

Electromagnetic Emissions Test Report

Application for Grant of Equipment Authorization Class II Permissive Change pursuant to

Industry Canada RSS-Gen Issue 1 / RSS 210 Issue 6 FCC Part 15 Subpart C

on the

Savi Technology, Inc. Transmitter

Model: ST-604-12

UPN: 2404A-604T FCC ID: KL7-612T-V2

GRANTEE: Savi Technology, Inc.

351 E. Evelyn Ave.

Mountain View, CA 94041

Elliott Laboratories, Inc. TEST SITE:

> 684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE: April 25, 2007

FINAL TEST DATE: April 4, 2007

AUTHORIZED SIGNATORY:

David W. Bare

Chief Technical Officer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

REVISION HISTORY

Revision #	Date	Comments	Modified By
1	May 16, 2007	Initial Release	David Guidotti

File: R67712 Rev 1 Page 2 of 23 pages

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	_
SCUPE	3
OBJECTIVE	6
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	7
MOMENTARILY OPERATED DEVICES – CONTROL SIGNALS – SIGNPOST MODE	7
MOMENTARILY OPERATED DEVICES – DATA SIGNALS OR SIGNALS AT PREDETERMINED INTERVALS	S-
BEACON MODEGENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	10
GENERAL	
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTSEUT OPERATION	
PROPOSED MODIFICATION DETAILS	
GENERAL	
RF CHIP	
TEST SITE	13
GENERAL INFORMATION	13
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	13
MEASUREMENT INSTRUMENTATION	14
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNASANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	

TABLE OF CONTENTS (Continued)

TEST PROCEDURES	16
EUT AND CABLE PLACEMENT	16
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	16
RADIATED EMISSIONS	17
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	19
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RADIATED SPURIOUS EMISSIONS - MOMENTARILY OPERATED DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	
EXHIBIT 3: Photographs of Test Configurations	3

Test Report Report Date: April 25, 2007

SCOPE

An electromagnetic emissions test has been performed on the Savi Technology, Inc. model ST-604-12 pursuant to the following rules:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 RSS-212 Issue 1 Test Facilities and Test Methods for Radio Equipment

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Savi Technology, Inc. model ST-604-12 and therefore apply only to the tested sample. The sample was selected and prepared by Eugene Schlindwein of Savi Technology, Inc.

File: R67712 Rev 1 Page 5 of 23 pages

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Savi Technology, Inc. model ST-604-12 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R67712 Rev 1 Page 6 of 23 pages

TEST RESULTS SUMMARY

${\it MOMENTARILY\ OPERATED\ DEVICES-CONTROL\ SIGNALS-SignPost\ Mode}$

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.231 (a) (1)	RSS 210 A1.1.1 (1)	Duration of manually activated transmissions	No change from original design	< 5 seconds	Complies
15.231 (a) (2)	RSS 210 A1.1.1 (2)	Duration of automatically activated transmissions	No change from original design	< 5 seconds	Complies
15.231 (a) (3)	RSS 210 A1.1.1 (3)	Transmissions at predetermined / regular intervals	No change from original design	Such transmissions are not permitted	Complies
15.231 (a) (4)	RSS 210 A1.1.1 (4)	Pendency of transmissions used during emergencies	-	-	N/A
15.231 (b)	RSS 210 Table 4	Fundamental Signal Strength	89.2dBμV/m (28840.3μV/m) @ 433.926MHz	Refer to table in limits section	Complies (-3.6dB)
15.231 (b) / 15.209	RSS 210 Table 2 / 4	Radiated Spurious Emissions, 30 - 4400 MHz	44.1dBμV/m (160.3μV/m) @ 867.851MHz	Refer to table in limits section	Complies (-9.9dB)
15.231 (c)	RSS 210 A1.1.3	Bandwidth	465 kHz	< 0.5% of operating frequency	Complies
15.231 (d)	RSS 210 A1.1.4	Frequency Stability - 40.66 – 40.70 MHz band	-	-	N/A

Note 1-As the device is intended for mounting in any orientation, it was tested in all three orthogonal orientations.

Note margin stated for emissions based on limits in 15.231(e) and RSS-210 Table 5. These limits are lower than required by 15.231(a) and RSS-210 Tables 2 and 4.

File: R67712 Rev 1 Page 7 of 23 pages

MOMENTARILY OPERATED DEVICES - DATA SIGNALS OR SIGNALS AT PREDETERMINED INTERVALS- Beacon Mode

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.231 (e)	RSS 210 A1.1.5	Duration of transmissions	No change from original design	< 1 second	Complies
15.231 (e)	RSS 210 A1.1.5	Period between transmissions	No change from original design	> 30 times duration of signal and > 10s	Complies
15.231 (e)	RSS 210 Table 5	Fundamental Signal Strength	89.2dBμV/m (28840.3μV/m) @ 433.926MHz	Refer to table in limits section	Complies (-3.6dB)
15.231 (e) / 15.209	RSS 210 Table 5	Radiated Spurious Emissions, 30 - 4400 MHz	44.1dBμV/m (160.3μV/m) @ 867.851MHz	Refer to table in limits section	Complies (-9.9dB)
15.231 (c)	RSS 210 A1.1.3	Bandwidth	465 kHz	< 0.5% of operating frequency	Complies
15.231 (d)	RSS 210 A1.1.4	Frequency Stability - 40.66 – 40.70 MHz band	-	-	N/A

Note 1 - As the device is intended for mounting in any orientation, it was tested in all three orthogonal orientations.

