

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-16T0096-R1 Page (1) of (19)

# **TEST REPORT Part 15 Subpart C 15.231**

**Equipment under test** 

Mobile Security Child with

environmental sensors

Model name ST-900-CE

FCC ID KL7ST-900-CE

Applicant Savi Technology Inc.

Manufacturer Dae Kyung Philippines, Inc.

**Date of test(s)**  $2016.10.04 \sim 2016.11.10$ 

**Date of issue** 2016.11.10

# Issued to

Savi Technology Inc.

3601 Eisenhower Avenue, STE 280,

Alexandria VA 22304

Tel: +1-571-227-7950 / Fax: +1-571-227-7960

# Issued by KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by: Report approval by: Hyeon-su Jang Jeff Do Technical manager Test engineer



KES Co., Ltd.
C-3701, 40, Simin-daero 365beon-gil,
Dongan-gu, Anyang-si, Gyeonggi-do, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-16T0096-R1 Page (2) of (19)

## **Revision history**

| Revision | Date of issue | Test report No.   | Description                                                    |
|----------|---------------|-------------------|----------------------------------------------------------------|
| -        | 2016.10.17    | KES-RF-16T0096    | Initial                                                        |
| R1       | 2016.11.10    | KES-RF-16T0096-R1 | Retest a Transmission time and added a test plot of duty cycle |



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (3 ) of (19)

# TABLE OF CONTENTS

| 1.  | General i | nformation                                                                | 4  |
|-----|-----------|---------------------------------------------------------------------------|----|
|     | 1.1.      | EUT description                                                           | 4  |
|     | 1.2.      | Test configuration                                                        |    |
|     | 1.3.      | Device modifications                                                      | 4  |
|     | 1.4.      | Derivation model information                                              |    |
|     | 1.5.      | Frequency/channel operations                                              | 4  |
| 2.  | Summary   | of tests                                                                  |    |
| 3.  |           | lts                                                                       |    |
|     | 3.1.      | Field strength of fundamental and the field strength of spurious emission | 6  |
|     | 3.2.      | Bandwidth of operation frequency                                          | 15 |
|     | 3.3.      | Transmission time                                                         | 16 |
|     | 3.4.      | Duty cycle correction factor                                              | 17 |
| App | endix A.  | Measurement equipment                                                     |    |
|     |           | Test setup photos                                                         |    |



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (4 ) of (19)

#### 1. General information

Applicant: Savi Technology Inc.

Applicant address: 3601 Eisenhower Avenue, STE 280, Alexandria VA 22304

Test site: KES Co., Ltd.

Test site address: C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

FCC rule part(s): 15.231

FCC ID: KL7ST-900-CE

Test device serial No.: Production Pre-production Engineering

#### 1.1. EUT description

Equipment under test Mobile Security Child with environmental sensors

Frequency range Tx:433.92 MHz, 123 kHz

Rx:433.92 Mb,

Modulation technique 433.92 Mtz : FSK, 123 ktz : ASK Number of channels 433.92 Mtz : 1ch, 123 ktz : 1ch

Antenna specification 433.92 UHF Antenna type: PCB, Peak gain: -0.97 dBi

Power source DC 3.6 V / 3400 mAh Li-SOCI2 battery

#### 1.2. Test configuration

#### The Savi Technology, Inc. Mobile Security Child with environmental Sensors FCC ID: KL7ST-900-CE

was tested per the guidance of ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing.

#### 1.3. Device modifications

N/A

#### 1.4. Derivation model information

N/A

#### 1.5. Frequency/channel operations

| Ch. | Frequency (Mb) |
|-----|----------------|
| 01  | 433.92         |

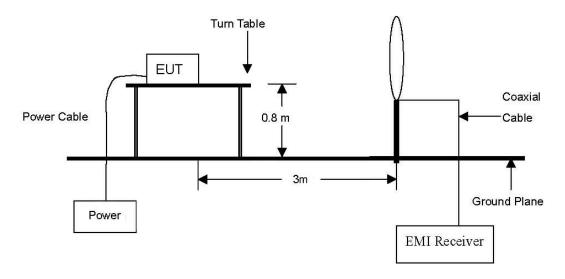


KES Co., Ltd.
C-3701, 40, Simin-daero 365beon-gil,
Dongan-gu, Anyang-si, Gyeonggi-do, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

