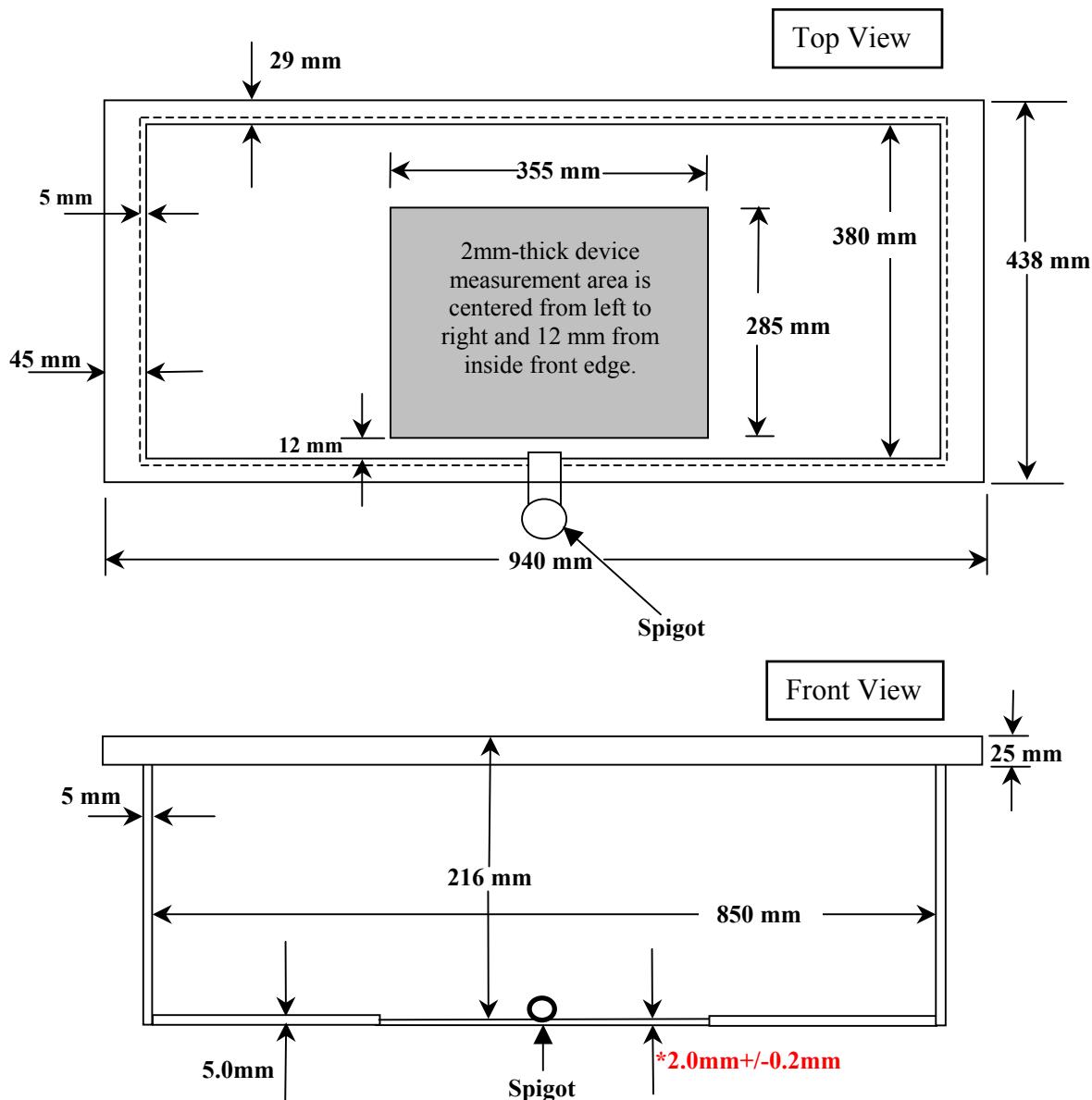
Based on the above information, we certify this product to be compliant to the requirements specified.

Signature: A handwritten signature in black ink, appearing to read 'Daniel Chailler', is placed over a horizontal line.

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View


Fiberglass Planar Phantom - Back View

Fiberglass Planar Phantom - Bottom View

Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

Note: Measurements that aren't repeated for the opposite sides are the same as the side measured.
This drawing is not to scale.