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	No change from original design	Integral antenna or non-standard connector	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	Exempt	-	N/A
15.207	RSS GEN Table 2	AC Conducted Emissions	Battery powered	Refer to standard	N/A
	RSP 100 RSS GEN 7.1.5	User Manual	No change from original design	Statement required regarding non- interference	

File: R67712 Rev 1 Page 8 of 23 pages

MEASUREMENT UNCERTAINTIES

ISO/IEC17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	0.015 to 30	± 3.0
Radiated Emissions Radiated Emissions	30 to 1000 1000 to 40000	± 3.6 ± 6.0

File: R67712 Rev 1 Page 9 of 23 pages

Report Date: April 25, 2007

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Savi Technology, Inc. model ST-604-12 is an rf tag which is designed to be used as part of an inventory tracking system. Normally, the EUT would be mounted to a piece of capital equipment. The EUT was treated as tabletop equipment during testing to simulate the end user environment.

The EUT is self-contained, with no interface ports for connection to external power or signal lines. It is powered via on-board cells.

The sample was received on April 4, 2007 and tested on April 4, 2007. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Savi	ST-604-12	433MHz RF Tag	2017395	KL7-612T-V2

OTHER EUT DETAILS

The EUT is designed to receive commands from a SignPost transmitter at 123kHz. It then responds by transmitting an ID code using FSK at 433.92MHz. This signal is received by a SaviReader.

ANTENNA SYSTEM

The antenna system used with the Savi Technology, Inc. model ST-604-12 consists of?

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 4.5 cm wide by 16 cm deep by 3 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

File: R67712 Rev 1 Page 10 of 23 pages

Report Date: April 25, 2007

SUPPORT EQUIPMENT

No support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)		
Tort	Connected 10	Description	Shielded or Unshielded	Length(m)
None	-	-	-	-

EUT OPERATION

The EUT was configured to either transmit in Beacon Mode (transmitting its ID code at periodic intervals) or configured to be in stand-by/Receive mode.

File: R67712 Rev 1 Page 11 of 23 pages

Test Report Report Date: April 25, 2007

PROPOSED MODIFICATION DETAILS

GENERAL

This section details the modifications to the Savi Technology, Inc. model ST-604-12. All performance and construction deviations from the characteristics originally reported to the FCC and IC are addressed.

RF CHIP

The chip used in the RF circuit made by Infineon experienced a process change. The chip is now made on 8" wafers and uses AlCu metallization which improves the wiring to the ESD protection devices. Previously the chip was made on 6" wafers and used AlSiCu metallizations.

No other changes have been made to the product design or software.

File: R67712 Rev 1 Page 12 of 23 pages

Test Report Report Date: April 25, 2007

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on April 4, 2007 at the Elliott Laboratories Open Area Test Site #2 located at 684 West Maude Avenue, Sunnyvale, California or 41039 Boyce Road, Fremont, California Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003 and RSS 212.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003 and RSS 212. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003 / RSS 212.

File: R67712 Rev 1 Page 13 of 23 pages

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R67712 Rev 1 Page 14 of 23 pages

Report Date: April 25, 2007

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

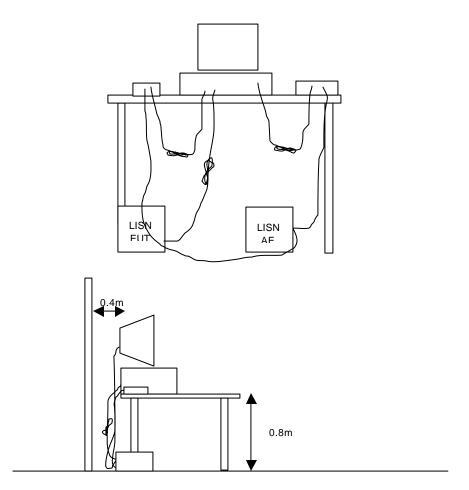
The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 and RSS 212 specify that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R67712 Rev 1 Page 15 of 23 pages


TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

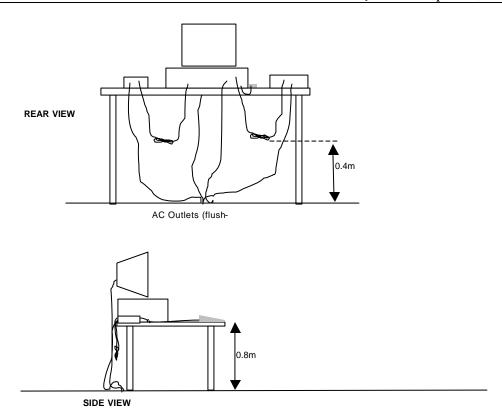
CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

File: R67712 Rev 1 Page 16 of 23 pages

Report Date: April 25, 2007

RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

File: R67712 Rev 1 Page 17 of 23 pages

Typical Test Configuration for Radiated Field Strength Measurements

File: R67712 Rev 1 Page 18 of 23 pages

Report Date: April 25, 2007

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

File: R67712 Rev 1 Page 19 of 23 pages

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

File: R67712 Rev 1 Page 20 of 23 pages

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

RADIATED SPURIOUS EMISSIONS - MOMENTARILY OPERATED DEVICES

The table below shows the limits for both the fundamental and spurious emissions for control signals. The limits for data signals, or signals with predetermined transmissions, are given in the second table