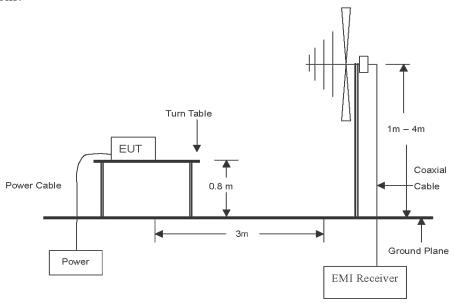
Test report No.: KES-RF-16T0096-R1 Page (5) of (19)

#### **Summary of tests** 2.

| Reference              | Parameter                                                              | Test results |
|------------------------|------------------------------------------------------------------------|--------------|
| 15.209(a)<br>15.231(b) | Radiated emission, Spurious emission and Field Strength of Fundamental | Pass         |
| 15.231(c)              | Bandwidth of operation frequency                                       | Pass         |
| 15.231(a)              | Transmission time                                                      | Pass         |

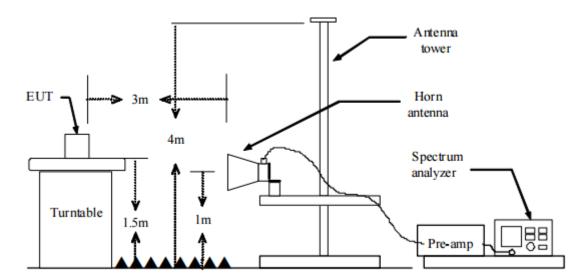



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (6) of (19)


#### 3. Test results

# 3.1. Field strength of fundamental and the field strength of spurious emission Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.




The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.





C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (7) of (19)



#### Test procedure below 30 Mbz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

#### Test procedure above 30 MHz

- 1. Spectrum analyzer settings for f < 1 GHz:
  - ① Span = wide enough to fully capture the emission being measured
  - (2) RBW = 100 kHz
  - $3 \text{ VBW} \geq \text{RBW}$
  - ① Detector = Peak detection (PK) or Quasi-peak detection (QP)
  - ⑤ Sweep time = auto
  - $\bigcirc$  Trace = max hold
- 2. Spectrum analyzer settings for  $f \ge 1$  GHz: Peak
  - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
  - ② RBW = 1 Mbz
  - $\bigcirc$  VBW  $\geq$  3 MHz
  - 4 Detector = peak
  - ⑤ Sweep time = auto
  - $\bigcirc$  Trace = max hold
  - 7 Trace was allowed to stabilize



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (8) of (19)

#### Note.

1. f < 30 Mb, extrapolation factor of 40 dB/decade of distance.  $F_d = 40 log(D_m/Ds)$   $f \ge 30$  Mb, extrapolation factor of 20 dB/decade of distance.  $F_d = 20 log(D_m/Ds)$  Where:

 $F_d$  = Distance factor in dB

 $D_m$  = Measurement distance in meters

 $D_s$  = Specification distance in meters

- 2.  $CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or <math>F_d(dB)$
- 3. Field strength( $dB\mu V/m$ ) = Level( $dB\mu V$ ) + CF (dB) + or DCF(dB)
- 4. Margin(dB) = Limit(dB $\mu$ V/m) Field strength(dB $\mu$ V/m)
- 5. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that <u>Y orientation</u> was worst-case orientation; therefore, all final radiated testing was performed with the EUT in <u>Y orientation</u>.
- 6. The emissions are reported however whose levels were not within 20 dB of respective limits were not reported.



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (9) of (19)

#### Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

| Frequency (MHz)    | Distance (Meters) | Radiated (μV/m) |
|--------------------|-------------------|-----------------|
| $0.009 \sim 0.490$ | 300               | 2400/F(kHz)     |
| $0.490 \sim 1.705$ | 30                | 24000/F(kllz)   |
| 1.705 ~ 30.0       | 30                | 30              |
| 30 ~ 88            | 3                 | 100**           |
| 88 ~ 216           | 3                 | 150**           |
| 216 ~ 960          | 3                 | 200**           |
| Above 960          | 3                 | 500             |

<sup>\*\*</sup>Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands  $54 \sim 72\,$  MHz,  $76 \sim 88\,$  MHz,  $174 \sim 216\,$  MHz or  $470 \sim 806\,$  MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections  $15.231\,$  and 15.241.

