

EMC TEST REPORT No. 04J025CR

Issue#1: 17th March 2004

UKAS Accredited EU Competent Body FCC & VCCI Registered

EMC Test Report

for the

McMurdo Limited Navtex Receiver Nav5plus

Project Engineer: J. A. Jones

Approval Signatory

Approved signatories: S. M. Connolly ☐ I. P. Kenney ☐ R. P. St John James ☑

The above named are authorised Hursley EMC Services engineers.

Contents

1.0	OVERVIEW	3
1.1	Introduction	3
1.2	Objective	
1.3	PRODUCT MODIFICATIONS	
1.4	Conclusion	
2.0	TEST SUMMARY	
2.1	SUMMARY	
2.2	TEST DEVIATIONS	
2.3	EMC TEST LAB REFERENCE	4
3.0	EQUIPMENT & TEST DETAILS.	5
3.1	General	5
	.1.1 EUT Description	
_	.1.2 EUT Support	
3	.1.3 EUT Test Configuration	
3	.1.4 EUT Test Exerciser	<i>t</i>
3	.1.5 Environmental Test Conditions	
3	.1.6 EMC Test Equipment	
4.0	EMISSION RESULTS	8
4.1	RADIATED DISTURBANCE	8
	.1.1 Data, 30-156MHz & 165-1000MHz	
	.1.2 Data, 155 - 165MHz	
4.2	RADIATED H-FIELD, 150kHz – 30MHz.	10
4	.2.1 Data, Vertical Loop	
4	.2.2 Profile, Vertical Loop	
	.2.3 Data, Horizontal Loop	12
4	.2.4 Profile, Horizontal Loop	
4.3	,,,	
	.3.1 Data	
	.3.2 Profile, 0V DC	
4	.3.3 Profile, 24V	16
5.0	IMMUNITY RESULTS	17
5.1	Performance Criteria	17
	.1.1 Electrostatic Discharge	
	.1.2 Radiated RF Interference	
	.1.3 Fast Transient Bursts	
5	.1.4 Conducted RF Field	
6.0	PHOTO LOG	22
6.1	TYPICAL EMISSION SETUP	22
6.2	TVDICAL IMMEDITY SETUD	

EMC TEST REPORT 04J025CR

1.0 OVERVIEW

1.1 Introduction

The Equipment Under Test (EUT), as described within this document, was submitted for EMC testing as agreed with the customer.

1.2 **Objective**

The purpose of the test was to measure and report the EUT against limits and methods of the emissions and immunity standards, as requested for and listed in section 2.0 Test Summary.

1.3 **Product Modifications**

To meet the EN 60945 standard the following modifications were applied:

- C110, 111, 112, 116 are fitted at 10nF
- R210, 213, 310, 313 changed from 100k to 22k
- 1nF capacitor added between pins 1 and 2 of U201
- 1nF capacitor added between pins 1 and 2 of U302
- Ferrite added around ribbon cable between processor and RF boards

1.4 **Conclusion**

The EUT, with the above modifications applied, met the emission limits and immunity requirements of the tests defined in section 2.0 Test Summary.

This report relates to the sample tested and may not represent the entire population.

2.0 **TEST SUMMARY**

Summary 2.1

The EUT was tested to the EN 60945 emission and immunity standard for maritime navigation and radio communication equipment.

The EUT met the **emission** test requirements of the following standards:

Description	General Standard	Referenced Standard
Radiated disturbance		CISPR 16-1: Class A
Radiated H-Field	EN 60945:2002+	CISPR 16-1: Class A
Conducted disturbance, DC port		CISPR 16-1: Class A

The EUT met the **immunity** test requirements of the following standards:

Electrostatic discharge	EN 60945:2002†	EN 61000-4-2:1995
Radiated RF interference		EN 61000-4-3:1995
Fast transient bursts		EN 61000-4-4:1995
Conducted RF Interference		EN 61000-4-6:1996

The uncertainty budget for each test has been included to support a level of confidence of approximately 95%.

Test Deviations 2.2

None.

EMC Test Lab Reference 2.3

Hursley EMC Services file: 04J025.

[†]The 2002 version of EN 60945 is not currently included in the UKAS Accreditation Schedule for our laboratory but the reference standards are, with the exception of radiated immunity testing for 1-2GHz.