Operating Frequency (MHz)	Fundamental Field Strength (microvolts/m)	Spurious Emissions (microvolts/m)
70 - 130	1250	125
130 - 174	1250 - 3750	125 - 375
174 – 260	3750	375
260 – 470	3750 – 12,500	375 - 1250
Above 470	12,500	1250

<u>Spurious Emissions Limits – Control Signals</u>

Operating Frequency (MHz)	Fundamental Field Strength (microvolts/m)	Spurious Emissions (microvolts/m)
70 - 130	500	50
130 - 174	500 - 1500	50 - 150
174 – 260	1500	150
260 – 470	1500 – 5000	150 - 500
Above 470	5000	500

<u>Spurious Emissions Limits – Data Signals</u>

File: R67712 Rev 1 Page 21 of 23 pages

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 $D_m = Measurement Distance in meters$

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R67712 Rev 1 Page 22 of 23 pages

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_C - L_S$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

$$E = \frac{1000000 \text{ v } 30 \text{ P}}{3}$$
 microvolts per meter 3
where P is the eirp (Watts)

File: R67712 Rev 1 Page 23 of 23 pages

EXHIBIT 1: Test Equipment Calibration Data

1 Page

File: R67712 Rev 1 Exhibit Page 1 of 3

Radiated Emissions, 30 - 4,400 MHz, 04-Apr-07 Engineer: Mehran Birgani

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	24-May-08
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	780	05-Sep-07
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	15-Nov-07
Filtek	Filter, 1 GHz High Pass	HP12/1000-5BA	957	24-Apr-07
EMCO	Log Periodic Antenna, 0.2-1 GHz	3146	1294	25-May-07
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	21-Nov-07

Test Report Report Date: April 25, 2007

EXHIBIT 2: Test Measurement Data

7Pages

File: R67712 Rev 1 Exhibit Page 2 of 3

Elliot	EM	C Test Data	
Client:	Savi	Job Number:	J67527
Model:	ST-604-12	T-Log Number:	T67529
		Proj Eng:	Dean Eriksen
Contact:	Eugene Schlindwein		
Emissions Spec:	FCC Part 15.231	Class:	-
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

Savi

Model

ST-604-12

Elliot	t	EMC Test Data		
Client:	Savi	Job Number:	J67527	
Model:	ST-604-12	T-Log Number:	T67529	
		Proj Eng:	Dean Eriksen	
Contact:	Eugene Schlindwein			
Emissions Spec:	FCC Part 15.231	Class:	-	
Immunity Spec:	-	Environment:	_	

EUT INFORMATION

General Description

The EUT is an rf tag which is designed to be used as part of an inventory tracking system. Normally, the EUT would be mounted to a piece of capital equipment. The EUT was treated as tabletop equipment during testing to simulate the end user environment.

The EUT is self contained, with no interface ports for connection to external power or signal lines. It is powered via on-board cells.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Savi	ST-604-12	433MHz RF Tag	2017395	KL7-612T-V2

Other EUT Details

The EUT is designed to receive commands from a SignPost transmitter at 123kHz. It then responds by transmitting an ID code using FSK at 433.92MHz. This signal is received by a SaviReader.

EUT Enclosure

The EUT enclosure is primarily constructed of plastic. It measures approximately 4.5 cm wide by 16 cm deep by 3 cm high.

Elliot	t	EM	EMC Test Data			
Client:	Savi	Job Number:	J67527			
Model:	ST-604-12	T-Log Number:	T67529			
		Proj Eng:	Dean Eriksen			
Contact:	Eugene Schlindwein					
Emissions Spec:	FCC Part 15.231	Class:	-			
Immunity Spec:	-	Environment:	-			
Test Configuration #1						

Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None	-	-	-	-

Interface Ports

		Cable(s)				
Port	Connected To	Description	Shielded or Unshielded	Length(m)		
None	-	-	-	-		

EUT Operation During Emissions

The EUT was configured to either transmit in Beacon Mode (transmitting its ID code at periodic intervals) or configured to be in stand-by/Receive mode.

Elliott	EMC Test Data
Client: Savi	Job Number: J67527
Model: ST-604-12	T-Log Number: T67529
	Proj Eng: Dean Eriksen
Contact: Eugene Schlindwein	
Spec: FCC Part 15.231	Class: -

Radiated Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 4/4/2007 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: None

Test Location: SVOATS #2 EUT Voltage: Internal Batteries

General Test Configuration

The EUT was located on a 0.8m high wooden table on the turntable for radiated emissions testing perfromed in the anechoic chamber. The EUT was tested in all three ortogonal axes.

On the OATS, the measurement antenna was located 3 meters from the EUT.

Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Ambient Conditions: Temperature: 16°C

Rel. Humidity: 66%

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	Fundamental Signal @ 433.92MHz	FCC 15.231(e)	Pass	89.2dBµV/m (28840.3µV/m) @ 433.926MHz (-3.6dB)
2	Transmitter Spurious Emissions	FCC 15.231(e)	Pass	44.1dBµV/m (160.3µV/m) @ 867.851MHz (-9.9dB)
3	Bandwidth	15.231	Pass	465 kHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

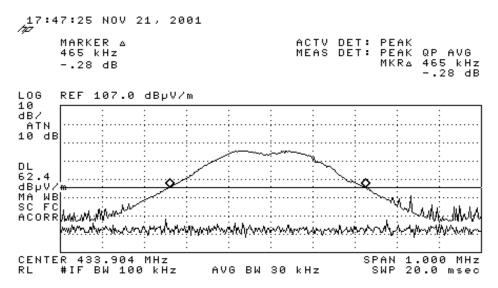
No deviations were made from the requirements of the standard.