According to 15.231(b), in addition to the provisions of section 15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

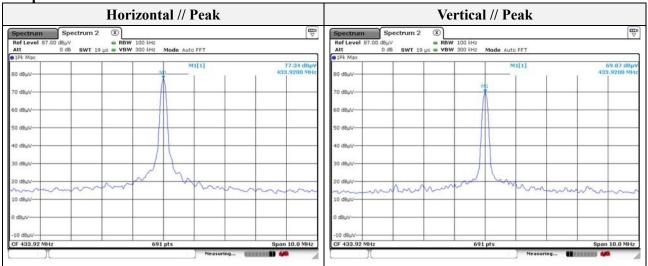
| Fundamental frequency (Mz) | Field strength of fundamental (microvolts / meter) | Field strength of spurious emission (microvolts / meter) |
|----------------------------|----------------------------------------------------|----------------------------------------------------------|
| $40.66 \sim 40.70$         | 2,250                                              | 225                                                      |
| 70 ~ 130                   | 1,250                                              | 125                                                      |
| 130 ~ 174                  | 1,250 to 3,750**                                   | 125 to 375**                                             |
| 174 ~ 260                  | 3,750                                              | 375                                                      |
| 260 ~ 470                  | 3,750 to 12,500**                                  | 375 to 1,250**                                           |
| Above 470                  | 12,500                                             | 1,250                                                    |

<sup>\*\*</sup>Where F is the frequency in Mz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band  $130 \sim 174$  Mz,  $\mu$ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band  $260 \sim 470$  Mz,  $\mu$ V/m at 3 meters = 41.6667(F) - 7083.333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (10) of (19)

### Field strength


| 1621 (62011) | Test | results |
|--------------|------|---------|
|--------------|------|---------|

Mode: FSK
Distance of measurement: 3 meter

Channel: 1

| Frequency (Mb) | Level<br>(dBµV) | Detect mode | Ant. Pol.<br>(H/V) | CF<br>(dB) | DCF<br>(dB) | Field strength (dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|----------------|-----------------|-------------|--------------------|------------|-------------|-------------------------|-------------------|----------------|
| 422.02         | 77.34           | Peak        | Н                  | 17.43      | -           | 94.77                   | 100.83            | 6.06           |
| 433.92         | //.34           | Average     | Н                  | 17.43      | -20.93      | 73.84                   | 80.83             | 6.99           |
| 422.02         | 69.87           | Peak        | V                  | 17.43      | -           | 87.30                   | 100.83            | 13.53          |
| 433.92         | 09.87           | Average     | V                  | 17.43      | -20.93      | 66.37                   | 80.83             | 14.46          |

**Test plots** 



#### Note.

- 3m Average Limit(dBμV/m) = 20log[41.6667(F<sub>(Mb)</sub>-7083.3333) = 80.83
   3m Peak Limit(dBμV/m) = Average limit + 20 = 100.83
   Average Field strength = Peak Field strength + Duty Cycle Correction Factor
- 2. Duty Cycle Correction Factor:  $20\log(\text{Ton} / 100 \text{ ms}) = 20\log(8.986 / 100) = -20.93$

 $Tx_{on time} = 8.986 \text{ ms}$ 

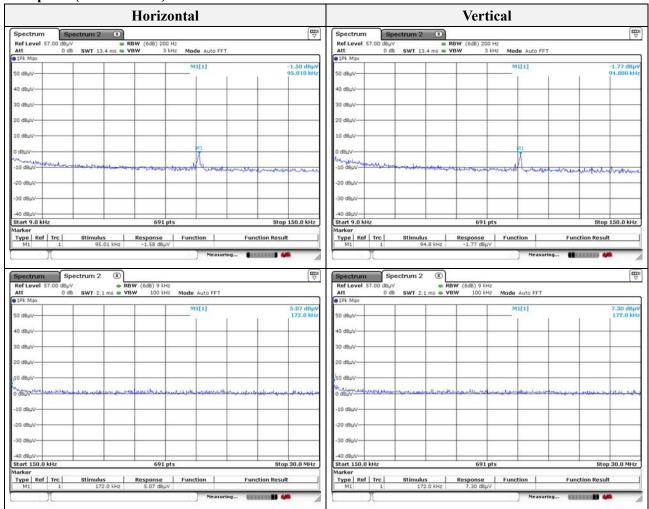
 $Tx_{on+off} \ge 100 \text{ ms} \text{ (pulse train is } 100 \text{ ms)}$ 



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (11) of (19)

#### **Spurious emission**

Test results (Below 30 Mb)