EMC TEST REPORT 04J025CR

3.0 EQUIPMENT & TEST DETAILS

3.1 General

EUT: Navtex Receiver Nav5plus

Assembly number: 28-224A

Serial number: 678B

Sample build: Production

Customer name: McMurdo Limited

Customer address: Silver Point, Airport Service Road, Portsmouth PO3 5PB

Representative: Mr John Knapp

EUT manufacturer: McMurdo Limited

Test commissioned by: Mr John Knapp

Date EUT received: 5th February 2004

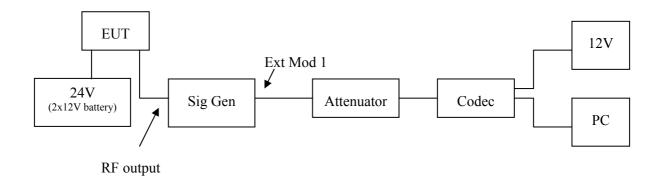
Test date(s): $5^{th} - 12^{th}$ February 2004

EMC measurement site: Hursley EMC Services Limited

Unit 16, Brickfield Lane, Chandlers Ford, Hampshire

Issue#1: 17th March 2004

EMC TEST REPORT 04J025CR


3.1.1 EUT Description

The EUT is a Nav5plus GMDSS Navtex receiver. It receives radio transmissions on 490 and 518kHz which contain weather information and other notices to mariners. These messages are then decoded and printed out.

3.1.2 EUT Support

- 24V PSU
- Marconi signal generator, 2030, S/N 119562/056
- McMurdo attenuator
- McMurdo Codec, ICS Electronics DSC2-006, S/N 00600775
- Halfords 12V battery (x2)
- HEMCS P120 AT PC, monitor, keyboard and mouse

3.1.3 EUT Test Configuration

3.1.4 EUT Test Exerciser

The signal generator was set to 517.9133kHz, 200Hz FM deviation (DC coupled), and a test level of -95dBm (6dB above 2uV). With the output from the Codec and the attenuator, this gives a test frequency of 518kHz +/-85Hz, and the correct test level.

The EUT is put into a self test mode where character errors are automatically monitored. To do this, the unit is turned on and the 'alarm' key pressed three or more times in quick succession. The display then shows 'S' followed by the number of characters received and 'E' followed by the number of errors in those characters.

Power is then applied to the Codec and test messages are sent using Hyperterminal on the PC. The test messages consist of multiple repetitions of the Standard Test Signal in IEC1097-6, which includes all the characters required by EN 300 065 and punctuation characters.

3.1.5 Environmental Test Conditions

Temperature	17-21° Celsius
Relative Humidity	40-46%
Atmospheric Pressure	998-1012 millibars

3.1.6 EMC Test Equipment

#ID	Manufacturer	Type	Description	Cal Status
002	Rohde & Schwarz	ESVP	Test receiver 30-1000MHz	CAL
008	Hewlett Packard	8568B	Spectrum analyser	CAL
013	Chase	CBL6121A	Antenna 30-1000MHz (chamber)	CAL
030	KeyTek	MZ-15/EC	Minizap/pink (ESD gun)	CAL
033	Hewlett Packard	8593EM	Spectrum analyser	CAL
039	Marconi	2032	Signal generator 5.4GHz	CAL
045	Varian	VZL6941K7DK	TWT amplifier 1-2GHz	CAL
047	Rohde & Schwarz	HFH2-Z2	Loop antenna 9kHz-30MHz	CAL
065	Schaffner	CDN125	Capacitive coupling clamp	Internal
072	Chase	CBL6112	Antenna 30-2000MHz (final)	CAL
082	Amp Research	FP2000	Field meter, isotropic RF module	CAL
120	Kalmus	7250LC-CE	RF Power amp & pulse opt	CAL
121	EM	CWS500A	Conducted immunity simulator	CAL
132	Hewlett Packard	8447D	25dB Pre-amplifier	CAL
135	Bird	100AMFN06	100W 6dB attenuator	CAL
145	Bird	4421	Power meter	CAL
152	Fischer	801-M2-16	CDN 2xwire mains	CAL
158	Rohde & Schwarz	ESH3-Z2	Pulse limiter	CAL
160	EM	UCS500	Immunity tester	CAL
176	Rohde & Schwarz	ESS	Receiver	CAL
183	Comtest	91888-2	Horn antenna 1-2GHz	CAL

Note: 'CAL' means that the instrument is certified with a valid calibration.

'Internal' means internally calibrated using HEMCS procedures.

EMISSION RESULTS 4.0

4.1 **Radiated Disturbance**

4.1.1 Data, 30-156MHz & 165-1000MHz

A profile scan was taken at a distance of three metres on eight azimuths of the EUT in both the vertical and horizontal polarities of the antenna in a semi-anechoic chamber.