Ullent:	Savi	<u>ott</u>		·	lob Number:	J67527			
Model:	ST-604-12)						og Number:	
								•	Dean Eriksen
Contact:	t: Eugene Schlindwein							, ,	
	FCC Part							Class:	-
				•	ental Signal			la .	
Frequency		Pol		31(e)	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Unright	
433.926 433.926	89.2 69.2	V	92.8 72.8	-3.6 -3.6	Pk Ava	311 311	1.1 1.1	Upright Upright	
433.926	88.1	H	92.8	-3.0 -4.7	Avg Pk	21	1.0	Side	
433.926	68.1	H	72.8	-4.7	Avg	21	1.0	Side	
433.926	87.6	-:- H	92.8	-5.2	Pk	5	1.0	Flat	
433.926	67.6	H	72.8	-5.2	Avg	5	1.0	Flat	
433.926	84.8	V	92.8	-8.0	Pk	73	1.2	Flat	
433.926	64.8	V	72.8	-8.0	Avg	73	1.2	Flat	
433.926	82.5	Н	92.8	-10.3	Pk	249	1.0	Upright	
433.926	62.5	Н	72.8	-10.3	Avg	249	1.0	Upright	
433.926	80.2	V	92.8	-12.6	Pk	98	1.1	Side	
433.926	60.2	V	72.8	-12.6	Avg	98	11.0	Side	
	Average	reading	s calculated	d from the n	eak readings	hy adding th	ne average	correction fa	ctor of -20dB to the
Note 1:	reading.	-	o odiodiatot	2 110111 tilo p	oak roadingo	by adding ti	io avolago	00110011011110	000 01 2000 10 1110
Note 2:			(e) used.						

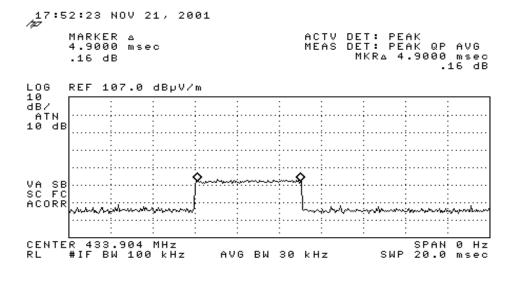
Client: Savi Model: ST-604-12 Contact: Eugene Schlindwein Spec: FCC Part 15.231 EMC Test Data Job Number: J67527 T-Log Number: T67529 Proj Eng: Dean Eriksen Class: -