Mode: FSK

Distance of measurement: 3 meter

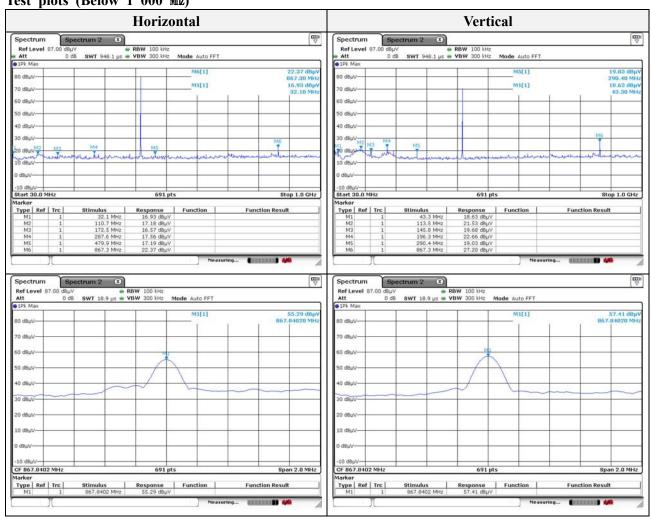
Channel: 1

| Frequency (MHz)                                               | Level<br>(dBµV) | Ant. Pol.<br>(H/V) | CF<br>(dB) | F <sub>d</sub><br>(dB) | Field strength (dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |  |
|---------------------------------------------------------------|-----------------|--------------------|------------|------------------------|-------------------------|-------------------|----------------|--|
| No spurious emissions were detected within 20 dB of the limit |                 |                    |            |                        |                         |                   |                |  |

Test plots (Below 30 Mb)






C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (12) of (19)

### Test results (Below 1 000 Mb)

Mode: FSK
Distance of measurement: 3 meter
Channel: 1

| Frequency (Mb) | Level<br>(dBµV) | Detect mode | Ant. Pol.<br>(H/V) | CF<br>(dB) | DCF<br>(dB) | Field strength (dBµN/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|----------------|-----------------|-------------|--------------------|------------|-------------|-------------------------|-------------------|----------------|
| 43.30          | 20.46           | Peak        | V                  | 13.75      | -           | 34.21                   | 40.00             | 5.79           |
| 113.50         | 21.53           | Peak        | V                  | 10.91      | -           | 32.44                   | 43.50             | 11.06          |
| 145.80         | 19.68           | Peak        | V                  | 8.75       | -           | 28.43                   | 43.50             | 15.07          |
| 196.30         | 22.66           | Peak        | V                  | 11.72      | -           | 34.38                   | 43.50             | 9.12           |
| 290.40         | 19.03           | Peak        | V                  | 14.36      | -           | 33.39                   | 46.00             | 12.61          |
| 867.84         | 55.29           | Peak        | Н                  | -6.08      | -           | 49.21                   | 80.83             | 31.62          |
| 867.84         | 57.41           | Peak        | V                  | -6.08      | -           | 51.33                   | 80.83             | 29.50          |

#### Test plots (Below 1 000 MHz)





C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (13) of (19)

#### Test results (Above 1 000 Mb)

| Mode:                    | FSK     |
|--------------------------|---------|
| Distance of measurement: | 3 meter |
| Channel:                 | 1       |

| Frequency (MHz) | Level<br>(dBµV) | Detect mode | Ant. Pol.<br>(H/V) | CF<br>(dB) | DCF<br>(dB) | Field strength (dBµV/m) | Limit (dBµV/m) | Margin<br>(dB) |
|-----------------|-----------------|-------------|--------------------|------------|-------------|-------------------------|----------------|----------------|
| *1 202 00       | 72.22           | Peak        | Н                  | -7.91      | -           | 65.32                   | 74.00          | 8.68           |
| *1 303.90       | 73.23           | Average     | Н                  | -7.91      | -20.93      | 44.39                   | 54.00          | 9.61           |
| *1 202 00       | 76.06           | Peak        | V                  | -7.91      | -           | 69.05                   | 74.00          | 4.95           |
| *1 303.90       | 76.96           | Average     | V                  | -7.91      | -20.93      | 48.12                   | 54.00          | 5.88           |
| 1 738.10        | 60.06           | Peak        | Н                  | -4.79      | -           | 55.27                   | 80.83          | 25.56          |
| 1 738.10        | 57.06           | Peak        | V                  | -4.79      | -           | 52.27                   | 80.83          | 28.56          |
| 2 172.20        | 47.19           | Peak        | Н                  | -1.49      | -           | 45.70                   | 80.83          | 35.13          |
| 2 172.20        | 56.81           | Peak        | V                  | -1.49      | -           | 55.32                   | 80.83          | 25.51          |
| 2 606.40        | 42.54           | Peak        | Н                  | 0.74       | -           | 43.28                   | 80.83          | 37.55          |
| 2 606.40        | 51.00           | Peak        | V                  | 0.74       | -           | 51.74                   | 80.83          | 29.09          |
| 3 040.50        | 52.02           | Peak        | Н                  | 2.39       | -           | 54.41                   | 80.83          | 26.42          |
| 2.040.50        | 50.02           | Peak        | V                  | 2.39       | -           | 62.31                   | 80.83          | 18.52          |
| 3 040.50        | 59.92           | Average     | V                  | 2.39       | -20.93      | 41.38                   | 60.63          | 19.25          |
| 3 468.90        | 46.20           | Peak        | Н                  | 2.17       | -           | 48.37                   | 80.83          | 32.46          |
| 3 468.90        | 35.93           | Peak        | V                  | 2.17       | -           | 38.10                   | 80.83          | 42.73          |
| *3 908.80       | 47.31           | Peak        | Н                  | 4.17       | -           | 51.48                   | 74.00          | 22.52          |
| *3 908.80       | 49.65           | Peak        | V                  | 4.17       | -           | 53.82                   | 74.00          | 20.18          |
| 4 337.19        | 46.43           | Peak        | Н                  | 5.46       | -           | 51.89                   | 80.83          | 28.94          |
| 4 337.19        | 41.70           | Peak        | V                  | 5.46       | -           | 47.16                   | 80.83          | 33.67          |