Using the data obtained from the chamber profile-scan as an engineering guide, the EUT was then transferred onto the turntable in the Open Area Test Site. The antenna was positioned at a distance of three metres from the periphery of the EUT. Radiated emissions were then systematically maximised by revolving the EUT and adjusting the antenna in polarity and height. The highest emissions are presented here.

Emission	Measured	Specified	Status
frequency	quasi-peak value	quasi-peak limit	
(MHz)	(dBµV/m)	(dBµV/m)	
30.001	28.7	54	Pass
34.366	18.5	54	Pass
36.864	27.5	54	Pass
63.895	25.8	54	Pass
68.824	30.0	54	Pass
135.753	24.5	54	Pass
142.554	28.0	54	Pass
154.829	25.8	54	Pass
191.693	30.0	54	Pass
199.066	23.1	54	Pass
331.777	24.3	54	Pass
339.150	31.8	54	Pass
376.014	34.8	54	Pass
383.387	36.2	54	Pass
412.878	36.5	54	Pass
668.448	29.2	54	Pass

Uncertainty of measurement: +4.3/-4.1dBuV for a 95% confidence level.

The measurements reported are the highest emissions relative to the EN 60945 limit and take into account the antenna and cable loss factors. Measurements made according to the EN 60945 test standard and Hursley EMC Services test procedure RAD-01.

TEST ENGINEER: Andy Jones

4.1.2 Data, 155 - 165MHz

A profile scan was taken at a distance of three metres on eight azimuths of the EUT in both the vertical and horizontal polarities of the antenna in a semi-anechoic chamber.

Using the data obtained from the chamber profile-scan as an engineering guide, the EUT was then transferred onto the turntable in the Open Area Test Site. The antenna was positioned at a distance of three metres from the periphery of the EUT. Radiated emissions were then systematically maximised by revolving the EUT and adjusting the antenna in polarity and height. The highest emissions are presented here.

Emission frequency (MHz)	Measured quasi-peak value (dBμV/m)	Specified quasi-peak limit (dBµV/m)	Status
157.300	18.2	24	Pass
162.400	23.1	24	Pass*

The measured result Pass* is below the specification limit by a margin less than the measurement uncertainty; it is not therefore possible to determine compliance at a level of confidence of 95%. However, the measured result indicates a higher probability that the EUT tested complies with the specification limit.

Uncertainty of measurement: +4.3/-4.1dBuV for a 95% confidence level.

The measurements reported are the highest emissions relative to the EN 60945 limit and take into account the antenna and cable loss factors. Measurements made according to the EN 60945 test standard and Hursley EMC Services test procedure RAD-01.

Radiated H-Field, 150kHz – 30MHz 4.2

4.2.1 Data, Vertical Loop

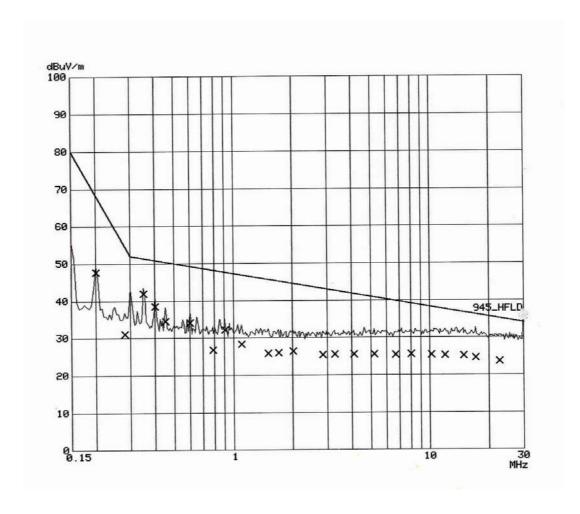
A profile scan was taken at a distance of three metres with a 360° azimuth scan of the EUT in a semi-anechoic chamber.

Using the data obtained, the EUT was then retested and the loop antenna was also rotated to maximise emission levels. Quasi-peak measurements were then made with the band width at 9kHz. The results were the maximum recorded. The highest emissions are presented here.

Emission frequency (MHz)	Measured quasi-peak value (dBμV/m)	Specified quasi-peak limit (dBµV/m)	Status
0.200	47.8	68.7	Pass
0.280	31.1	54.8	Pass
0.350	42.0	51.4	Pass
0.400	38.5	50.8	Pass
0.600	34.1	49.3	Pass
0.905	32.3	47.7	Pass
4.090	25.6	41.8	Pass
10.150	25.5	38.2	Pass
17.090	24.6	36.2	Pass

Uncertainty of measurement: +4.3/-4.1dBuV for a 95% confidence level.