Run #2: Maximized Radiated Emissions - Spurious Emissions 30MHz - 4,400 MHz

Frequency Level Pol									
867.851 44.1 V 54.0 -9.9 Avg 18 1.2 Upright 867.851 64.1 V 74.0 -9.9 Pk 18 1.2 Upright 867.851 64.0 H 74.0 -10.0 Pk 170 1.0 Flat 867.851 63.5 H 74.0 -10.5 Pk 176 1.0 Side 867.851 63.5 H 74.0 -10.5 Avg 176 1.0 Side 867.851 43.5 H 54.0 -10.5 Avg 176 1.0 Side 1301.740 62.2 V 74.0 -11.8 AVG 179 1.3 Upright 1735.650 60.2 H 74.0 -13.8 PK 34 1.5 Side 1735.660 59.8 H 74.0 -14.2 PK 156 2.0 Flat 1735.690 39.8 H 54.0 <	Frequency		Pol	15.23	31(e)	Detector	Azimuth	Height	Comments
867.851 64.1 V 74.0 -9.9 Pk 18 1.2 Upright 867.851 64.0 H 74.0 -10.0 Pk 170 1.0 Flat 867.851 63.5 H 74.0 -10.5 Pk 176 1.0 Side 867.851 43.5 H 54.0 -10.5 Avg 176 1.0 Side 1301.740 62.2 V 74.0 -11.8 PK 179 1.3 Upright 1301.740 42.2 V 54.0 -11.8 PK 179 1.3 Upright 1735.650 60.2 H 74.0 -13.8 PK 34 1.5 Side 1735.650 40.2 H 54.0 -13.8 AVG 34 1.5 Side 1735.690 59.8 H 74.0 -14.2 PK 156 2.0 Flat 1735.690 59.7 V 74.0		$dB\mu V/m$	V/H	Limit	Margin	Pk/QP/Avg	degrees		
867.851 64.0 H 74.0 -10.0 Pk 170 1.0 Flat 867.851 44.0 H 54.0 -10.0 Avg 170 1.0 Flat 867.851 63.5 H 74.0 -10.5 Pk 176 1.0 Side 867.851 43.5 H 54.0 -10.5 Avg 176 1.0 Side 1301.740 62.2 V 74.0 -11.8 PK 179 1.3 Upright 1735.650 60.2 H 74.0 -13.8 PK 34 1.5 Side 1735.650 60.2 H 74.0 -13.8 AVG 34 1.5 Side 1735.690 59.8 H 74.0 -14.2 AVG 156 2.0 Flat 1735.690 39.8 H 54.0 -14.3 AVG 322 1.6 Upright 1735.690 39.7 V 74.0	867.851	44.1		54.0	-9.9	Avg	18	1.2	Upright
867.851 44.0 H 54.0 -10.0 Avg 170 1.0 Flat 867.851 63.5 H 74.0 -10.5 Pk 176 1.0 Side 867.851 43.5 H 54.0 -10.5 Avg 176 1.0 Side 1301.740 62.2 V 74.0 -11.8 PK 179 1.3 Upright 1301.740 42.2 V 54.0 -11.8 AVG 179 1.3 Upright 1735.650 60.2 H 74.0 -13.8 PK 34 1.5 Side 1735.650 60.2 H 54.0 -13.8 AVG 34 1.5 Side 1735.650 90.2 H 54.0 -14.2 PK 156 2.0 Flat 1735.660 59.7 V 74.0 -14.3 PK 332 1.6 Upright 1735.660 59.7 V 74.0	867.851	64.1	V	74.0	-9.9		18	1.2	Upright
867.851 63.5 H 74.0 -10.5 Pk 176 1.0 Side 867.851 43.5 H 54.0 -10.5 Avg 176 1.0 Side 1301.740 42.2 V 54.0 -11.8 PK 179 1.3 Upright 1301.740 42.2 V 54.0 -11.8 AVG 179 1.3 Upright 1735.650 60.2 H 74.0 -13.8 PK 34 1.5 Side 1735.690 59.8 H 74.0 -14.2 PK 156 2.0 Flat 1735.690 39.8 H 54.0 -14.2 PK 156 2.0 Flat 1735.690 39.8 H 54.0 -14.3 PK 332 1.6 Upright 1735.690 39.7 V 74.0 -14.3 AVG 332 1.6 Upright 1735.690 39.7 V 54.0	867.851	64.0	Н	74.0	-10.0	Pk	170	1.0	Flat
867.851 43.5 H 54.0 -10.5 Avg 176 1.0 Side 1301.740 62.2 V 74.0 -11.8 PK 179 1.3 Upright 1301.740 42.2 V 54.0 -11.8 AVG 179 1.3 Upright 1735.650 60.2 H 74.0 -13.8 PK 34 1.5 Side 1735.650 40.2 H 54.0 -13.8 AVG 34 1.5 Side 1735.690 59.8 H 74.0 -14.2 PK 156 2.0 Flat 1735.690 39.8 H 54.0 -14.2 AVG 156 2.0 Flat 1735.690 39.8 H 54.0 -14.2 AVG 156 2.0 Flat 1735.690 39.8 H 54.0 -14.3 AVG 132 1.6 Upright 1735.660 39.7 V 74.0	867.851	44.0	Н	54.0	-10.0	Avg	170	1.0	Flat
1301.740	867.851	63.5	Н	74.0	-10.5	Pk	176	1.0	Side
1301.740	867.851	43.5	Н	54.0	-10.5	Avg	176	1.0	Side
1735.650 60.2 H 74.0 -13.8 PK 34 1.5 Side 1735.650 40.2 H 54.0 -13.8 AVG 34 1.5 Side 1735.690 59.8 H 74.0 -14.2 PK 156 2.0 Flat 1735.690 39.8 H 54.0 -14.2 AVG 156 2.0 Flat 1735.660 59.7 V 74.0 -14.3 PK 332 1.6 Upright 1735.660 39.7 V 54.0 -16.2 Pk 244 2.9 Side 867.851 57.8 V 74.0 -16.2 Pk 244 2.9 Side 867.851 37.8 V 54.0 -16.2 Avg 244 2.9 Side 810.760 37.7 H 74.0 -16.3 AVG 140 1.6 Flat 1301.750 37.5 H 74.0 <	1301.740	62.2	V	74.0	-11.8	PK	179	1.3	Upright