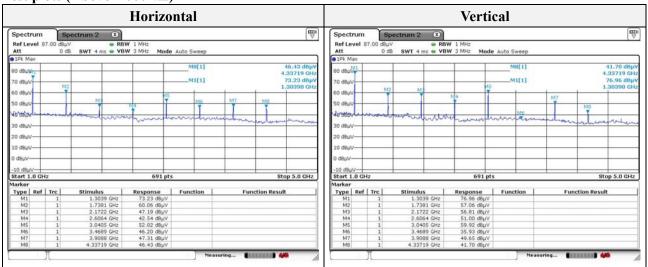
#### Note.

- 1. 3m Peak Limit( $dB\mu V/m$ ) =  $20log[41.6667(F_{(Mlz)}-7083.3333) = 80.83$ 
  - 3m Average Limit( $dB\mu V/m$ ) = Peak limit 20 = 60.83

Average Field strength = Peak Field strength + Duty Cycle Correction Factor

- 2. Correction Factors = Antenna Factor + Cable Loss + Amp.Gain
- 3. "\*"means the restricted band.
- 4. Average test would not be applied if the peak results were lower than the average limit.
- 5. Duty Cycle Correction Factor :  $20\log(\text{Ton} / 100 \text{ ms}) = 20\log(8.986 / 100) = -20.93$

 $Tx_{on time} = 8.986 ms$ 


 $Tx_{on+off} \ge 100 \text{ ms}$  (pulse train is 100 ms)

KES-P-5101-14 Rev. 1 KES A4



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (14) of (19)

### Test plots (Above 1 000 Mb)



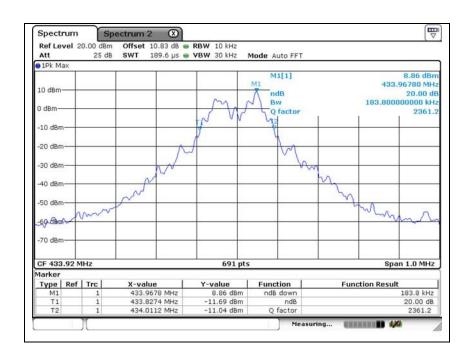


C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (15) of (19)

# 3.2. Bandwidth of operation frequency Test setup



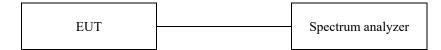
#### **Test procedure**


- 1. Use the following spectrum analyzer setting
- 2. RBW = 10 kHz
- 3. VBW = 30 kHz ( $\geq$  RBW)
- 4. Span = 1 MHz
- 5. Detector function = peak
- 6. Trace = max hold

#### Limit

The bandwidth of the emissions shall be no wider than 0.25 % of the center frequency for devices operating above 70 Mz and below 900 Mz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

#### **Test results**


| Frequency(Mz) | Bandwidth(kHz) | Limit (kHz) |
|---------------|----------------|-------------|
| 433.92        | 183.8          | 1 084.80    |