The measurements reported are the highest emissions relative to the EN 60945 limit and take into account the antenna and cable loss factors. Measurements made according to the EN 60945 test standard and Hursley EMC Services test procedure MAR-01.


TEST ENGINEER: Andy Jones

EMC TEST REPORT

HURSLEY

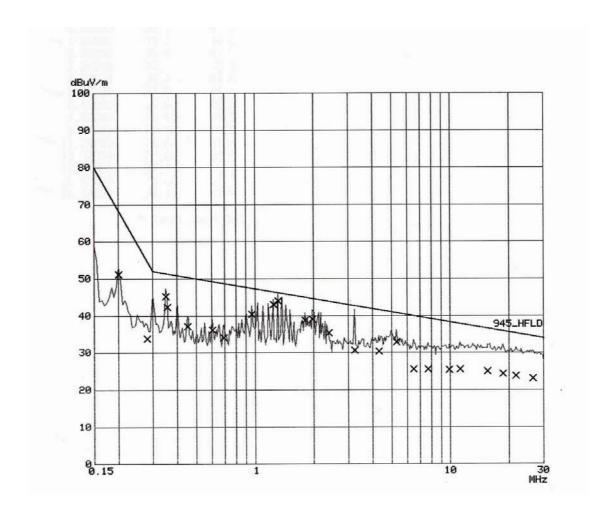
04J025CR

4.2.2 Profile, Vertical Loop

4.2.3 Data, Horizontal Loop

A profile scan was taken at a distance of three metres with a 360° azimuth scan of the EUT in a semi-anechoic chamber.

Using the data obtained, the EUT was then retested and the loop antenna was also rotated to maximise emission levels. Quasi-peak measurements were then made with the band width at 9kHz. The results were the maximum recorded. The highest emissions are presented here.


Emission frequency	Measured quasi-peak value	Specified quasi-peak limit	Status
(MHz)	quasi-peak value (dBμV/m)	quasi-peak mint (dBμV/m)	
0.200	51.3	68.7	Pass
0.350	45.3	51.4	Pass
1.240	43.1	46.4	Pass
1.960	39.0	44.6	Pass
5.300	32.9	40.7	Pass
11.254	25.6	37.8	Pass
26.480	23.1	34.5	Pass

Uncertainty of measurement: +4.3/-4.1dBuV for a 95% confidence level.

The measurements reported are the highest emissions relative to the EN 60945 limit and take into account the antenna and cable loss factors. Measurements made according to the EN 60945 test standard and Hursley EMC Services test procedure MAR-01.

EMC TEST REPORT 04J025CR

4.2.4 Profile, Horizontal Loop

Conducted Disturbance, DC Port 4.3

4.3.1 Data

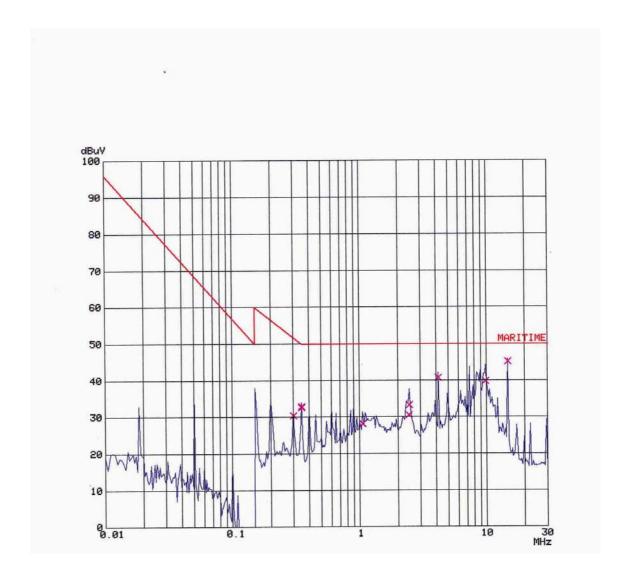
A filtered 230V/50Hz supply was fed to the EUT via a $50\Omega/50\mu$ H Artificial Mains Network (AMN). The AMN was bonded to a conductive ground plane. Line and neutral phases were measured separately.

A spectrum analyser was set to scan between 10kHz and 30MHz to record the peak emission profiles. The worst-case peaks were then measured using an average and/or quasi-peak receiver and compared to the EN 60945 limit. The worst-case results are shown here.