1735.650 40.2 H 54.0 -13.8 AVG 34 1.5 Side 1735.690 59.8 H 74.0 -14.2 PK 156 2.0 Flat 1735.690 39.8 H 54.0 -14.2 AVG 156 2.0 Flat 1735.660 59.7 V 74.0 -14.3 PK 332 1.6 Upright 1735.660 39.7 V 54.0 -14.3 AVG 332 1.6 Upright 1867.851 57.8 V 74.0 -16.2 Pk 244 2.9 Side 867.851 37.8 V 54.0 -16.2 Avg 244 2.9 Side 1301.760 57.7 H 74.0 -16.3 PK 140 1.6 Flat 1301.750 57.5 H 74.0 -16.5 AVG 142 1.6 Side 1301.750 56.4 V 74.0	1301.740	42.2	V	54.0	-11.8		179	1.3	
1735.690 59.8 H 74.0 -14.2 PK 156 2.0 Flat 1735.690 39.8 H 54.0 -14.2 AVG 156 2.0 Flat 1735.660 59.7 V 74.0 -14.3 PK 332 1.6 Upright 1735.660 39.7 V 54.0 -14.3 AVG 332 1.6 Upright 867.851 57.8 V 74.0 -16.2 Pk 244 2.9 Side 867.851 37.8 V 54.0 -16.2 Avg 244 2.9 Side 867.851 37.8 V 54.0 -16.2 Avg 244 2.9 Side 81301.760 57.7 H 74.0 -16.3 PK 140 1.6 Flat 1301.750 37.5 H 54.0 -16.5 PK 142 1.6 Side 1301.780 36.4 V 54.0		60.2	Н	74.0	-13.8	PK	34		
1735.690 39.8 H 54.0 -14.2 AVG 156 2.0 Flat 1735.660 59.7 V 74.0 -14.3 PK 332 1.6 Upright 1735.660 39.7 V 54.0 -14.3 AVG 332 1.6 Upright 867.851 57.8 V 74.0 -16.2 Pk 244 2.9 Side 867.851 37.8 V 54.0 -16.2 Avg 244 2.9 Side 867.851 37.8 V 54.0 -16.3 PK 140 1.6 Flat 1301.760 37.7 H 54.0 -16.3 AVG 140 1.6 Flat 1301.750 37.5 H 54.0 -16.5 PK 142 1.6 Side 1301.780 36.4 V 54.0 -17.6 PK 247 1.1 Flat 1301.790 35.9 V 74.0	1735.650	40.2	Н	54.0	-13.8	AVG	34	1.5	Side
1735.660 59.7 V 74.0 -14.3 PK 332 1.6 Upright 1735.660 39.7 V 54.0 -14.3 AVG 332 1.6 Upright 867.851 57.8 V 74.0 -16.2 Pk 244 2.9 Side 867.851 37.8 V 54.0 -16.2 Avg 244 2.9 Side 1301.760 57.7 H 74.0 -16.3 PK 140 1.6 Flat 1301.760 37.7 H 54.0 -16.5 PK 142 1.6 Side 1301.750 37.5 H 74.0 -16.5 PK 142 1.6 Side 1301.780 56.4 V 74.0 -17.6 PK 247 1.1 Flat 1301.780 36.4 V 54.0 -17.9 Pk 287 1.0 Flat 1301.790 35.9 V 74.0	1735.690				-14.2				
1735.660 39.7 V 54.0 -14.3 AVG 332 1.6 Upright 867.851 57.8 V 74.0 -16.2 Pk 244 2.9 Side 867.851 37.8 V 54.0 -16.2 Avg 244 2.9 Side 1301.760 57.7 H 74.0 -16.3 PK 140 1.6 Flat 1301.760 37.7 H 54.0 -16.3 AVG 140 1.6 Flat 1301.750 37.5 H 74.0 -16.5 PK 142 1.6 Side 1301.780 36.4 V 74.0 -17.6 PK 247 1.1 Flat 867.851 36.1 V 54.0 -17.6 AVG 247 1.1 Flat 1301.780 36.4 V 54.0 -17.9 Pk 287 1.0 Flat 867.851 36.1 V 54.0									Flat
867.851 57.8 V 74.0 -16.2 Pk 244 2.9 Side 867.851 37.8 V 54.0 -16.2 Avg 244 2.9 Side 1301.760 57.7 H 74.0 -16.3 PK 140 1.6 Flat 1301.760 37.7 H 54.0 -16.5 PK 142 1.6 Side 1301.750 57.5 H 74.0 -16.5 PK 142 1.6 Side 1301.780 56.4 V 74.0 -17.6 PK 247 1.1 Flat 1301.780 36.4 V 54.0 -17.6 PK 247 1.1 Flat 867.851 36.1 V 74.0 -17.9 Pk 287 1.0 Flat 1301.790 35.9 V 74.0 -18.1 PK 104 1.0 Side 1735.680 55.0 V 74.0 -		59.7		74.0	-14.3		332		Upright
867.851 37.8 V 54.0 -16.2 Avg 244 2.9 Side 1301.760 57.7 H 74.0 -16.3 PK 140 1.6 Flat 1301.760 37.7 H 54.0 -16.3 AVG 140 1.6 Flat 1301.750 57.5 H 74.0 -16.5 PK 142 1.6 Side 1301.780 56.4 V 74.0 -17.6 PK 247 1.1 Flat 1301.780 36.4 V 54.0 -17.6 PK 247 1.1 Flat 1301.780 36.4 V 54.0 -17.6 AVG 247 1.1 Flat 867.851 36.1 V 74.0 -17.9 Avg 287 1.0 Flat 1301.790 55.9 V 74.0 -18.1 PK 104 1.0 Side 1735.680 35.0 V 54.0 <									
1301.760 57.7 H 74.0 -16.3 PK 140 1.6 Flat 1301.760 37.7 H 54.0 -16.3 AVG 140 1.6 Flat 1301.750 57.5 H 74.0 -16.5 PK 142 1.6 Side 1301.780 56.4 V 74.0 -17.6 PK 247 1.1 Flat 1301.780 36.4 V 54.0 -17.6 PK 247 1.1 Flat 1301.780 36.4 V 54.0 -17.6 AVG 247 1.1 Flat 1301.780 36.4 V 54.0 -17.9 Pk 287 1.0 Flat 867.851 36.1 V 54.0 -17.9 Avg 287 1.0 Flat 1301.790 35.9 V 54.0 -18.1 AVG 104 1.0 Side 1735.680 35.0 V 74.0			-						