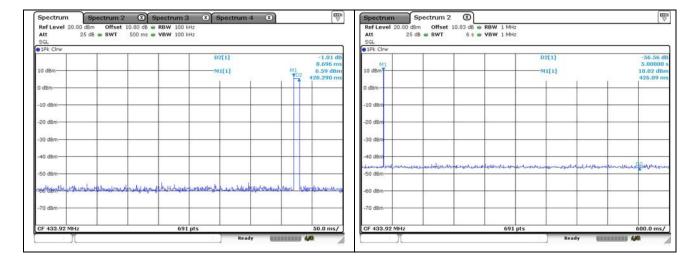


C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (16) of (19)

# 3.3. Transmission time Test setup



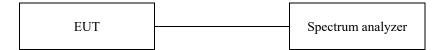
#### **Test procedure**


- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW=100 kHz, VBW=100 kHz, Span=0 Hz.

#### Limit

A transmitter activated automatically shall cease transmission within 5 seconds after activation.

#### **Test results**


| Frequency(Mz) | Transmission time (ms) | Limit (s)           |
|---------------|------------------------|---------------------|
| 433.92        | 8.696                  | Same or less than 5 |





C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (17) of (19)

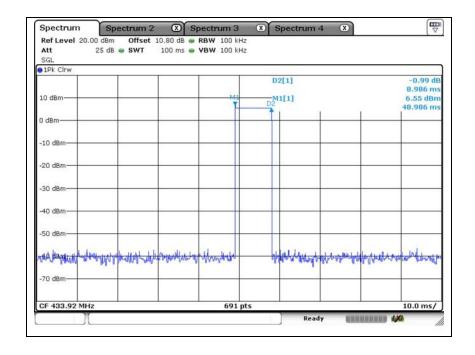
# 3.4. Duty cycle correction factor Test setup



#### **Test procedure**

- 1. The transmitter output is connected to the spectrum analyzer.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW=100 kHz, VBW=100 kHz, Span=0 Hz and Sweep time =100 ms.

#### Limit


None (No dedicated Limit specified in the Rules)

#### **Test results**

Duty Cycle Correction Factor :  $20\log(\text{Ton} / 100 \text{ ms}) = 20\log(8.986 / 100) = -20.93$ 

 $Tx_{on time} = 8.986 \text{ ms}$ 

 $Tx_{on+off} \ge 100 \text{ ms} \text{ (pulse train is } 100 \text{ ms)}$ 





C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0096-R1 Page (18) of (19)

Appendix A. Measurement equipment

| Equipment Equipment                    | Manufacturer             | Model                   | Serial No. | Calibration interval | Calibration due. |
|----------------------------------------|--------------------------|-------------------------|------------|----------------------|------------------|
| Spectrum Analyzer                      | R&S                      | FSV30                   | 10076      | 1 year               | 2017.07.06       |
| 8360B Series Swept<br>Signal Generator | НР                       | 83630B                  | 3844A00786 | 1 year               | 2017.01.25       |
| PSG Analog<br>Signal Generator         | AGILENT                  | E8257C                  | US42340237 | 1 year               | 2017.07.05       |
| DC Power Supply                        | HP                       | 6674A                   | US36370369 | 1 year               | 2017.07.04       |
| Attenuator                             | Agilent                  | 8493C                   | 51401      | 1 year               | 2017.07.05       |
| Loop Antenna                           | R&S                      | HFH2-<br>Z2.335.4711.52 | 826532     | 2 years              | 2017.03.03       |
| Trilog-broadband<br>antenna            | SCHWARZBECK              | VULB 9163               | 9168-713   | 2 years              | 2017.05.15       |
| Horn Antenna                           | A.H.                     | SAS-571                 | 781        | 2 years              | 2017.05.07       |
| High Pass Filter                       | WAINWRIGHT<br>INSTRUMENT | WHJS3000-10TT           | 1          | 1 year               | 2017.07.04       |
| Low Pass Filter                        | WEINSCHEL                | WLK1.0/18G-10TT         | 1          | 1 year               | 2017.07.04       |
| Preamplifier                           | SCHWARZBECK              | BBV-9718                | 9718-246   | 1 year               | 2016.10.23       |
| EMI Test Receiver                      | R&S                      | ESR3                    | 101781     | 1 year               | 2017.05.03       |
| EMI Test Receiver                      | R&S                      | ESU26                   | 100552     | 1 year               | 2017.04.24       |

Peripheral devices

| Device   | Manufacturer | Model No.     | Serial No.      |
|----------|--------------|---------------|-----------------|
| Notebook | SAMSUNG      | NT-R519-BA24J | ZKPA93ES900086Z |