OV DC

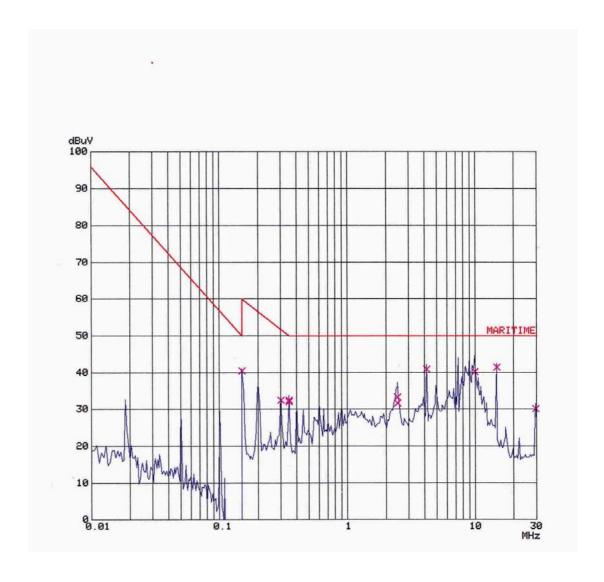
Frequency (MHz)	Quasi-peak value (dBμV)		Status
	Measured	Limit	
0.301	30.4	51.8	Pass
0.350	32.9	50.0	Pass
1.050	28.3	50.0	Pass
2.470	33.4	50.0	Pass
4.140	40.7	50.0	Pass
9.830	39.8	50.0	Pass
14.750	45.1	50.0	Pass

24V


Frequency (MHz)	Quasi-peak value (dBμV)		Status
	Measured	Limit	
0.150	40.5	50.0	Pass
0.301	32.5	51.8	Pass
0.350	32.4	50.0	Pass
2.470	33.3	50.0	Pass
4.140	40.9	50.0	Pass
9.840	40.2	50.0	Pass
14.750	41.4	50.0	Pass
29.490	30.1	50.0	Pass

Uncertainty of measurement: +2.8/-1.8dBuV for a 95% confidence level. Measurements made according the EN 60945 test standard and Hursley EMC Services test procedure CON-02.

TEST ENGINEER: Julian Jones



4.3.2 Profile, 0V DC

4.3.3 Profile, 24V

5.0 IMMUNITY RESULTS

5.1 **Performance Criteria**

General performance criteria for immunity testing are defined below:-

Criterion A:	The apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. If the performance level or the permissible level is not specified by the manufacturer then either of these may be derived from the EUT description and documentation and what the user may reasonably expect from the apparatus if used as intended.
Criterion B:	The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test degradation of performance is however allowed. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible level is not specified by the manufacturer then either of these may be derived from the EUT description and documentation and what the user may reasonably expect from the apparatus if used as intended.
Criterion C:	Temporary loss of function is allowed provided the loss of function is self-recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

EUT performance specific criteria:

Criterion A:	Up to 4% error rate.
Criterion B:	Error during testing but rate returned to $\leq 4\%$ once test finished.

5.1.1 Electrostatic Discharge

TEST METHOD	EN 61000-4-2
	REFERENCING PROCEDURE: ESD-03

TEST DETAILS

Test severity, contact discharge	±6.0kV, 50 strikes per point. Total of 200 strikes (minimum).
Test severity, air discharge	±8.0kV, 10 strikes for each selected point
Exerciser program during test	Referencing section 3.1.4
Specified test criterion	Criterion 'B'
EUT performance criterion	Criterion 'A'

RESULTS

Contact, Indirect

SPECIFIED VOLTS	REFERENCE PLANE @ 10cm	STATUS
$\pm 4.0 \mathrm{kV}$	Horizontal and vertical; front, rear and sides	PASS
± 6.0kV	Horizontal and vertical; front, rear and sides	PASS

Contact, Direct To EUT

SPECIFIED VOLTS	TEST POINTS	STATUS
± 2.0kV	Rear earth point / case	PASS
± 4.0kV	Side screwsTop middle	PASS
± 6.0kV	• Front switch panel	PASS

Air Discharge (Insulating, Slots & Apertures)

SPECIFIED VOLTS	TEST POINTS	STATUS
± 2.0kV	Printer door	PASS
± 4.0kV	Membrane switches	PASS
± 8.0kV	• Rear cable I/O connectors	PASS

UNCERTAINTY: Taking account of the permissible tolerance of the applicable EMC test

> specification and the relevant UKAS calibration data of the equipment used to introduce the calculated disturbance for this test, the applied levels as reported

provide a level of confidence of approximately 95%.