1301.760 37.7 H 54.0 -16.3 AVG 140 1.6 Flat 1301.750 57.5 H 74.0 -16.5 PK 142 1.6 Side 1301.750 37.5 H 54.0 -16.5 AVG 142 1.6 Side 1301.780 56.4 V 74.0 -17.6 PK 247 1.1 Flat 1301.780 36.4 V 54.0 -17.6 AVG 247 1.1 Flat 867.851 56.1 V 74.0 -17.9 Pk 287 1.0 Flat 1301.790 55.9 V 74.0 -18.1 PK 104 1.0 Side 1735.680 55.0 V 74.0 -19.0 PK 120 1.3 Side 1735.680 35.0 V 54.0 -19.4 PK 117 2.0 Flat 1301.750 51.6 H 74.0 <									
1301.750 57.5 H 74.0 -16.5 PK 142 1.6 Side 1301.750 37.5 H 54.0 -16.5 AVG 142 1.6 Side 1301.780 56.4 V 74.0 -17.6 PK 247 1.1 Flat 1301.780 36.4 V 54.0 -17.6 AVG 247 1.1 Flat 867.851 56.1 V 74.0 -17.9 Pk 287 1.0 Flat 1301.790 36.1 V 54.0 -17.9 Avg 287 1.0 Flat 1301.790 35.9 V 74.0 -18.1 PK 104 1.0 Side 1735.680 55.0 V 74.0 -19.0 PK 120 1.3 Side 1735.680 35.0 V 54.0 -19.4 PK 117 2.0 Flat 1735.660 34.6 V 54.0 <									
1301.750 37.5 H 54.0 -16.5 AVG 142 1.6 Side 1301.780 56.4 V 74.0 -17.6 PK 247 1.1 Flat 1301.780 36.4 V 54.0 -17.6 AVG 247 1.1 Flat 867.851 56.1 V 74.0 -17.9 Pk 287 1.0 Flat 867.851 36.1 V 54.0 -17.9 Avg 287 1.0 Flat 1301.790 55.9 V 74.0 -18.1 PK 104 1.0 Side 1301.790 35.9 V 54.0 -18.1 AVG 104 1.0 Side 1735.680 55.0 V 74.0 -19.0 PK 120 1.3 Side 1735.680 35.0 V 54.0 -19.0 AVG 120 1.3 Side 1735.660 54.6 V 74.0									
1301.780 56.4 V 74.0 -17.6 PK 247 1.1 Flat 1301.780 36.4 V 54.0 -17.6 AVG 247 1.1 Flat 867.851 56.1 V 74.0 -17.9 Pk 287 1.0 Flat 867.851 36.1 V 54.0 -17.9 Avg 287 1.0 Flat 1301.790 55.9 V 74.0 -18.1 PK 104 1.0 Side 1301.790 35.9 V 54.0 -18.1 AVG 104 1.0 Side 1735.680 55.0 V 74.0 -19.0 PK 120 1.3 Side 1735.680 35.0 V 54.0 -19.0 AVG 120 1.3 Side 1735.660 54.6 V 74.0 -19.4 PK 117 2.0 Flat 1301.750 51.6 H 74.0 <									
1301.780 36.4 V 54.0 -17.6 AVG 247 1.1 Flat 867.851 56.1 V 74.0 -17.9 Pk 287 1.0 Flat 867.851 36.1 V 54.0 -17.9 Avg 287 1.0 Flat 1301.790 55.9 V 74.0 -18.1 PK 104 1.0 Side 1301.790 35.9 V 54.0 -18.1 AVG 104 1.0 Side 1735.680 55.0 V 74.0 -19.0 PK 120 1.3 Side 1735.680 35.0 V 54.0 -19.0 AVG 120 1.3 Side 1735.660 54.6 V 74.0 -19.4 PK 117 2.0 Flat 1301.750 51.6 H 74.0 -22.4 PK 230 1.0 Upright 1301.750 31.6 H 54.0									
867.851 56.1 V 74.0 -17.9 Pk 287 1.0 Flat 867.851 36.1 V 54.0 -17.9 Avg 287 1.0 Flat 1301.790 55.9 V 74.0 -18.1 PK 104 1.0 Side 1301.790 35.9 V 54.0 -18.1 AVG 104 1.0 Side 1735.680 55.0 V 74.0 -19.0 PK 120 1.3 Side 1735.680 35.0 V 54.0 -19.0 AVG 120 1.3 Side 1735.680 35.0 V 54.0 -19.0 AVG 120 1.3 Side 1735.660 54.6 V 74.0 -19.4 PK 117 2.0 Flat 1301.750 51.6 H 74.0 -22.4 PK 230 1.0 Upright 1301.750 31.6 H 54.0									
867.851 36.1 V 54.0 -17.9 Avg 287 1.0 Flat 1301.790 55.9 V 74.0 -18.1 PK 104 1.0 Side 1301.790 35.9 V 54.0 -18.1 AVG 104 1.0 Side 1735.680 55.0 V 74.0 -19.0 PK 120 1.3 Side 1735.680 35.0 V 54.0 -19.0 AVG 120 1.3 Side 1735.660 54.6 V 74.0 -19.4 PK 117 2.0 Flat 1735.660 34.6 V 54.0 -19.4 AVG 117 2.0 Flat 1301.750 51.6 H 74.0 -22.4 PK 230 1.0 Upright 1301.750 31.6 H 54.0 -22.4 AVG 230 1.0 Upright 867.851 51.3 H 74.0									
1301.790 55.9 V 74.0 -18.1 PK 104 1.0 Side 1301.790 35.9 V 54.0 -18.1 AVG 104 1.0 Side 1735.680 55.0 V 74.0 -19.0 PK 120 1.3 Side 1735.680 35.0 V 54.0 -19.0 AVG 120 1.3 Side 1735.660 54.6 V 74.0 -19.4 PK 117 2.0 Flat 1735.660 34.6 V 54.0 -19.4 AVG 117 2.0 Flat 1301.750 51.6 H 74.0 -22.4 PK 230 1.0 Upright 1301.750 31.6 H 54.0 -22.4 AVG 230 1.0 Upright 867.851 31.3 H 54.0 -22.7 Avg 270 2.8 Upright 1735.640 47.7 H 74.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1301.790 35.9 V 54.0 -18.1 AVG 104 1.0 Side 1735.680 55.0 V 74.0 -19.0 PK 120 1.3 Side 1735.680 35.0 V 54.0 -19.0 AVG 120 1.3 Side 1735.660 54.6 V 74.0 -19.4 PK 117 2.0 Flat 1735.660 34.6 V 54.0 -19.4 AVG 117 2.0 Flat 1301.750 51.6 H 74.0 -22.4 PK 230 1.0 Upright 1301.750 31.6 H 54.0 -22.4 AVG 230 1.0 Upright 867.851 31.3 H 54.0 -22.7 Avg 270 2.8 Upright 867.851 51.3 H 74.0 -22.7 Pk 270 2.8 Upright 1735.640 47.7 H 74.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1735.680 55.0 V 74.0 -19.0 PK 120 1.3 Side 1735.680 35.0 V 54.0 -19.0 AVG 120 1.3 Side 1735.660 54.6 V 74.0 -19.4 PK 117 2.0 Flat 1735.660 34.6 V 54.0 -19.4 AVG 117 2.0 Flat 1301.750 51.6 H 74.0 -22.4 PK 230 1.0 Upright 1301.750 31.6 H 54.0 -22.4 AVG 230 1.0 Upright 867.851 31.3 H 54.0 -22.7 Avg 270 2.8 Upright 867.851 51.3 H 74.0 -22.7 Pk 270 2.8 Upright 1735.640 47.7 H 74.0 -26.3 PK 44 1.7 Upright									
1735.680 35.0 V 54.0 -19.0 AVG 120 1.3 Side 1735.660 54.6 V 74.0 -19.4 PK 117 2.0 Flat 1735.660 34.6 V 54.0 -19.4 AVG 117 2.0 Flat 1301.750 51.6 H 74.0 -22.4 PK 230 1.0 Upright 1301.750 31.6 H 54.0 -22.4 AVG 230 1.0 Upright 867.851 31.3 H 54.0 -22.7 Avg 270 2.8 Upright 867.851 51.3 H 74.0 -22.7 Pk 270 2.8 Upright 1735.640 47.7 H 74.0 -26.3 PK 44 1.7 Upright									
1735.660 54.6 V 74.0 -19.4 PK 117 2.0 Flat 1735.660 34.6 V 54.0 -19.4 AVG 117 2.0 Flat 1301.750 51.6 H 74.0 -22.4 PK 230 1.0 Upright 1301.750 31.6 H 54.0 -22.4 AVG 230 1.0 Upright 867.851 31.3 H 54.0 -22.7 Avg 270 2.8 Upright 867.851 51.3 H 74.0 -22.7 Pk 270 2.8 Upright 1735.640 47.7 H 74.0 -26.3 PK 44 1.7 Upright									
1735.660 34.6 V 54.0 -19.4 AVG 117 2.0 Flat 1301.750 51.6 H 74.0 -22.4 PK 230 1.0 Upright 1301.750 31.6 H 54.0 -22.4 AVG 230 1.0 Upright 867.851 31.3 H 54.0 -22.7 Avg 270 2.8 Upright 867.851 51.3 H 74.0 -22.7 Pk 270 2.8 Upright 1735.640 47.7 H 74.0 -26.3 PK 44 1.7 Upright									
1301.750 51.6 H 74.0 -22.4 PK 230 1.0 Upright 1301.750 31.6 H 54.0 -22.4 AVG 230 1.0 Upright 867.851 31.3 H 54.0 -22.7 Avg 270 2.8 Upright 867.851 51.3 H 74.0 -22.7 Pk 270 2.8 Upright 1735.640 47.7 H 74.0 -26.3 PK 44 1.7 Upright									
1301.750 31.6 H 54.0 -22.4 AVG 230 1.0 Upright 867.851 31.3 H 54.0 -22.7 Avg 270 2.8 Upright 867.851 51.3 H 74.0 -22.7 Pk 270 2.8 Upright 1735.640 47.7 H 74.0 -26.3 PK 44 1.7 Upright									
867.851 31.3 H 54.0 -22.7 Avg 270 2.8 Upright 867.851 51.3 H 74.0 -22.7 Pk 270 2.8 Upright 1735.640 47.7 H 74.0 -26.3 PK 44 1.7 Upright									
867.851 51.3 H 74.0 -22.7 Pk 270 2.8 Upright 1735.640 47.7 H 74.0 -26.3 PK 44 1.7 Upright									
1735.640 47.7 H 74.0 -26.3 PK 44 1.7 Upright									Upright
									Upright
1735.640 27.7 H 54.0 -26.3 AVG 44 1.7 Upright									
	1735.640	27.7	Н	54.0	-26.3	AVG	44	1.7	Upright


Elliott

EMC Test Data


Client:	Savi	Job Number:	J67527
Model:	ST-604-12	T-Log Number:	T67529
		Proj Eng:	Dean Eriksen
Contact:	Eugene Schlindwein		
Spec:	FCC Part 15.231	Class:	-

Run #3: 20dB Bandwidth and Duty Cycle

The 20dB bandwidth was measured to be 465 kHz (see plot below). The maximum permitted bandwidth is 1.085 MHz.

Duty cycle: There are never more than two transmissions in a 125mS period. The maximum on time was 4.9mS for a single transmission. The average correction factor to be aplied to peak readings is, therefore, the maximum of -20dB.

EXHIBIT 3: Photographs of Test Configurations

1 Page

File: R67712 Rev 1 Exhibit Page 3 of 3