COMMENT: No deviations observed or measured. The printer door was kept closed during

testing.

TEST ENGINEER: Andy Jones

5.1.2 Radiated RF Interference

TEST METHOD	EN 61000-4-3	
	REFERENCING PROCEDURE: RES-02	

TEST DETAILS

Test severity levels, 80-1000MHz swept frequency	 10.0V/m 80% amplitude modulation 400Hz 1% increment, 3 seconds dwell time
Exerciser program during test	Referencing section 3.1.4
Specified test criterion	Criterion 'A'
EUT performance criterion	Criterion 'A'

RESULTS

TEST POINTS	ANTENNA POLARITIES	FIELD LEVEL SPOT FREQUENCY STATUS	
Front	Horizontal & vertical	10.0V/m	PASS
Side, left	Horizontal & vertical	10.0V/m	PASS
Side, right	Horizontal & vertical	10.0V/m	PASS
Rear	Horizontal & vertical	10.0V/m	PASS

The test was performed at a level of 12.0V/m to take into account the UNCERTAINTY:

uncertainties and be able to declare a pass at 10.0V/m for a 95% confidence

level.

COMMENT: No deviations observed or measured. The EUT met the specified test criterion.

NOTE: Customer defined that the error rate 4% allowance to be spread over the entire

spectrum from 80 to 2000MHz. The horizontal error rate total was 3.8% and

the vertical was 2.2%.

TEST ENGINEER: Julian Jones / Ian Kenney

Issue#1: 17th March 2004

5.1.3 Fast Transient Bursts

TEST METHOD	EN 61000-4-4	
	REFERENCING PROCEDURE: FTB-01	

TEST DETAILS

Test severity	 +/- 1.0kV Signal Port +/- 1.0kV DC Port 5/50ns Tr/Td 5kHz Repetition Rate
Exerciser program during test	Referencing section 3.1.4
Specified test criterion	Criterion 'B'
EUT performance criterion	Criterion 'A'

RESULTS

Direct Injection

PORT	TEST VOLTAGE	STATUS
DC Power Port	+ 1.0kV	PASS
DC Power Port	- 1.0kV	PASS

Injection Via Clamp

PORT	TEST VOLTAGE	STATUS
Antenna coax lead	+1.0kV	PASS
Antenna coax lead	- 1.0kV	PASS

UNCERTAINTY: Taking account of the permissible tolerance of the applicable EMC test

specification and the relevant UKAS calibration data of the equipment used to introduce the calculated disturbance used for this test, the applied levels as

reported provide a level of confidence of approximately 95%.

COMMENT: No performance degradation was observed. The EUT met the specified test

criterion.

TEST ENGINEER: Julian Jones

5.1.4 Conducted RF Field

TEST METHOD	EN 61000-4-6
	REFERENCING PROCEDURE: CES-02

TEST DETAILS

Test severity level	• 3.0V rms, 80% amplitude modulation 400Hz 0.15 to 80MHz	
	• 10V rms spot frequencies at: 2, 3, 4, 6.2, 8.2, 12.6, 16.5, 18.8, 22, 25MHz, the dwell at each frequency was 60 seconds.	
Exerciser program during test	Referencing section 3.1.4	
Specified test criterion	Criterion 'A'	
EUT performance criterion	Criterion 'A'	

RESULTS

TEST VOLTAGE	TEST POINTS	COUPLING METHOD	STATUS
3.0V	DC Port	CDN	PASS

RESULTS – Signal Port

	TEST VOLTAGE	TEST POINTS	COUPLING METHOD	STATUS
Γ	3.0V	Coax wire	CDN	PASS
Γ	3.0V	Earth wire	EM-Clamp	PASS

UNCERTAINTY: The test was performed at a level of 3.4V to take into account any uncertainties

so as to be able to declare a pass at 3.0V for a 95% confidence level.

No performance degradation was observed. The EUT met the specified test COMMENT:

criterion.

TEST ENGINEER: Andy Jones

EMC TEST REPORT HURSLEY 04J025CR

6.0 PHOTO LOG

6.1 Typical Emission Setup

RADIATED

CONDUCTED

EMC TEST REPORT

HURSLEY

04J025CR

SEF

6.2 Typical Immunity Setup

ELECTROSTATIC DISCHARGE

CONDUCTED

